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Abstract

This paper describes our submitted text-to-text
Simultaneous translation (ST) system, which
won the second place in the Chinese→English
streaming translation task of AutoSimTrans
2022. Our baseline system is a BPE-based
Transformer model trained with the PaddlePad-
dle framework. In our experiments, we employ
data synthesis and ensemble approaches to en-
hance the base model. In order to bridge the
gap between general domain and spoken do-
main, we select in-domain data from a general
corpus and mix them with a spoken corpus for
mixed fine-tuning. Finally, we adopt a fixed
wait-k policy to transfer our full-sentence trans-
lation model to simultaneous translation model.
Experiments on the development data show that
our system outperforms the baseline system.

1 Introduction

Simultaneous translation (Gu et al., 2017; Ma et al.,
2018) consists in generating a translation before
the source speaker finishes speaking. It is widely
used in many real-time scenarios such as interna-
tional conferences, business negotiations and legal
proceedings. The challenge of Simultaneous ma-
chine translation is to find a read-write policy that
balances translation quality and latency. The trans-
lation quality will decline if the machine translation
system reads insufficient source information. When
reading wider source text, latency will increase.

Recent read-write policies can be divided into
two categories: fixed policies such as wait-k (Ma
et al., 2018), wait-if* (Cho and Esipova, 2016), and
adaptive policies such as MoChA (Chiu and Raffel,
2017), MILk (Arivazhagan et al., 2019) and MU
(Zhang et al., 2020). Fixed policies are simple to
implement, but they neglect contextual information,
which might result in quality reduction. Dynamic
policies are more flexible, they can learn from data
to achieve better quality/latency trade-offs, but ac-
cordingly difficult to train.

In our system, we train a Transformer (Vaswani
et al., 2017) with a deep encoder (Meng et al.,
2020) as baseline for abtaining rich source rep-
resentations, besides we initialize the model with
the method mentioned in DeepNet (Wang et al.,
2022) in order to stabilize the training of the deeper
model. At the pre-training stage, we firstly pre-
train our model on a large general corpus, then we
utilize data synthesis methods such as self-training
and back-translation to improve model quality.

During the fine-tuning phase, we first apply fine-
tuning on a small spoken corpus. For better do-
main adaptation, we adopt mixed fine-tuning (Chu
et al., 2017), which trains on a mixed dataset that in-
cludes a subsampled general corpus and an upsam-
pled spoken corpus. Thirdly, we propose a method
called "in-domain mixed fine-tuning", which fur-
ther improve the BLEU score than mixed fine-
tuning. Specifically, inspired by in-domain data
filtering (Moore and Lewis, 2010; Ng et al., 2019),
we mixed upsampled spoken data with selected
in-domain data from general corpus rather than
random subsampled.

In the final stage, we employ the wait-k policy
to convert the full-sentence translation model into
a prefix-to-prefix architecture that predicts target
words with only the source sentence’s prefixes. Af-
ter waiting for k-1 source subwords, the system
reads a source subword and then predicts a target
subword alternately until <eos> is detected. An
example of wait 1 is shown in Figure 1.

The contributions of this paper are as follows:

• We propose a domain adaption approach
called "in-domain mixed fine-tuning", which
empirically proved to be better than fine-
tuning while mitigating overfitting.

• All our code has been open sourced, see
USST1.

1https://github.com/tyy2022/USST_
AutoSimultrans2022
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Figure 1: An example of prefix-to-prefix (wait 1).

2 Data

We participate in the Chinese-English streaming
transcription track , where each sentence is broken
into lines whose length is incremented by one word
until the sentence is completed. An example is
shown in Table 1.

Streaming transcription Translation
我
我下 I
我下面
我下面来 ’m
我下面来讲
我下面来讲我 going
我下面来讲我们
我下面来讲我们这 to
我下面来讲我们这段 talk
我下面来讲我们这段故
我下面来讲我们这段故事 about
我下面来讲我们这段故事。 this story.

Table 1: An example of streaming input and output.

For pre-training, we use the CWMT21 paral-
lel corpus (9.1M) 2, and we fine-tune the pre-
trained model using transcription and translation of
the BSTC (Baidu Speech Translation Corpus,37K)
(Zhang et al., 2021), shown in Table 2. We also
use CWMT’s 10M Chinese monolingual data for
synthetic data generation.

Similar to (Ng et al., 2019; Meng et al., 2020),
we preprocess the data as follows:

• Word Segmentation: For Chinese, we use the
open-source Chinese word segmentation tool
jieba 3 for word segmentation. For English,
we adopt punctuation-normalization, tokeniza-
tion and truecasing with Moses scripts4.

• Length filter: We remove sentences that are
longer than 250 words and sentence pairs with
a source/target length ratio exceeding 2.5.

2http://mteval.cipsc.org.cn:81/
agreement/AutoSimTrans

3https://github.com/fxsjy/jieba
4https://github.com/moses-smt/

mosesdecoder

• Langage identification (langid) (Lui and Bald-
win, 2012): We use fastText5 for language
identification filtering, which removes sen-
tence pairs that are not predicted as the correct
language on either side.

• Deduplication: Remove duplicate sentences
in Chinese monolingual data.

• Byte-pair-encoding (BPE) (Sennrich et al.,
2016)6: For both the Chinese and English
sides, we use BPE with 32K operations.

See Table 3 for details on the filtered data size.

Datasets Domain Train size Dev size
CWMT21 General 9,023,708 1011
BSTC Spoken 37,901 956

Table 2: Statistics of Chinese→English parallel corpus.

Zh-En Zh Mono
no filter 9.1M 10M
+length filter 8.9M 10M
+langid filter 8.8M 10M
+deduplication - 6.8M

Table 3: Number of sentences in bitext and mono
datasets for different filtering scheme

3 System Overview

3.1 Baseline System

As shown in previous work (Wang et al., 2019;
Sun et al., 2019; Meng et al., 2020), increasing the
depth of the Transformer encoder can substantially
improve model performance, therefore we train the
Transformer with deep encoder to obtain a better
source representation.

In addition, in order to have both the high per-
formance of post-norm and the stable training of
pre-norm (Nguyen and Salazar, 2019), we use the
methods mentioned in DeepNet (Wang et al., 2022),
including a normalization function deepnorm that
modifies the residual connection and a theoretically
derived initialization. Our model configurations are
shown in Table 4.

5https://github.com/facebookresearch/
fastText

6https://github.com/rsennrich/
subword-nmt
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Configuration Value
Encoder depth 12
Decoder depth 6
Attention heads 8
Embedding dim 512
FFN size 2048
Chinese vocab size 45942
English vocab size 32151
dropout 0.1

Table 4: Model Configuration

For training the full-sentence translation model,
given the source sentence x, the probability of pre-
dicting the target sentence y is as shown in Eq. 1,
and the training objective is to minimize the nega-
tive log-likelihood as shown in Eq. 2.

p(y|x) =
|y|∏

t=1

p(yt|x, y<t; θ) (1)

lossfull(θ) = −
∑

(x,y)∈D
logpg(y|x; θ) (2)

The batch size for training is 4,096 tokens per
GPU, and we trained our model for 7 epochs on 4
NVIDIA V100 GPUs for about 10 hours.

3.2 Data Synthesis

In order to improve the model performance, we
used self-training and back-translation to synthe-
size pseudo-parallel corpus. Before using the two
methods, we averaged 3 best checkpoints.

Self-training (He et al., 2019; Chen et al., 2020)
uses a source-to-target model to generate synthetic
pairs from source-side monolingual data to aug-
ment the original parallel corpus. We combined
2M Chinese monolingual data with 2M Chinese
sentences randomly sampled from the CWMT par-
allel corpus, yielding a total of 4M monolingual for
forward translation.

Reversely, back-translation (Sennrich et al.,
2015; Edunov et al., 2018) first trains a target-to-
source model, which then utilizes target-side mono-
lingual data to synthesis a pseudo-parallel corpus.
We randomly select 2M English sentences from the
CWMT parallel corpus for back-translation.

We set the beam size to 5 for data generation,
and then filtered out sentence pairs with normalized
log score less than -3, resulting in a total of 5.7M
pseudo-parallel sentences. Finally, we combined
the pseudo corpus and the CWMT corpus to get a

total of 14.5M sentences, and continued to train the
forward model for 2 epochs, for about 2.5 hours on
4 V100 GPUSs.

3.3 Domain Adaption
A simple yet effective method for improving trans-
lation quality on the downstream task is fine-tuning
with domain data,which is known as domain adap-
tion (Luong and Manning, 2015). We train for
another 2 epochs on the BSTC dataset with pre-
trained model. Furthermore, we obverse that fine-
tuning on limited spoken corpus lead to overfit
quickly, as evidenced by the significant improve-
ment on the BSTC development set while degrades
rapidly on the CWMT development set.

In order to solve this issue, we explored mixed
fine-tuning, an advanced domain adaption method
that fine tunes a pre-trained model on a mixed cor-
pus of in-domain and out-domain corpora. In addi-
tion, domain tags are added to all corpora to denote
specific domains. In our experiments, we randomly
sample 0.1M corpus from CWMT and upsample
BSTC to 0.1M, then mix them up and shuffle ran-
domly as for training set. For development set, we
directly use the development set of BSTC rather
than mixing in-domain and out-of-domain develop-
ment sets.

We also verified the domain tags’ efficacy and
placement, the results show that appending the do-
main tags to source sentence performs best. How-
ever, in simultaneous translation task, this is unac-
ceptable since the prefix-to-prefix model will not
see the tag at the beginning.

To address this problem, we identify a 0.1M
subset of CWMT that is most similar to BSTC
by in-domain data filtering, then mixed the subset
with upsampled 0.1M BSTC data. On the one hand,
mixing increases the amount of domain data. On
the other hand, there is no need to add tags because
the mixed data only contains spoken domain.

For in-domain data filtering, given an in-domain
data I , in this case BSTC, and a non-domain spe-
cific data N , in this case CWMT, we want to find
the subset NI that is drawn from the same distribu-
tion as I . Using Bayes’ rule, we can calculate the
probability that sentences in N is drawn from NI

for any given sentences, as shown in Eq. 3.

P (NI |s,N) =
P (s|NI)P (NI |N)

P (s|N)
(3)

logP (NI |s,N) = logP (s|I)− logP (s|N) (4)
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Because I and NI are drawn from the same dis-
tribution, we use P (s|I) instead of P (s|NI). Be-
sides, we neglect the P (NI |N) term because it will
be constant for any given I and N .

Equivalently, in the log domain, the score of a
sentence can be calculated as Eq. 4. This is sim-
ilar to working with the cross-entropy difference:
HI(s)−HN (s), where HI(s) and HN (s) are the
length-normalized cross entropy scores for a sen-
tence s according to language models LI and LN .

Score(p)abs = |PI(p)− PN (p)| (5)

Score(p)noabs = PI(p)− PN (p) (6)

For simplicity, in this paper, we replace the
monolingual sentence s with the sentence pair p
drawn from non-domain corpus, the n-gram lan-
guage model with Neural Machine Translation
(NMT) model, the cross-entropy difference with
perplexity absolute difference, as shown in Eq. 5,
where PN (p) and PI(p) are the perplexity scores
for a sentence pair p using an non-domain NMTN

model (pre-trained on CWMT) and an in-domain
NMTI model (fine-tuned on BSTC), respectively.
We extracted 2M corpus from CWMT to calcu-
late the absolute difference of perplexity scores,
and screened 0.1M sentence pairs with the lowest
scores, or about 5% of extracted data. We also tried
to use the perplexity difference (see Eq. 6).

3.4 Ensemble

Averaging checkpoints is an easy but powerful en-
semble method. We performed in-domain mix fine-
tuning twice with two different random seeds, each
taking the highest BLEU score checkpoint on the
BSTC development set (up to 0.6 BLEU improve-
ments).

System BLEU AL
pre-train 19.04 24.38
FT 25.11 24.35
In MF (abs) 26.35 24.33
+ensemble 26.96 24.34

Table 5: BLEU and Average Lagging on BSTC dev set.
("MF": Mixed fine-tuning)

3.5 Wait-k

The wait-k policy (Ma et al., 2018) refers to
write target word yt after reading source-side pre-

fix (x1..xt+k−1). Let g(t) be a monotonic non-
decreasing function of t that indicates the num-
ber of source words read by the encoder when
writing the target word yt. Unlike full-sentence
translation, the wait-k policy uses the source prefix
(x1, . . . , xg(t)) rather than the whole sentence x to
generate yt: p(yt|x≤g(t), y<t). Thus, the decoding
probability is shown in Eq. 7, and given training
data D, the training objective is shown in Eq. 8.

pg(y|x) =
|y|∏

t=1

p(yt|x≤g(t), y<t; θ) (7)

lossg(θ) = −
∑

(x,y)∈D
logpg(y|x; θ) (8)

For k=1,3,5,7 we train 600 steps, and 300 steps
for k=9 on the BSTC training set. Training more
steps causes reduction of BLEU on the BSTC de-
velopment set.

4 Experiments

Our system is implemented with the PaddlePaddle7

framework, and our experiments are carried out
on AI Studio8 with 4 NVIDIA V100 GPU each of
which has 32 GB memory. (We also benchmarked
our code against fairseq 9 , see Appendix A)

4.1 Settings

For all experiments, we use the Adam optimizer
with β1 = 0.9, β2 = 0.98. The initial learning rate
is 1e-7, grows linearly to peak, then decayed pro-
portionally to the inverse square root of the step
number. During the training phase, we set peak
learning rate to 5e-4, warmup step= 4000, max
tokens= 4096, and update frequency = 4. Label
smoothing with 0.1 is also adopted. The specific
training parameters are shown in Table 7. We set
beam size to 5 and length penalty to 1 during de-
coding.

4.2 Post-processing

For the post-processing after wait-k decoding, we
apply de-truecaseing and de-tokenizing on the En-
glish translations with the scripts given in Moses.

7https://github.com/PaddlePaddle
8https://aistudio.baidu.com/aistudio/

index
9https://github.com/facebookresearch/

fairseq
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System CWMT Dev BSTC Dev
Pre-train 27.39 16.93
+Fine-tuning 22.24 20.46
Self-training + Back-translation 28.77 16.55
+Fine-tuning 22.14 20.13
MF w/o tags 24.54 20.13
MF train tags(→) 24.74 19.23
MF train/test tags(→) 24.46 20.86
MF train tags(←) 24.99 19.60
MF train/test tags(←) 24.57 20.31
In MF (abs) 24.47 21.47
+ ensemble 24.91 21.75
In MF (no abs) 24.05 21.14

Table 6: Translation quality of our Chinese→English system. ("MF": Mixed fine-tuning; "w/o tags": With out tags;
"train tags": Only add tags to the training set; "train/test tags": Add tags to both the training and test set; "→/←":
Refers to whether to append or prepend tags to source text; "In MF": In-domain Mixed fine-tuning. )

Parameter Pre-train Fine-tune Wait-k
Learning rate 5e-4 5e-5 5e-5
Warmup step 4000 500 500
Max tokens 4096 4096 512
Update frequency 4 1 1
Training time 7e 2e 600s

Table 7: Traing parameters. ("e": Epoch number; "s": Step number.)

4.3 Evaluation Metric
We use BLEU (Papineni et al., 2002) 10 and Aver-
age Lagging (AL) (Ma et al., 2018) 11 to evaluate
translation quality and latency respectively. AL
measures the degree the user is out of sync with
the speaker. As shown in Eq.9-10, t is decoding
step, τ is cut-off decoding step where source sen-
tence is finished, g(t) denotes the number of source
words read by the encoder at decoding step t, and
r = |x|/|y| is the target-to-source length ratio. The
smaller the AL (roughly equivalent to k) is, the
more real-time the simultaneous translation system
is.

ALg(x, y) =
1

τ

τ∑

t=1

g(t)− t− 1

r
(9)

where τg(|x|) = min{t|g(t) = |x|} (10)

4.4 Results and Analysis
Table 6 shows the translation quality variation of
our system on the validation sets of CWMT and

10https://dataset-bj.cdn.bcebos.com/
qianyan/AST_Challenge.zip

11https://github.com/autosimtrans/
SimulTransBaseline/blob/master/latency.
py

BSTC. The fine-tuning resulted in a significant im-
provement of 3.5 BLEU on BSTC, while dropping
rapidly on CWMT with 5.1 BLEU. We observe that
although using self-training and back-translation
improves CWMT by 1.3 BLEU, it decreases by
0.4 BLEU on BSTC. This may be overfitting on
the general domain and further deviating from the
spoken domain. So in the later experiments, we
directly use the pre-trained model to continue fine-
tuning.

Lines 5–9 depict the mixed fine-tuning discussed
in Section 3.3. We experimented with whether and
where to add a tag, and discovered that adding tag
at the end of source text works best, which is in line
with the original paper’s conclusion. The mixed
fine-tuning reached 20.86 BLEU, a 0.4 BLEU im-
provement over the fine-tuning.

Finally, the in-domain mixed fine-tuning pro-
posed in this paper is 0.6 BLEU better than mixed-
fine-tuning, and after averaging two checkpoints,
it further improved by 0.3 points to 21.75 BLEU,
which is 1.3 BLEU higher than fine-tuning. In ad-
dition, we attempted to select the in-domain data
using the perplexity difference (last row of Table 6,
corresponding to Eq. 6), but the experimental re-
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sults proved to be less effective than the absolute
value of the perplexity difference.

Table 5 and Figure 2 illustrates the translation
quality and latency results after wait-k training. We
set k=1, 3, 5, 7, 9, and train 600 steps until the
training perplexity starts to rise. We only plot the
results of using ensemble checkpoint for wait-k
training since the effect of using in-domain mixed
fine-tuning does not significantly exceed fine-tune
when using wait-k training.

Figure 2: Translation quality (BLEU) against latency
metric (AL) on Chinese→English (BSTC) simultane-
ous translation, showing the results of wait-k and full-
sentences (k=-1) of the offline system. "In MF +ensem-
ble" means using averaged checkpoints of the In-domain
Mixed fine-tuning to perform wait-k training.

5 Conclusion

In this paper we describe our Chinese-to-English
simultaneous translation system, which uses a deep
Transformer to improve translation quality and
adopts wait-k policy (Ma et al., 2018) to reduce
latency. Besides, for better domain adaption, we
combined mixed fine-tuning (Chu et al., 2017) with
in-domain data filtering (Moore and Lewis, 2010;
Ng et al., 2019) and proposed a new domain adap-
tion method called “in-domain mixed fine-tuning”,
which is empirically more effective than fine-tuning
and mixed fine-tuning.

In our future work, we plan to validate the effec-
tive of our proposed in-domain mixed fine-tuning
on more datasets, while investigating some novel
domain adaption methods. We also plan to research
on some dynamic read-write policies in order to
better balance quality and latency for simultaneous
translation tasks.
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A Appendix: Benchmarking comparison
of paddle and fairseq

We subsampled the CWMT dataset to 2M size, set
the same parameters and then trained 20 epochs
with fairseq and paddle’s Transformer respectively,
and the experimental results are as Table 8.

Codebase Architecture BLEU
Fairseq base 23.08
Paddle base 23.18
Paddle base+deepnorm 23.15
Paddle 12+6+deepnorm 23.12

Table 8: A benchmark comparison of Transformers
with different architecture implemented using paddle
and fairseq.

where “base” is the Transformer base; "deep-
norm" means using the initialization and residual
connection modification methods in DeepNet, and
the default initialization is the same as fairseq.
“12+6” means 12-layer encoder and 6-layer de-
coder, which is used in this paper.

We observed that the Paddle version of the Trans-
former performed slightly better the fairseq version.
Aside from that, the Transformer base seems to
outperform our implementation of deepnorm, prob-
ably due to the size of the dataset. We will test it
on a larger dataset in the future.
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