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Abstract

We propose a study on multimodal argument
mining in the domain of political debates. We
collate and extend existing corpora and pro-
vide an initial empirical study on multimodal
architectures, with a special emphasis on input
encoding methods. Our results provide interest-
ing indications about future directions in this
important domain.

1 Introduction

Argument mining (AM) aims to extract argu-
ments and their relations from natural language
sources (Lippi and Torroni, 2016b). Performing
AM usually entails tackling one or more tasks like
argumentative component detection and classifi-
cation, link prediction, relation classification, or
stance classification (Lawrence and Reed, 2020) in
a particular domain of interest. Among the many
areas and genres where AM was investigated, the
political domain allows for intuitive applications
with the final aim of detecting fallacies, persuasive-
ness degree (Cano-Basave and He, 2016), truthful-
ness (Nakov et al., 2018; Kopev et al., 2019) and
coherence in the candidate’s argumentation (Cabrio
and Villata, 2018; Lippi and Torroni, 2016a), or
summarizing the candidate’s positions (Vilares and
He, 2017). So far, most of AM research has focused
on textual inputs. Political debates and speeches
have been no exception. However, differently from
other domains, this particular one is especially rich
in audio input sources. This could be important,
since the audio input, in addition to text, may lever-
age the exploitation of para-linguistic cues related
to the argumentation process, improving the per-
formance of argumentative component detection
and other AM tasks (Lippi and Torroni, 2016a;
Villata et al., 2017; Polo et al., 2016). To date,
partly owing to the scarcity of non-textual corpora
for AM (Haddadan et al., 2019), only a couple of
attempts have been made in this direction. Con-

versely, outside of AM, in the broader area of Natu-
ral Language Processing (NLP), Multimodal Deep
Learning (MMDL) is attracting growing interest,
also owing to remarkable progress made in the
field. Current research in MMDL focuses on ad-
vanced input representations and fusion solutions.
These include end-to-end architectures fully based
on transfer learning for input representation (Toto
et al., 2021) and attention-based architectures for
efficient input management (Lian et al., 2019; Tsai
et al., 2019; Gu et al., 2018). These noteworthy
developments suggest that time is ripe to rethink
multimodal AM in light of the latest findings in
multimodal NLP research.

In spite of a wide availability of raw audio
sources, processing and annotating good quality
data can be very costly. To the best of our knowl-
edge, the only two multimodal AM corpora on po-
litical speeches are UKDebates (Lippi and Torroni,
2016a), which addresses the task of claim detection,
and M-Arg (Mestre et al., 2021), which focuses on
argumentative relations between sentences. These
are small-sized corpora where a handful of speakers
debate in one or a few occasions over a year’s time
span. On the other hand, USElecDeb60To16 is a
corpus curated by Haddadan et al. (2019), where a
significant number of US presidential candidates
debate over a time span of several decades. How-
ever, it only contains annotated transcripts, with no
link to the audio source.

In an effort to push the envelope in mul-
timodal AM, with this work we release
MM-USElecDeb60To16, an extended ver-
sion of the USElecDeb60To16 corpus, where
the text input is complemented by and aligned
to the audio input. At the time of writing, this
is the largest multi-modal resource for AM in
the domain of political debates, as well as the
one with the largest number of speakers, and
longest time span covered. These features make
MM-USElecDeb60To16 a particularly challenging
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corpus, since para-linguistic cues are very much
speaker-dependent (Lippi and Torroni, 2016a)
and political communication, argumentation, and
language have greatly evolved in such a long time
span (Haddadan et al., 2019).

Alongside this new resource, we offer a prelim-
inary but rigorous and reproducible experimental
study of multimodal AM in political debates. Our
benchmarks are all the relevant corpora available:
UKDebates, M-Arg, and MM-USElecDeb60To16.
We build and compare architectures inspired to pro-
posals from literature, in order to study the effect
of changing the encoding of the audio input. In
particular, we compare the more traditional feature-
based audio encoding, with a more advanced input
encoding technique that builds on recent findings
in MMDL for NLP. Our results indicate that the
encoding of the audio input has a noticeable ef-
fect on performance, but they also suggest that a
better fusion of textual and audio input encodings
and more advanced architectural solutions might
be needed in order to make progress in the more
challenging tasks and corpora.

The paper is structured as follows. In Section 2
we overview related work in multimodal AM and
multimodal deep learning (MMDL), with a focus
on architectures for text and audio processing. In
Section 3 we discuss corpora and in Section 4 we
define the AM tasks addressed. Section 5 presents
the experimental setup and describes models, in-
put encodings and training. Section 6 discusses
the results of our experimental study. Section 7
concludes. In appendix we report all the informa-
tion needed for reproducibility. The corpus and the
code are publicly released.1

2 Related Work

There exists a strong connection between the argu-
mentation process and the emotions felt by people
involved in such a process (Benlamine et al., 2015).
This observation motivated the hypothesis that para-
linguistic elements encoded in the audio data are
significant indicators that might aid identify argu-
ments made in a debate. Recent studies confirmed
this hypothesis. In particular, in the domain of po-
litical debates, Lippi and Torroni (2016a) presented
a case study in AM from speech using a televised
debate from the 2015 UK political elections. They
built a first-of-a-kind political debate corpus by

1https://github.com/federicoruggeri/
multimodal-am/

annotating arguments uttered by three prime min-
isterial candidates, and showed that audio features
helped claim detection when used as input to a
Support Vector Machine (SVM) classifier together
with their textual transcript. More recently, Mestre
et al. (2021) built the M-Arg corpus, which consists
in 4,104 labelled pairs of sentences selected from
debates of the 2020 US political elections. They
experimented on this new corpus using a differ-
ent multimodal input model. Outside of political
speeches, a corpus that couples transcript and audio
of several debates was developed by Mirkin et al.
(2018a,b). However, differently from the previous
corpora, here non-political debates are carried out
by paid actors on a set of controversial topics taken
from the iDebate web site.

To the best of our knowledge, at least in politi-
cal debates, multimodal AM has not been further
explored. Reasons for that lie partly in the diffi-
culty and heterogeneity of AM tasks, partly in the
scarcity of multimodal data for AM, partly in the
inherent challenges of multimodal deep learning
(MMDL). One such challenge is in endowing mod-
els with the ability to digest and actually benefit
from different, complementary modalities. In this
respect, the works by Lippi and Torroni (2016a),
Villata et al. (2017) and Mestre et al. (2021) could
be viewed as proofs-of-concept of the potential of
multimodality in AM. They used mostly traditional
methods for categorising data and encoding audio,
such as SVM classifiers and MFCCs. Like most
other studies in AM, they were carried out on a
single corpus and a specific task.

Recent MMDL solutions suggest a number of
promising directions for improvement. These in-
clude full transfer learning-based frameworks to
alleviate the problem of multimodal data short-
age (Zhang et al., 2022; Naderi et al., 2019; Harati
et al., 2018) and attention mechanisms to handle
interactions among and between different modali-
ties (Lian et al., 2019; Tsai et al., 2019; Gu et al.,
2018). For example, AudiBERT (Toto et al., 2021),
a recent MMDL architecture, integrates pre-trained
text and audio models via a dual self-attention
mechanism. In our work, we examine the archi-
tectural designs presented in earlier studies (Lippi
and Torroni, 2016a; Mestre et al., 2021) and also
suggest a multimodal architecture comparable to
AudiBERT, based on text and audio embedding
taken from pre-trained models like GloVe (Pen-
nington et al., 2014), BERT (Devlin et al., 2019)
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and Wav2Vec (Schneider et al., 2019).

3 Data

We experiment on three different debate corpora,
designed to address four separate but strictly corre-
lated argument mining tasks. Table 1 summarizes
the corpora’s key figures.

3.1 UKDebates Corpus

UKDebates, by Lippi and Torroni (2016a), was
the first corpus released for multimodal argument
mining. Its context is the UK Prime Ministerial
elections of 2015. It is based on the two-hour
debate aired by Sky News on April 2, 2015 and
it comprises the audio sequences of 3 candidates:
David Cameron, Nick Clegg, and Ed Miliband.
UKDebates contains 386 audio samples (122 for
David Cameron, 104 for Nick Clegg, 160 for Ed
Miliband) of varying length, accompanied by a
human-built transcript. Two domain experts anno-
tated the collected transcripts for the task of claim
detection, by labeling each sentence as contain-
ing or not containing a claim. Regarding Inter-
Annotator Agreement (IAA), the authors report
κ = 0.53, “fair to good” agreement. Because au-
dio features are markedly speaker-dependent, Lippi
and Torroni (2016a) addresses the claim detection
(CD) task for each individual politician candidate
in turn. The authors report a F1-score in the range
of ∼59-62%.

3.2 M-Arg Corpus

M-Arg, by Mestre et al. (2021), is built around the
2020 US Presidential debates. The debates involve
5 different speakers (4 candidates and a moderator)
and are related to 18 topics. A carefully designed
crowd-sourcing exercise resulted in 4,104 labelled
sentence pairs for the task of argumentative relation
detection. In particular, each sentence pair was
labeled as support, attack, or neither. To account
for crowd-workers’ annotation quality, each label is
enriched with an annotator agreement confidence
γ. A smaller but higher-quality subset of M-Arg
is thus obtained by only selecting the links with
confidence γ ≥ 0.85. The price of this reduction
in the annotations’ noise is a reduced size of the
dataset, which results in harder training and an IAA
of α = 0.43. Mestre et al. (2021) report a macro
F1-score of 22.5% and 11.0% for the argumentative
relation classification (ARC) task regarding the full
corpus and the (γ ≥ 0.85) subset, respectively.

The macro F1-score regards the support and attack
labels only.

3.3 MM-USElecDeb60to16 Corpus
USElecDeb60To16, by Haddadan et al. (2019), is
the largest collection of annotated textual docu-
ments for argument mining in the political debates
domain. It contains presidential candidates’ debate
transcripts aired from 1960 to 2016. Annotations
are at the sentence level. Each sentence is labeled
as a claim, a premise, or neither of them. The au-
thors used this corpus to address the argumentative
sentence detection (ASD) and argumentative com-
ponent classification (ACC) tasks. Regarding IAA,
they report a κ = 0.57 (moderate agreement) for
ASD and of κ = 0.40 (fair agreement) for ACC.
As for classification performance, Haddadan et al.
report a macro F1-score of 73.0% and 76.95% for
the ASD and ACC, respectively.

We build MM-USElecDeb60To16 by augment-
ing USElecDeb60To16 with the audio modality.
We remark that we do not add any additional label,
nor we modify existing ones. We obtained the de-
bates audio files from the PBS NewsHour YouTube
channel.2 Before aligning transcripts with corre-
sponding audio files, we carried out a preliminary
pre-processing phase. First, we manually trimmed
audio files to remove content that is not included in
the paired transcripts, such as some of the opening
and closing remark of the moderators. In some
cases, audio files can contain cuts spanning from a
few seconds to several minutes. We removed the
transcripts’ sentences that were matched to these
cuts. Second, we removed transcripts that did not
match their paired audio files or incomplete ones.
Third, we removed metadata like the speaker’s in-
formation from each transcript to avoid spurious
alignments. Fourth, we tokenized transcripts; thus,
the resulting transcripts contain one sentence per
line. See Appendix A for additional details.

After pre-processing, we split each audio file
into 20-minute chunks to improve the alignment
quality. We manually extract the transcripts’ text
corresponding to the created audio files. We used
Aeneas3 to automatically retrieve the start and
end timestamps of each utterance. Lastly, we
post-processed our corpus by removing (i) sen-
tences misaligned with their audio sample (ii) sen-
tences not matching any of the aligned utterances

2https://www.youtube.com/channel/
UC6ZFN9Tx6xh-skXCuRHCDpQ

3https://github.com/readbeyond/aeneas/
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Corpus Sentences Debates Speakers Years Class Distribution Task(s)

UKDebate
(Lippi and Torroni, 2016a)

386 1 3 2015
152 claim,

234 not-claim
CD

M-Arg
(Mestre et al., 2021)

4,104 pairs 5 4 2020
120 attack,

384 support,
3600 neither

ARC

M-Arg (γ ≥ 0.85)
(Mestre et al., 2021)

2,443 pairs 5 4 2020
29 attack,

132 support,
2282 neither

ARC

MM-USElecDeb60to16
(Ours)

26,781 39 26 1960-2016
10,882 claim,
9,683 premise,
6,226 not-arg

ASD, ACC

Table 1: Corpora for multimodal argument mining. For M-Arg, we also consider the corpus version where samples
have high annotation confidence γ. The acronyms used in column Task are spelled out in Section 4.

(e.g., transcription tags like "applause") (iii) non-
argumentative duplicated sentences, such as Thank
You or Ok. Finally, we verified the quality of
the alignments by spot checks. In particular, we
checked several different parts of each debate, and
no major misalignments were found.

As a result of the mentioned pre- and post-
processing phases, we removed about 2,000 sam-
ples from the original USElecDeb60to16 corpus.
The resulting MM-USElecDeb60to16 corpus con-
tains 26,791 annotated textual sentences and their
corresponding audio samples.

Our corpus differs from previous multimodal
AM corpora in terms of size, variety and annota-
tion quality. First off, it is the largest multimodal
AM corpus to date, by a significant margin. Sec-
ond, it offers a wider range of speakers over a much
longer time span (1976-2016), possibly paving the
way to new research perspectives, such as the anal-
ysis of the evolution of political communication,
argumentation and language over time. The greater
number of different speakers could also facilitate
the creation of more robust classification models.
Finally, the corpus includes expert annotations, as
opposed to crowd-sourced ones.

4 Methodology

We consider four distinct classification tasks:

• Argumentative Sentence Detection (ASD):
an input sentence x is classified as contain-
ing an argument (arg), or not containing an
argument (not-arg);

• Argumentative Component Classification

(ACC): an argumentative sentence x is classi-
fied as containing a claim or a premise;

• Claim Detection (CD): a sentence x is classi-
fied as containing a claim or not containing a
claim (not-claim);

• Argumentative Relation Classification
(ARC): a pair of sentences xi and xj is
classified as yielding an argumentative
relation xi → xj of support, attack, or neither
(if no argumentative relation exists).

Each input is characterized by two modalities:
the textual input xt and the audio input xa. To
assess the impact of each modality, we consider
three distinct input configurations: text-only (TO),
audio-only (AO), and text-audio (TA), where both
modalities are given as input.

5 Experimental Setup

We define a reproducible and robust experimental
setup to evaluate the contribution of each modality
to AM tasks, and to assess the impact of different
input representations and classifiers. The limited
amount of data, especially in UKDebates and M-
Arg, caused our setup to differ in several ways from
previous studies. Hence our results are not directly
comparable with those published in the relevant
literature. Nonetheless, our setting includes all the
classifiers used in such studies, in addition to more
recent representation techniques.

Regarding UKDebates, Lippi and Torroni
(2016a) address the CD task by experimenting on
each politician individually. In particular, the au-
thors evaluate a multimodal SVM classifier via a
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10-fold cross-validation routine. In contrast, we
evaluate our models on all speaker sentences via
a repeated 5-fold cross-validation routine. Such a
design choice was made to curb the high variance
usually observed in a model’s performance when
neural models are trained with little data (Bengio,
2012). We set the number of repetitions to 3.

For the same reason, we evaluate our models
on M-Arg via a repeated 5-fold cross-validation
routine. We set the number of repetitions to 3. Our
approach differs from the one proposed by Mestre
et al. (2021), where the corpus is divided into train
and validation splits.

For MM-USElecDeb60to16 we follow the same
experimental setup as in (Haddadan et al., 2019).
Despite the different number of samples, we keep
the same train, validation, and test splits proposed
for the original corpus. We define a repeated train-
ing and evaluation routine for model benchmark,
setting the number of repetitions to 3. See Ap-
pendix B for additional details on our experimental
setting, number of samples and data splitting.

5.1 Models

We defined three models, according to the high-
level schema illustrated in Figure 1. In all our
models, each modality is processed separately by
either a text module or an audio module. Each mod-
ule is part of a classification model defined for a
particular input modality. Different input configura-
tions use different modules. The TO and AO input
configurations only consider the text module or the
audio module, respectively. In the TA multimodal
setting, instead, the outputs of the two modules are
concatenated and passed through a final classifica-
tion module. The classification module receives the
encoded representation of one or multiple modali-
ties according to the considered input configuration
and produces a classification label.

For each model we experiment with two differ-
ent audio signal encoding methods: a set of widely-
adopted spectral features (Rejaibi et al., 2022) and
the Wav2vec embeddings (Schneider et al., 2019).
Such encoding methods represent a preliminary
pre-processing step of the audio signal, which is
then passed in input to the audio module.

The models are defined as follows.

• SVM follows Lippi and Torroni (2016a). The
text module encodes input textual sentences
as TF-IDF vectors. The audio module is an
identity function, that is, the encoded audio

Figure 1: The proposed schema for multimodal argu-
ment mining.

signal remains unaltered. The classification
module is an SVM classifier.

• M-ArgNet reflects the neural architecture pre-
sented in Mestre et al. (2021). The text mod-
ule is defined by a pre-trained BERT (Devlin
et al., 2019) model. The audio module is a
stack of CNN layers with a BiLSTM layer on
top. The classification module is a MLP.

• BiLSTM is a third architecture where the text
module comprises a pre-trained GloVe (Pen-
nington et al., 2014) embedding layer to en-
code input textual sentences and a stack of
BiLSTM layers. The audio module is defined
by another stack of BiLSTM layers. The clas-
sification module is a MLP.

M-ArgNet and BiLSTM, when used with
Wav2vec embeddings, resemble AudiBERT (Toto
et al., 2021) since they are all based on text and
audio embedding taken from pre-trained models.

In addition to the above models, we also con-
sider a weighted random baseline classifier, i.e.
Random, which acts as a lower bound for each
task of interest.

5.2 Audio Representation

In this section, we provide additional details regard-
ing the described audio signal encoding methods.
The first method, denoted as feature-based encod-
ing, is a set of widely-adopted spectral features (Re-
jaibi et al., 2022), such as the Mel-frequency cep-
stral coefficients (MFCCs), spectral centroids, spec-
tral bandwidth, spectral roll-off, spectral contrast
and a 12-bit chroma vector. The result of this ex-
traction process is a two-dimensional feature ma-
trix of shape (no. frame, no. features). Follow-
ing Mestre et al. (2021), we consider 25 MFCCs
and 20 other spectral features, for a total of 45
features.4 Regarding the number of frames, their
amount is proportional to the duration of the audio

4We used the librosa library with default parameters.
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signal. In our experimental setup it is in the order
of hundreds. To reduce the number of frames we
adopt average pooling. This applies a moving av-
erage with a parametric window size on the frame
dimension. We experiment with different window
sizes to reduce the computational demand and the
number of parameters of our models, without de-
grading the informative content of the audio signal.

The second method, denoted as embedding-
based encoding, uses the end-to-end audio en-
coding neural architecture Wav2vec (Schneider
et al., 2019).5 In particular, we directly extract
the pooled embedding vector given by the model.
We denote this setting as embedding-based encod-
ing. The final size of the representation is a 768-
dimensional embedding vector according to the
chosen Wav2vec model.

5.3 Optimization

We train our neural models using cross-entropy as
the optimization objective and Adam (Kingma and
Ba, 2015) as an optimizer. Additionally, we regu-
larize neural models by applying early stopping on
the validation loss with patience set to 10 epochs
and using dropout (Srivastava et al., 2014).

All models undergo a preliminary hyper-
parameters calibration phase. In particular, for
each input configuration (i.e., TO, AO, and TA)
we calibrate the models to assess the contribution
of individual modalities. Additional details about
model calibration are reported in Appendix C.

6 Results

We report the classification results on each dataset.
Additionally, we perform an ablation study regard-
ing the models trained in the TA configuration to
evaluate the contribution of each input modality.

UKDebates Table 2 reports classification results
for the CD task on the UKDebates corpus. In par-
ticular, we compute the average binary F1-score
on the test set for each input configuration and au-
dio encoding method. We provide the F1-score
as a customary performance indicator in unbal-
anced classification situations. We observe that
the best-performing input configuration for each
model is the TA with embedding-based audio en-
coding. However, the gap with respect to the TO
input configuration is marginal, suggesting that the
audio modality is not efficiently handled by the

5We use the facebook/wav2vec2-base-960h model version.

Feature-based Embedding-based

Model TO AO TA AO TA

SVM 66.24 48.62 49.13 46.20 66.71
M-ArgNet 67.20 47.20 65.94 50.12 68.68
BiLSTM 66.81 45.40 65.29 50.20 66.84

Random 40.90

Table 2: Average binary F1-score regarding the claim
class on the test set of UKDebates. For each row, we
report the best results in bold, second best results are
underlined instead.

Feature-based Embedding-based

Model TO AO TA AO TA

SVM 14.70 11.96 12.33 14.09 16.73
M-ArgNet 16.24 18.45 18.27 8.88 19.02
BiLSTM 16.78 9.18 15.89 9.84 20.21

Random 2.79

Table 3: Average macro F1-score concerning the attack
and support classes on the test set of M-Arg (γ ≥ 0.85).
For each row, we report the best results in bold, second
best results are underlined instead.

employed models or is not sufficiently informa-
tive. Regarding audio encoding, we observe that
the embedding-based method leads to better per-
formance than the feature-based approach. This is
evident for the SVM classifier, where the TA setting
with embedding-based audio encoding leads to an
improvement of more than 17 F1-score percentage
points compared to its feature-based counterpart.

M-Arg Table 3 reports the average macro F1-
score regarding the attack and support classes on
the test of the M-Arg corpus for the ARC task.
We focus on the M-Arg corpus version with an-
notation confidence γ ≥ 0.85 to consider high-
quality examples only. We observe that the TA in-
put configuration with the embedding-based audio
representation is the best performing one for all the
considered classifiers. In particular, such a configu-
ration outperforms the TO input configuration by
2.03, 2.78 and 3.43 F1-score percentage points for
SVM, M-ArgNet, and BiLSTM classifiers, respec-
tively. In contrast, the TA input configuration with
feature-based audio representation yields mixed re-
sults. More precisely, only the M-ArgNet model
outperforms its TO counterpart. This is in agree-
ment with the results obtained in CD on UKDe-
bates. The feature-based AO input configuration is
remarkably on par with its TA counterpart.
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MM-USElecDeb60to16 Table 4 reports classi-
fication performance concerning the ASD and
ACC tasks evaluated on the test set of the
MM-USElecDeb60to16 corpus. In general, the
embedding-based audio encoding appears to per-
form better than the feature-based one. This agrees
with the behaviour observed in the previous experi-
ments. However, we observe that the TA configura-
tion does not always perform better than TO. We
hypothesize that the characteristics of this corpus,
with multiple speakers spanning several decades,
bring in additional challenges that these architec-
tures are not addressing effectively. Concerning
ASD, we observe that the TA input configuration
is the best performing one for the BiLSTM and the
M-ArgNet models. In contrast, the TO input config-
uration leads to superior performance for the SVM
model. Overall, there is no significant performance
gap between the TA and TO input configurations.
However, the AO input configurations with both
audio signal representations are not far behind their
TO and TA counterparts. All this suggests that the
encoded audio signal is informative to address the
task, but the fusion of both modalities is non-trivial
depending on the given audio representation. We
observe similar behaviours concerning the ACC
task. In particular, the TA input configurations do
not lead to consistent performance benefits for the
employed models. Nonetheless, the AO input con-
figuration with embedding-based audio represen-
tation significantly outperforms its feature-based
counterpart. These observations confirm a known
fact, that merging multiple input modalities is still
a major challenge in current multimodal models.

Discussion The results presented so far warrant
the following considerations:

1. Embedding-based audio encoding generally
yields better results than feature-based encod-
ing. This is consistent with recent findings in
MMDL (Schneider et al., 2019) and confirms
that investigating the ramifications of those
findings for multimodal AM is a worthwhile
endeavour, which should be pursued.

2. The TA input configuration is superior to its
TO counterpart, or at least on part with it, in
all described corpora. This reinforces our be-
lief that audio can benefit AM tasks. This is
also supported by the observed performance
of models trained in the AO input configura-
tion. For instance, the performance gap be-

Feature-based Embedding-based

Model TO AO TA AO TA

ASD

SVM 67.18 49.37 49.02 61.20 65.38
M-ArgNet 65.64 52.71 60.89 61.04 68.38
BiLSTM 67.19 58.89 68.57 60.40 68.23

Random 50.54

ACC

SVM 65.85 50.19 51.66 58.44 64.75
M-ArgNet 67.40 50.05 60.09 65.33 67.38
BiLSTM 65.99 49.58 66.25 58.86 65.80

Random 50.51

Table 4: Average macro F1-score on the test set of MM-
USElecDeb60to16. For each row, we report the best
results in bold, second best results are underlined.

tween TO and TA configurations is only ∼2-8
F1-score points for the ASD and ACC tasks
in the MM-USElecDeb60to16 corpus.

3. The definition of effective methods for in-
put encoding and fusion represent major chal-
lenges of multimodal AM, as observed in our
extended case study.

6.1 Ablation Study
To assess the contribution of each individual in-
put modality, we carried out an ablation study on
models trained with the TA input configuration,
by alternatively masking either input modalities.
To this end, we zeroed out the output embedding
vector of the input module corresponding to the
modality to be masked.

Table 5 reports the results of the ablation study
regarding the UKDebates corpus. We observe that
the BiLSTM model with feature-based audio repre-
sentation reaches the same performance in both the
TA and TO (i.e., w/o Audio) configurations. This
result suggests that the audio modality does not
provide informative content in addition to text for
the task. From a reversed perspective, the SVM
classifier with feature-based audio representation
focuses solely on the audio modality. We interpret
this as an effect of the difficulty of combining text
and audio modalities for the SVM classifier. We
observe similar behaviours when considering the
embedding-based audio representation as well. In
contrast, the M-ArgNet model behaves in line with
our initial expectations regarding the ablation study.
In particular, the model achieves superior perfor-
mance compared to the random baseline when one
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Input BiLSTM SVM M-ArgNet

Feature-based

TA 65.29 49.13 65.94
w/o Text 21.00 49.13 46.04
w/o Audio 65.29 0.00 57.02

Embedding-based

TA 66.84 66.71 68.68
w/o Text 3.81 16.40 11.27
w/o Audio 66.78 0.00 68.48

Table 5: Ablation test regarding TA model configuration
on the UKDebates test set.

of the input modalities is removed, while being in-
ferior to the default TA case. The only exception
concerns the embedding-based audio representa-
tion setting. In this setting, the text modality sig-
nificantly contributes to the task compared to the
audio modality.

Likewise, with the M-Arg corpus (see Table 6),
we observe odd results similar to those observed
with UKDebates. In particular, the BiLSTM and
SVM models show symmetrical effects concern-
ing performance metrics when one of the input
modalities is removed. Independently of the audio
representation method, the BiLSTM model heavily
relies on text information to perform the task. In
contrast, the SVM model fails to address the task
when audio is removed. This evidence suggest that
the way input is encoded also plays an important
role in a multimodal model concerning the impact
of each modality.

Furthermore, we observe similar issues in the
MM-USElecDeb60to16 corpus when addressing
the ASD and ACC tasks. Table 7 reports the re-
sults of the ablation study concerning the ASD task.
Again, we observe that the BiLSTM and SVM
models have symmetric behaviours. Additionally,
the BiLSTM reaches superior classification perfor-
mance when removing the audio modality in both
audio representation settings. Despite a small im-
provement, this surprising result suggests that the
audio modality might be noisy and, thus, detrimen-
tal to the task. This observation is further supported
by the low performance achieved when removing
the text modality. We observe this phenomenon
also in the ACC task as reported in Table 8. In par-
ticular, the M-ArgNet with embedding-based audio
representation has superior performance when re-
moving the audio modality compared to the default
TA input configuration.

Input BiLSTM SVM M-ArgNet

Feature-based

TA 15.89 12.33 18.27
w/o Text 0.0 12.33 9.21
w/o Audio 10.00 0.00 3.78

Embedding-based

TA 20.21 16.73 19.02
w/o Text 0.0 9.30 1.16
w/o Audio 12.80 0.00 18.24

Table 6: Ablation test regarding TA model configuration
on the M-ARG (γ ≥ 0.85) test set.

Input BiLSTM SVM M-ArgNet

Feature-based

TA 68.57 49.02 60.89
w/o Text 17.26 49.02 23.11
w/o Audio 69.40 17.26 48.04

Embedding-based

TA 68.23 65.38 68.38
w/o Text 17.26 61.11 44.35
w/o Audio 68.44 17.26 33.95

Table 7: Ablation test regarding TA model configuration
on the MM-USElecDeb60to16 test set for the ASD task.

Input BiLSTM SVM M-ArgNet

Feature-based

TA 66.25 51.66 60.09
w/o Text 32.71 51.66 44.25
w/o Audio 66.24 32.71 55.25

Embedding-based

TA 65.80 64.75 67.38
w/o Text 32.71 48.86 33.95
w/o Audio 65.80 33.57 67.57

Table 8: Ablation test regarding TA model configuration
on the MM-USElecDeb60to16 test set for the ACC task.

7 Conclusion

Political debates and speeches are an important do-
main where audio data is abundant. The automated
argumentative analysis of such data could lever-
age a variety of innovative applications and open
promising research avenues. Yet, AM research so
far has mostly focused on textual transcripts. Mo-
tivated by recent advances in MMDL and in an
effort to push the envelope in multimodal AM re-
search, we release the largest-to-date multimodal
AM dataset. We thus run an empirical study on
three multimodal AM datasets differing from one
another in many respects like size, topics, annota-
tions, and speaker variety. To this end, we defined
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three architectures, inspired from literature base-
lines. Our results indicate that embedding-based
audio encodings have an edge over feature-based
encodings. They also suggest that there is a signifi-
cant margin for improvement, hence the need for
different architectures to enable a tighter mutual
interaction between input modalities. We specu-
late that current trends in MMDL, in particular
attention-based methods for multimodal input fu-
sion, should be investigated in this domain. We
hope that our dataset will facilitate such endeavor.
A remarkable result is the performance of the AO
configuration, which in some cases is observed to
be competitive with TA. This could indicate that,
independently of automated speech recognition and
transcription systems that may or may not be avail-
able for different languages, useful AM systems
could be devised to work only based on the audio
signal. Possible applications include systems to
support debate summarization and news reporting.
Future research directions include a more extensive
exploration of the possible architectural configura-
tions and embedding methods, and the introduction
of attention-based architectural innovations.
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A Dataset Pre-Processing Details

In this section, we provide information on the de-
bates that were removed owing to issues with the
audio file’s quality or discrepancy between the au-
dio content and the corresponding transcript. We
removed the samples corresponding to the first par-
liamentary debate in 1988 (Bush vs Dukakis) since
the transcript is incomplete and this would have
caused alignment mismatches. Regarding the two
presidential debates of 2016 (Clinton vs Trump),
there was no correspondence between the audio
content and corresponding transcripts. Thus, we
removed these debates from the original dataset.

The transcript of the first Clinton-Bush-Perot
debate of 1992 has been divided into two sections
by the Commission. However, the second section
did not match the audio file and, thus, we removed
the samples corresponding to the second section
from the dataset. In the first Carter-Ford debate in
1976, the audio contains a cut of about 30 minutes.
Thus, we trimmed the audio file and kept only the
audio content before the cut.

B Experimental Setup Details

Table 9 reports the number of samples for each
cross-validation fold splits regarding the UKDe-
bates corpus. Likewise, Table 10 provides training
statistics for the M-Arg corpus. Table 11 reports the
number of samples for the training, validation and
test splits of MM-USElecDeb60To16. We used the
following seeds for the repeated cross-validation
routine: 15371, 15372, 15373. Lastly, Table 12, Ta-
ble 13 and Table 14 report the class distribution for
each train, validation and test split for the UKDe-
bates, M-Arg and MM-USElecDeb60to16 corpora,
respectively.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Train 246 247 247 247 247
Validation 62 62 62 62 62
Test 78 77 77 77 77

Table 9: The number of samples for each train, valida-
tion and test fold split regarding the UKDebates corpus.

C Model Calibration

In this section, we report the hyper-parameters
set used to calibrate each described classification
model. We distinguish between input configura-
tions TA, TO, and AO. In particular, the calibration

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Train 1563 1563 1563 1564 1564
Validation 391 391 391 391 391
Test 489 489 489 488 488

Table 10: The number of samples for each train, valida-
tion and test fold split regarding the M-Arg (γ ≥ 0.85)
corpus.

No. Sentences

Train 12423
Validation 6894
Test 7464

Table 11: The number of samples for each train, valida-
tion and test split regarding the MM-USElecDeb60to16
corpus.

space for input configuration TA is the combina-
tion of those regarding input configurations TO and
AO. Table 15 reports the hyper-parameter set used
to calibrate the BERT model. Similarly, Table 17
and 16 describe the calibration space of the SVM
and Bi-LSTM baselines, respectively.

D Performance on Validation Splits

Table 18 reports classification performance on the
validation set of the UKDebates corpus. Likewise,
Table 19 and 20 report classification metrics for
M-Arg and MM-USElecDeb60to16 corpora, re-
spectively.
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

claim not-claim claim not-claim claim not-claim claim not-claim claim not-claim

Train 96 150 98 149 98 149 98 149 97 150
Validation 25 37 24 38 24 38 24 38 24 38
Test 31 47 30 47 30 47 30 47 31 46

Table 12: Class distribution for each train, validation and test split regarding the UKDebates corpus.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

neither attack support neither attack support neither attack support neither attack support neither attack support

Train 1460 19 84 1460 19 84 1460 19 84 1460 20 84 1460 19 85
Validation 365 4 22 365 4 22 366 4 21 366 4 21 366 4 21
Test 457 6 26 457 6 26 456 5 27 456 5 27 456 6 26

Table 13: Class distribution for each train, validation and test split regarding the M-Arg corpus.

ASD ACC

arg not-arg claim premise

Train 9456 2967 5029 4427
Validation 5199 1695 2814 2385
Test 5907 1557 3036 2871

Table 14: Class distribution for each train, validation
and test split regarding the MM-USElecDeb60to16 cor-
pus.

Hyper-parameter Search Space

Input Configuration TO

Input dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]
Classification units [64, 100, 128, 256, 512]
Pre-classification dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]

Input Configuration AO

Input dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]
Classification units [64, 100, 128, 256, 512]
Pre-classification dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]

L2 regularization
[1e−2, 1e−3, 5e−3,
1e−04, 5e−04]

Bi-LSTM units [64, 100, 128, 256, 512]

Audio pooling
[None, [10, 2], [5, 5],
[5, 5, 5],[5], [10, 10]

CNN filters [8, 64]
CNN kernel size [3, 7]

Table 15: The hyper-parameters search space of the
BERT model.

Hyper-parameter Search Space

Input Configuration TO

Input dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]
Classification units [64, 100, 128, 256, 512]
Pre-classification dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]

L2 regularization [1e−2, 1e−3, 5e−3,
1e−04, 5e−04]

Bi-LSTM units [32, 64, 128]
Bi-LSTM layers [1, 2]
GloVe embedding [50, 100, 200, 300]
Learning rate [1e−3, 1e−4, 2e−4]

Input Configuration AO

Input dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]
Classification units [64, 100, 128, 256, 512]
Pre-classification dropout [0., 0.1, 0.2, 0.3, 0.4, 0.5]

L2 regularization [1e−2, 1e−3, 5e−3,
1e−04, 5e−04]

Bi-LSTM units [64, 100, 128, 256, 512]
Bi-LSTM layers [1, 2]

Audio pooling [None, [10, 2], [5, 5],
[5], [5, 5, 5], [10, 10]]

Table 16: The hyper-parameters search space of the Bi-
LSTM model.

Hyper-parameter Search Space

Kernel [rbf, linear]
γ [5e−2, 1e−2, 1e−1, 5e−1, 1.]
C [0.01, 0.1, 1., 10, 100]

Table 17: The hyper-parameters search space of the
SVM model.
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Feature-based Embedding-based

Model TO AO TA AO TA

SVM 66.18 49.86 48.00 51.58 64.45
M-ArgNet 71.64 53.07 63.25 55.02 70.52
BiLSTM 68.80 52.90 67.88 49.86 68.06

Random 37.78

Table 18: Average binary F1-score on the validation set
of UKDebates. For each row, we report the best results
in bold, second best results are underlined instead.

Feature-based Embedding-based

Model TO AO TA AO TA

SVM 13.26 11.54 12.75 13.50 24.09
M-ArgNet 23.69 20.35 23.66 13.04 26.56
BiLSTM 21.83 11.98 20.34 11.43 24.62

Random 2.62

Table 19: Average macro F1-score on the validation
set of M-Arg (γ ≥ 0.85). For each row, we report the
best results in bold, second best results are underlined
instead.

Feature-based Embedding-based

Model TO AO TA AO TA

ASD

SVM 68.01 56.34 56.76 64.40 67.24
M-ArgNet 66.71 56.14 62.30 63.59 68.53
BiLSTM 68.71 58.86 69.35 63.01 69.39

Random 50.26

ACC

SVM 66.17 49.28 49.23 57.72 64.34
M-ArgNet 68.48 50.43 67.28 58.36 68.01
BiLSTM 67.78 48.27 68.38 58.30 68.49

Random 49.43

Table 20: Average macro F1-score on the validation set
of MM-USElecDeb60to16. For each row, we report the
best results in bold, second best results are underlined
instead.
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