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Abstract

This paper describes the system submitted to
AutoSimTrans 2022 from Huawei Noah’s Ark
Lab, which won the first place in the au-
dio input track of the Chinese-English transla-
tion task. Our system is based on RealTranS,
an end-to-end simultaneous speech translation
model. We enhance the model with pretrain-
ing, by initializing the acoustic encoder with
ASR encoder, and the semantic encoder and
decoder with NMT encoder and decoder, re-
spectively. To relieve the data scarcity, we
further construct pseudo training corpus as
a kind of knowledge distillation with ASR
data and the pretrained NMT model. Mean-
while, we also apply several techniques to im-
prove the robustness and domain generaliz-
ability, including punctuation removal, token-
level knowledge distillation and multi-domain
finetuning. Experiments show that our system
significantly outperforms the baselines at all
latency and also verify the effectiveness of our
proposed methods.

1 Introduction

Simultaneous Speech Translation (ST) task (Fü-
gen et al., 2007; Oda et al., 2014) aims to trans-
late speech into the corresponding text in another
language while reading the source speech. Prior
works mainly focus on the cascaded solution, i.e.,
first recognize the speech with a streaming ASR
model and then translate into the target language
with simultaneous NMT (Ma et al., 2019) model.
Such cascaded systems can leverage off-the-shelf
ASR and NMT systems, which have large-scale
data for training.

Recently, end-to-end simultaneous ST models
are also proposed (Ren et al., 2020; Zeng et al.,
2021) and have shown promising improvements to-
wards cascaded models when experimented on the
same amount of data, especially in low latency re-
quirement. End-to-end models are believed to have
the advantages of lower latency, smaller model size

and less error propagation (Weiss et al., 2017), but
suffer from data scarcity. A well-trained end-to-
end model typically needs a large amount of train-
ing data. To alleviate the data scarcity problem,
pretraining (Xu et al., 2021; Li et al., 2021) and
data augmentation (Bahar et al., 2019; Jia et al.,
2019) are two main techniques. We examine the
effectiveness of the two techniques for improving
end-to-end models in this work.

Specifically, our end-to-end ST model follows
RealTranS (Zeng et al., 2021), an encoder-decoder
model and the encoder is decoupled into acous-
tic encoder and semantic encoder. The acoustic
encoder is used to extract acoustic features which
has a similar function as the ASR encoder. There-
fore we initialize it with a pretrained ASR encoder.
The semantic encoder is required to learn seman-
tic knowledge, which benefits the translation task,
so we initialize it with a pretrained NMT encoder.
The decoder is also initialized with a pretrained
NMT decoder to produce target text decoding. For
data augmentation, we construct pseudo ST corpus
based on ASR data and the pretrained NMT model.
The ground-truth transcription is translated into
target language texts, and so speech-transcription-
translation triplets for ST training are built. This is
also known as sequence-level knowledge distilla-
tion (Kim and Rush, 2016). Generally, the NMT
data can also be augmented with a TTS model to
generate pseudo speech. However, the data quality
highly depends on the TTS performance and it is
hard for TTS to produce voices similar to those in
real scenarios. Thus we do not utilize this method
and leave it to the future work. Another popular
technique for audio data augmentation is SpecAug-
ment (Park et al., 2019; Bahar et al., 2019), which
randomly masks a block of consecutive time steps
and/or mel frequency channels of the input speech
features during training. It is a simple and low-
implementation cost method and has been shown
effective in avoiding overfitting and improving ro-

25



Acoustic Encoder

(Conv-Transformer)

Semantic 

Encoder

ST

Decoder

ST Encoder

Weighted-

Shrinking

Speech 

Features

CTC Module
(Guide)

ASR Encoder
NMT 

Encoder

NMT 

Decoder

(Init) (Init) (Init)

Target 

Text

Figure 1: Our RealTranS model with pretraining.

bustness. We apply it to all audio-related model
training.

The training procedure for our ST model mainly
contains three steps: ASR and NMT pretraining,
large-scale training on the constructed pseudo data,
and finetuning on the in-domain data. During train-
ing, we remove all the punctuation in source text
in audio-related training (i.e., excluding NMT pre-
training) to relieve the learning burden and improve
recognition quality. To enhance the final perfor-
mance after finetuning, we also utilize token-level
knowledge distillation from the full-sentence NMT
model and multi-domain finetuning trick.

Our model is used to participate in the audio
input track of the AutoSimTrans 2022 Chinese-
English translation task. In this track, an in-domain
ST data called BSTC (Zhang et al., 2021) (contains
about 70 hours of audios) is provided, which is
very limited. Therefore, assisted with extra ASR
and NMT data, we use the aforementioned tech-
niques to achieve remarkable improvement at all
latency requirement, which results in winning the
first place of the track. We also conduct more ex-
periments to examine the effectiveness of our used
techniques. The experiments show that all of our
used methods contribute to the improvement of the
final model.

2 Model Description

We build our model based on RealTranS (Zeng
et al., 2021), an end-to-end simultaneous speech
translation model with its encoder decoupled into
acoustic encoder and semantic encoder (see Fig-
ure 1). With a CTC module guiding the acoustic
encoder to produce acoustic-level features, the de-
coupling relieves the burden of the ST encoder and
makes the two separate modules focus on different
knowledge, which benefits the model training.

RealTranS leverages the unidirectional Conv-
Transformer (Huang et al., 2020) as the acoustic
encoder for gradual downsampling, and weighted-
shrinking for bridging the modality gap between
speech and text. With weighted-shrinking, long
speech features are shrunk to similar lengths as
their corresponding transcription, which makes the

input of the semantic encoder more similar to the
input of NMT encoder. In this way, the diffi-
culty of knowledge transferring when we initialize
the semantic encoder with NMT encoder becomes
smaller. Apart from the semantic encoder, we also
initialize the acoustic encoder with pretrained ASR
encoder, and the decoder with pretrained NMT de-
coder, which has been shown very useful in boost-
ing the performance (Xu et al., 2021).

For simultaneous policy, we use the wait-k-
stride-n policy (Zeng et al., 2021), which has
shown promising improvement over the conven-
tional wait-k policy (Ma et al., 2019).

3 Training Procedure

Our model training consists of three steps: ASR
and NMT pretraining, large-scale training on the
constructed pseudo data, and finetuning on the in-
domain data. Each step may contain different tech-
niques to enhance model performance and we will
describe them in-detailed as follows.

3.1 Pretraining

We first describe how we pretrain our ASR and
NMT models.

ASR Pretraining. Our ASR model follows the
architecture of Conv-Transformer Transducer pro-
posed by Huang et al. (2020). A Transducer model
contains an audio encoder, a prediction net and a
joint net, where the audio encoder is used for ini-
tializing the acoustic encoder of our ST model and
the rest discarded. For each frame in input speech
features, the model first predicts either a token la-
bel from the vocabulary or a special blank symbol.
When a label is predicted, the model continues to
predict the next output; when the model predicts a
blank symbol, it proceeds to the next frame indi-
cating no more labels can be predicted with current
frames. Therefore, for each input speech x, the
model will give Tx+Tz predictions, where Tx (the
length of x) is the number of blank symbols and
Tz is the number of token labels representing the
output transcription z. A Transducer model com-
putes the following marginalized distribution and
maximizes it during training:

p(z|x) =
∑

ẑ∈A(x,z)

Tx+Tz∏

i=1

p(ẑi|x1, ..., xti , z0, ..., zui−1)

(1)

where A(x, z) is the set containing all valid align-
ment paths such that removing the blank symbols

26



in ẑ yields z. The summation of probabilities of
all alignment paths is computed efficiently with
forward-backward algorithm.

As there is no ASR data provided, we collect
large-scale ASR datasets from both publicly avail-
able websites and our internal system (the statistics
of the datasets are in Table 1) for training. Dur-
ing training, we also add additive Gaussian noise
and apply speed perturbation (Ko et al., 2015) and
SpecAugment (Park et al., 2019) for data augmen-
tation and model robustness.

Finally, our pretrained ASR model gets the per-
formance of 11.35% WER (Word Error Rate) in
BSTC development set.

NMT Pretraining. We pretrain our NMT model
with CeMAT (Li et al., 2022), a sequence-to-
sequence pretraining model but with a bidirectional
decoder, which has been shown to be effective in
NMT tasks. CeMAT can be pretrained on large-
scale bilingual and monolingual corpus. As no
additional text data are available, we only use the
dynamic dual-masking algorithm to improve per-
formance. Given an input source sentence z, we
first sample a masking ratio µ from a uniform dis-
tribution between [0.1, 0.2], then randomly mask a
subset of source words according to µ. For the cor-
responding target sentence y, we also use a uniform
distribution between [0.2, 0.5] to sample a masking
ratio υ. Following CeMAT, we set υ ≥ µ to force
the bidirectional decoder to obtain more informa-
tion from the encoder. For monolingual, we create
pseudo bilignual text by copying the sentence, then
sample υ = µ from a uniform distribution between
[0.3, 0.4] and mask the same subset on both sides.
After dual-masking, we get the new sentence pair
(ẑ, ŷ), which will be used for jointly training the
encoder and decoder by predicting masked tokens
on both sides. The final training objective is for-
mulated as follows:

L = −
∑

(ẑ,ŷ)

λ
∑

yj∈ymask

logP (yj |ẑ, ŷ)

+(1− λ)
∑

zi∈zmask

logP (zi|ẑ)
(2)

where ymask are the set of masked target words,
zmask are the set of masked source words, and λ is
a hyper-parameter to balance the influence of both
sides. Following CeMAT, we set λ = 0.7.

Our NMT pretraining procedure can be summa-
rized as three sub-steps. We first train a basic NMT
model using the provided general-domain bilingual

data (see Table 1), and generate pseudo target sen-
tences based on the source text from the ASR data
used in ASR pretraining. To improve the quality
of the pseudo corpus, we use HintedBT (Ramnath
et al., 2021) to score each generated sentences.
Next, we combine the bilingual data, the pseudo
corpus and the monolingual text (from the used
ASR data) to pretrain CeMAT. Finally, we finetune
it on the bilingual and pseudo corpus including the
in-domain data (i.e. text part in BSTC dataset) to
produce our final NMT model.

The encoder and decoder of the NMT model is
used to initialize the semantic encoder and decoder
of our ST model, respectively. It is also used to
generate pseudo ST data in next subsection.

Our NMT model achieves BLEU score of 21.82
in BSTC development set, and also won the second
place in the streaming transcription input track of
the Chinese-English translation task.

3.2 Training on Pseudo Data (Distillation)

As the provided ST data is limited (about 70 hours
annotated data), it is difficult to directly train an
end-to-end model only with the provided data. We
decide to construct pseudo data from our used ASR
data – we translate the Chinese transcription into
English translation with our pretrained NMT model
so that we get a large-scale pseudo ST corpus with
audio-transcription-translation triplets. In this way,
we can leverage large-scale unannotated audios
and distill knowledge from the NMT model. We
remove all the punctuation in transcription (as the
ASR data comes from different domains, some of
them contain punctuation but some not) to make it
consistent during training.

We first train our model (initialized with the pre-
trained modules described in Section 3.1) on the
pseudo data with multi-path wait-k training (El-
bayad et al., 2020) to cover all possible k values.
Specifically, k value will be uniformly sampled
from K = [1, ..., |K|] for each training sample
during training while we keep the n value in wait-
k-stride-n policy at 2. In this way, the model can
learn knowledge for different latency requirements.
The training objectives follows RealTranS and con-
tain the CTC loss (LCTC) (Graves et al., 2006) with
a blank penalty (LBP ) (Zeng et al., 2021). We omit
their equations here and refer the readers to Zeng
et al. (2021) for details. The translation loss are
defined as follows:
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LST = −
∑

(x,y)∈D,k∼U(K)

Ty∏

t=1

p(yt|y<t, x
′
≤gk,n(t)) (3)

where x and y are the input speech features and the
output token sequence, and D is the training cor-
pus. y<t denotes the target tokens before time step
t and x′≤gk,n(t)

represents the first gk,n(t) source
features after weighted-shrinking (generally, one
shrunk feature may represent one source token as
they are shrunk based on CTC output probability)
with gk,n(t) = n⌊(t− 1)/n⌋+ k. Finally, the total
training objective is:

LPT = LST + αLCTC + βLBP (4)

where α and β are the hyper-parameters to balance
the losses, which are set to α = 1.0 and β = 0.5.
During training, we also apply SpecAugment.

3.3 Finetuning on In-Domain Data
After the large-scale training on pseudo data, we
use the in-domain data (i.e., the provided 70 hours
BSTC data) for finetuning. To be consistent with
the training in the previous step, we also remove
all punctuation in the source texts for CTC loss.
During finetuning, there are mainly two aspects
that are different from the large-scale training in
the previous step. First, we fix the k value rather
than use the multi-path wait-k training and train
several models with different k as the in-domain
data is very small. Second, we add a token-level
knowledge distillation (KD) loss guided by the full-
sentence NMT model pretrained in Section 3.1.
Note that the input for the NMT model are the
source texts with punctuation preserved. In this
way, the final ST model can also learn from text
translation. The KD loss is defined as follows:

LKD = −
∑

(x,z,y)∈DST

Ty∑

t=1

|V |∑

k=1

q(yt = vk|y<t,z)

× log p(yt = vk|y<t, x
′
≤gk,n(t))

(5)

where x, z and y are the input speech features, the
input source texts and the output token sequence,
and DST is the in-domain training corpus. There-
fore, the total finetuning objective is:

LFT = (1− γ)LST + γLKD + αLCTC + βLBP (6)

where γ controls the tradeoff between the ST and
KD losses and is set to 0.2. We set α = 1.0 and
β = 0.5.

Dataset SRC Speech SRC Text TGT Text #Hours #Sents

CWMT21 × ✓ ✓ – 9M
Internal ✓ ✓ Pseudo 10K 11M
WenetSpeech ✓ ✓ Pseudo 10K 14M
BSTC ✓ ✓ ✓ 70 38K

Table 1: The statistics of the used datasets.

Note that in our experiments, we utilize multi-
domain finetuning rather than finetuning only with
the in-domain data, i.e., we also randomly sam-
ple similar number of training samples from the
constructed pseudo data for finetuning. This im-
proves domain generalizabiliy of our model. More
analysis can be found in Section 4.3.

4 Experiments

4.1 Experimental Setup

Datasets. We introduce the details of the datasets
we use here. Table 1 displays the statistics of them.
CWMT211 is the NMT data in general domain
provided by the organizer. We mainly use it to pre-
train our NMT model. Internal and WenetSpeech
are large-scale ASR datasets, both of which con-
tain about 10K hours of audios. WenetSpeech is
mainly collected from YouTube and Podcast and
is publicly available2, while Internal comes from
our internal system, containing conversations or
readings from multiple domains. The transcription
in them are translated into target texts with our pre-
trained NMT model, which results in large-scale
pseudo ST data. Finally, BSTC is the in-domain
ST data provided by the organizer. It is used to
finetune our NMT model (with source texts and
target texts) and the final ST model.

The punctuation in source texts is processed with
different ways according to different training pro-
cedure (see Section 3 for details), while that in
target texts is always preserved. We also filter the
data based on the lengths of source and target texts.
We follow Zhang and Feng (2021) and use char-
level tokenization on the Chinese sentences, while
we apply sentencepiece3 (Kudo and Richardson,
2018) to generate subword vocabulary for English.

System Setting. We use 128-dimensional log-
mel filterbank as acoustic features, calculated with
20 ms window and 10 ms stride and normalized by

1http://mteval.cipsc.org.cn:81/
agreement/AutoSimTrans

2https://wenet.org.cn/WenetSpeech/
3https://github.com/google/

sentencepiece
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Global CMVN (cepstral mean and variance nor-
malization). Our acoustic encoder contains two
blocks of Conv-Transformer (Huang et al., 2020).
In the first block, we have two 2-D convolution
layers with stride 2 and four layers of transformer
encoder; while in the second block, we have three
1-D convolution layers with one of them is stride
2 (others 1) and 16 layers of transformer encoder.
This results in total 8× downsampling and intro-
duces a 100ms look-ahead window. In the first
block, transformer layers are with 384 dimension
and 6 attention heads, while in the second block
they are with 512 dimension and 8 attention heads.
For the semantic encoder and decoder, as they are
initialized with the NMT model, they follow the
deep encoder, shallow decoder architecture to im-
prove inference efficiency, with 12 encoder layers,
3 decoder layers, 12 attention heads and 768 hidden
size.

Our model is trained with 24 NVIDIA Tesla
V100 GPUs, each with a max-tokens of 2048 (i.e.,
maximum of 2048 text tokens in one batch). We
use Adam optimizer (Kingma and Ba, 2015) during
model training with 2e−3 learning rate and 10000
warm-up steps, followed by the inverse square root
scheduler. Dropout rate is set to 0.1. For SpecAug-
ment, we set the parameter for time masking T to
40 and that for frequency masking F to 4. The
number of time and frequency masks applied mT

and mF are 2 and 1, respectively.

Evaluation Metrics. For evaluation, we use
case-sensitive detokenized SacreBLEU4 for trans-
lation quality evaluation. For latency, we adapt
Average Lagging (AL) (Ma et al., 2019) to ST set-
tings, following previous studies (Ma et al., 2020;
Zeng et al., 2021). In the submission system, the la-
tency is evaluated with Consecutive Wait (CW) (Gu
et al., 2017).

AL in ST evaluates the degree of that the user
is out of sync with the speaker, in terms of source
speech time duration (Zeng et al., 2021), which is
defined as follows:

AL(x,y) =
1

τ(|x|)

τ(|x|)∑

i=1

[d(yi)− |x|
|y∗|Ts(i− 1)] (7)

where τ(|x|) denotes the target token index when
the model has read the entire source speech. |y∗|
is the length of the reference translation, and Ts

represents that the speech features are extracted

4https://github.com/mjpost/sacreBLEU

Figure 2: Comparison results of our model variants.

every Ts ms, which will be 80ms in our model.
As our acoustic encoder introduces a 100ms look-
ahead window, we add 100 to the final AL scores.

CW is the number of source tokens waited be-
tween two target tokens, which can be calculated
with the following equation (Ma et al., 2019):

CW (x,y) =
|x|∑|y|

i=1 1CWg(t)>0

(8)

where x here is the corresponding transcription of
source speech, and CWg(t) denotes the waiting
source token numbers between time step t− 1 and
t. This means that when evaluated with CW, our
model also needs to output transcription. We de-
cide to output the results of CTC greedy paths. In
this way, CW can be easily calculated as our wait-
k-stride-n policy is applied on the shrunk speech
features which are also based on the CTC module.

4.2 Main Results
Figure 2 displays the comparison results among
different variants of our model. We compare the
following settings:
(a) No PT & No Pseudo: We do not use any pre-
trained modules and directly train the model on the
provided in-domain data.
(b) PT & No Pseudo: We initialize the model with
the pretrained modules and directly train the model
on the provided in-domain data.
(c) PT & With Pseudo: We initialize the model with
the pretrained modules and train the model on the
large-scale constructed pseudo data.
(d) PT & With Pseudo + FT: We further finetune
the model on the in-domain data with multi-domain
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Model CTC Loss (↓) BLEU (↑)
With Punct RM Punct With Punct RM Punct

No PT & No Pseudo 4.88 4.60 4.12 4.03
FT based on PT + Pseudo 2.10 1.73 11.81 12.41

Table 2: CTC Loss and BLEU results of models trained
on in-domain BSTC data, with punctuation preserved
or removed. We set the same k ensuring similar latency.

finetuning based on model c.
All of the model variants use wait-k-stride-n si-

multaneous policy with n=2 and k=2, 4, 6, 8, 10,
12, respectively.

We also compare with the performance of our
cascaded model, which first passes the audio input
into our pretrained ASR model and then translates
with our pretrained NMT model. Since the NMT
model is an offline full-sentence translation model,
the latency is much higher than the other variants
(about 5000ms AL). Therefore, we also compute
the offline translation result of our model d for fair
comparison.

As can be seen, without any pretraining and extra
data, the model performs poorly (model a). With
pretraining (model b) and large-scale pseudo data
(model c), the model performance increases signif-
icantly, which validates the effectiveness of the two
training tricks Further finetuning with in-domain
data (model d) also introduces reasonable improve-
ment, which shows the importance of domain adap-
tation. Compared to the cascaded result, our model
achieves almost 1 BLEU better than it, indicating
the superiority of our RealTranS end-to-end model.

4.3 Further Analysis
Effects of Punctuation Removal. We mainly
examine the effects of punctuation removal (only
for transcription) during training on the in-domain
data. We experiment with two settings. The first
one is to directly train on the in-domain data with-
out any pretraining or pseudo data, and the second
one is finetuning based on the model with pretrain-
ing and pseudo data. We display the results of them
with and without punctuation in Table 2.

Both models achieve lower CTC loss values with
punctuation removal. It validates that the model
can learn better on the acoustic information when
punctuation is removed. However, no significant
difference is observed in BLEU for the first model
while the BLEU is degraded when finetuning the
pretrained model with punctuation preserved. It is
mainly because the model is first pretrained on the
data without punctuation and can be trained more
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Figure 3: Results of our model when using different
amount of pseudo data.

λ value 0.0 0.2 0.4 0.6 0.8 1.0

BLEU 13.07 13.79 13.70 13.39 12.53 11.06

Table 3: BLEU scores of models trained with different
λ values in Eq. 6. We set the same k ensuring similar
latency.

smoothly without punctuation when finetuning.

Effects of Pseudo Data Amount. We also want
to examine the effects of pseudo data amount dur-
ing training. We sample 10%, 20% and 50% of our
constructed pseudo data and then use them to train
our model, respectively. Figure 3 shows the results
(before finetuning), together with our model with
full data (100%). Comparing models trained with
10% and 20%, it introduces sufficient improvement
when doubling the pseudo data. However, when
the pseudo data continues to increase, the perfor-
mance gain becomes smaller, especially for the re-
sults in low latency. It is probably because that our
NMT model used for generating pseudo transla-
tions is trained with limited NMT data (around 9M
sentences), much smaller than the used ASR data
(around 25M, according to Table 1). The amount
of knowledge it carries is not enough to provide
such larger amount of efficient pseudo data. There-
fore, we might need large amount of data for both
recognition and translation to train a more powerful
end-to-end ST model.

Effects of Token-level Knowledge Distillation.
Our token-level knowledge distillation (KD) from
full-sentence NMT model can guide the learning
of ST model to forecast target text when the source
speech is incomplete during finetuning. We exam-
ine the effects of the balance value λ in Eq. 6. The
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Figure 4: Results with different finetuning methods.

results are displayed in Table 3. λ = 0.0 indicates
that no KD is used, and λ = 1.0 means the model
is trained only based on KD but no cross-entropy
loss. It can be found that too much guidance from
the KD might hurt the performance. We attribute
this to two reasons. First, the NMT model is mainly
trained with CWMT21 data, which is limited and
in a different domain. Second, our model has al-
ready been trained with the constructed pseudo
data, which can be viewed as another kind of KD
(sequence-level KD). Therefore, we choose to se-
lect smaller λ (i.e., 0.2) in our experiments.

Effects of Multi-Domain Finetuning. Figure 4
shows the results of our model without finetuning
(No FT), only finetuned with in-domain data (FT
only In-Domain) and finetuned with multi-domain
corpus (FT with Multi-Domain) in the develop-
ment set and test set, respectively5. We can find
that though finetuning only with the in-domain data
improves a lot in the development set (in average
nearly 2 BLEU gain at each latency requirement),
the improvement in the test set is limited and per-
formance even hurts at one latency setting (No PT
v.s. FT only In-Domain). We attribute this to the

5Note that the test results are validation experiments after-
wards and not our submission results.

fact that the test set may be not exactly in the same
domain as the training and development data, and
the naive finetuning degrades the ability of domain
generalizability. Therefore, we decide to use multi-
domain finetuning rather than finetuning only with
the in-domain data. As can be seen in Figure 4, this
brings no improvement in the development set (FT
with Multi-Domain v.s. FT only In-Domain), but
improves in the test set.

5 Conclusion

In this work, we describe the details of our submit-
ted system to AutoSimTranS 2022, which won the
first place in Chinese-English audio input track.
Our model is based on the end-to-end simulta-
neous speech translation model RealTranS and
follows three-step training procedure, including
ASR and NMT pretraining, large-scale training on
the pseudo data and finetuning on the in-domain
data. Our experiments proves the superiority of
our model and training procedure and also exam-
ines the effectiveness of different techniques like
punctuation removal and multi-domain finetuning.
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