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Abstract
The class of large generative pretrained (GPT) language models have demonstrated the ability
to translate with in-context examples, a phenomena known as few-shot prompting. However,
they have not achieved state-of-art results for translating out of English. In this work, we in-
vestigate an extremely lightweight fixed-parameter method for conditioning a large language
model to better translate into the target language. Our method introduces additional embed-
dings, refered to as prefix embeddings which do not interfere with the existing weights of the
model. Using unsupervised and weakly supervised methods that train only 0.0001% of the
model parameters, the simple method improves up to around 5 BLEU points over the base-
line when a single prompt example is provided, and up to around 2 BLEU points when 20
prompt examples are provided across 3 domains and 3 languages. We analyze the resulting
embeddings’ training dynamics, where they lie in the embedding space, and show that these
conditional prefixes can be used for both in-context translation and diverse generation of the
monolingual target sentence.

1 Introduction

Under the paradigm of in-context learning,1 large language models have been shown to generate
translations when provided with several priming examples, each of which consists of a source
sentence and the translated target sentence. These examples, also known as “prompts”, are
prefixed to the test source sentence, which then conditions the model to generate the test target
sentence. Table 1 shows an example of this format, where [S1] and [S2] are separator tokens
prefixing source and target sentence respectively.

This prompt-and-translate phenomena, or in-context translation, presents itself as a new
paradigm for Machine Translation applications. First, the ability to adapt to different task spec-
ifications using prompts suggest that the same model can be used in multiple settings and do-
mains. While there have been several multilingual translation models (Fan et al., 2021; Xue
et al., 2021; Ma et al., 2021), the ability to perform unrelated tasks such as Question-Answering
in addition to Translation is relatively new. This also presents an interesting shift from super-
vised Neural Machine Translation (NMT) in terms of data requirements. These models are
trained on massive amounts of web text which are not explicitly parallel.2 In contrast, mod-
ern NMT models are trained with millions of lines of parallel text. Unsuprisingly, the lack of
supervision comes at a cost. Translating out of English for in-context models still lags behind
state-of-art possibly due to low data quality and/or disproportionate amounts of English.

1This has also been termed ‘few-shot prompting’ (Brown et al., 2020), but the field is increasingly converging on
‘in-context learning’ (Bommasani et al., 2021).

2This does not preclude the possibility that parallel sentences may exist in various forms in the crawled web text.
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[S1] So at this point, music diverged [S2] Donc à partir de là, la musique a divergé.
[S1] The actual rigging on the reins on the
horse are made from the same sort of thing.

[S2] Les attaches sur les rennes du cheval sont
faites du même genre de choses.

· · ·
[S1] And that was done with a particle. [S2]

Table 1: A single continuous input sequence presented to the model for decoding a single test
source sentence “And that was done with a particle”. Given the entire sequence as input, the
model proceeds to generate the target sequence after the final [S2]. [· · ·] refers to several more
[S1] en [S2] fr pairs.

In this work, we propose the training of target language prefix embeddings to improve
in-context translation. Targetting specific languages has been explored in NMT models Yang
et al. (2021) but much less so for the in-context setting. In contrast to fine-tuning, we do not
change existing model weights. This falls into the class of ‘fixed-parameter’ methods where the
original parameters of the model are held fixed and additional parameters are introduced which
influence the activation states of the model. Our proposed method differs from the various ap-
proaches to “prefix tuning” (Li and Liang, 2021; Qin and Eisner, 2021; Asai et al., 2022; Lester
et al., 2021) in that these all require explicit task supervision. Learning the weights of these pre-
fix embeddings is technically straightforward using gradient descent optimisation machinery.
We show that these embeddings can be trained unsupervised (subsection 3.2)3 and also explore
the use of a very small set of bitext sentences for weakly supervised training (subsection 3.3).
Experiments were conducted across 3 en-fr domains (subsection 4.1) and from English into
three languages French (fr), Portugese (pt), and German (de) (subsection 4.2). Overall, for a
very small amount of engineering, data collection, and storage effort, training prefix embed-
dings can give up to 5 BLEU points for the 1-prompt setting, and up to around 2 BLEU points
on the 20-prompt setting with a very small amount of bitext (we used 100 parallel sentences).

2 Related Work

Large language models which perform in-context translation Following GPT3 (Brown
et al., 2020) which first reported the in-context translation phenomena, subsequent autoregres-
sive Transformer decoder only architectures such as XGLM (Lin et al., 2021) and mGPT (Shli-
azhko et al., 2022) have explicitly trained in-context models to be multilingual. However de-
coding out of English still performs more poorly than decoding into English. Hence we focus
on the first scenario of decoding out of English.

Prefix Tuning Unlike previous work which directly prefixes the task by prepending to the
input (Li and Liang, 2021; Qin and Eisner, 2021; Asai et al., 2022; Lester et al., 2021), we
substitute the trained prefixes for the delimiters throughout the prompts before the target lan-
guage sequence. Our proposed method prefixes the target sequence, not the task. This small
but significant difference allows monolingual training for the target language without explicit
translation task supervision.

Embedding Tuning vs Prefix Tuning across all layers We adopt the embedding level tuning
approach which was shown to be competitive with model tuning with an increasing number of
parameters on SuperGLUE tasks (Lester et al., 2021). The focus on training prefix embeddings
instead of training additional parameters to directly influence activations across all layers is a
design choice primarily to accommodate for very large models. Li and Liang (2021) report

3Unsupervised in the terminology of Machine Translation means without parallel bitext sentences.
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using 250K-500K of parameter training vs. a 345M Roberta model (Liu et al., 2019), which is
4-7% of the parameter space. If we had applied the same parameter ratio to our current model
of 2.7B parameters, this would be equivalent to having to train 195M parameters – which is in
the same order of magnitude of the Roberta model. We do acknowledge that embedding tuning
is less expressive by virtue of having fewer entry points to influence the model’s activations, and
leave a middle ground solution such as combining with adaptor layers (Houlsby et al., 2019) to
future work.

Language ID token training is a typical method in multilingual models, to condition the
model for the source and target language. However these tokens are typically trained together
with the rest of the model parameters and is a design choice that needs to be made upfront.
In contrast, we use a generic large language model that was pretrained with minimal design
choices, and then posthoc train a language specific prefix to condition the model to generate
sentences in the target language, with the goal of improving in-context translation.

3 Methods

Our approach is motivated by the knowledge that for very large language models trained on
web corpora, there is a weaker target language (being translated into) because English is the
dominant language on the web. This trend persists even for explicitly multilingual language
models (Lin et al., 2021). Our method therefore aims to condition the language model to de-
code the weaker target language, by learning a language-specific prefix. We first describe the
in-context translation setup at test time (subsection 3.1), followed by unsupervised training
(subsection 3.2) and weakly supervised training (subsection 3.3) of the target language prefix
embedding. At inference time, the corresponding prefix will be used as the separator token
between source and target language. Figure 1 illustrates this process.

3.1 In-context Translation
Let (x,y) ∈ Db be a set of translation pairs that the model has access to at inference time,
where x refers to the source sentence and y refers to the target sentence. Given the separator
tokens [Sx], [Sy] and the test source sentence xtest, we can define a prompt layout format
u(xtest,Db,[Sx], [Sy]) (Table 2), where [...] refers to several similarly formatted x, y
examples from Db. The default in-context learning model autoregressively generates the target
sequence by greedily decoding ŷ = argmaxyp(y|u(x,Db,[Sx], [Sy])). Our goal is to
learn a target specific prefix [S*] that achieves higher p(y|u(x,Db,[Sx], [S*])) for the
correct sequence y. We use “∗” to indicate that the prefix can be of any length.4

[Sx] x1 [Sy] y1

[Sx] x2 [Sy] y2

· · ·
[Sx] xtest [Sy] ?

Table 2: The prompt layout format from u(xtest,Db,[Sx], [Sy]).

3.2 Unsupervised Training (monolingual)
The primary strategy is simple, train [S*] such that it conditions the model to generate se-
quences y from the target language. We expand the tokenizer and the corresponding embedding

4In practice, we use special tokens such as [0],[1] · · ·, [n] for a prefix of length n and verify that these do
not have a collision in the tokenizer namespace.
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matrix by the number of prefix tokens, and then prepend the special token [S*] to monolin-
gual sentences during training. A single training sequence is given by “[S*] y”, where y
is typically a sentence or paragraph. Given m sequences from a target language training set
y1, · · · ,ym ∈ Dy , we train the embedding parameters θ = Embed([S*]), where [S*] in-
dexes the additional rows in the embedding matrix. We use cross-entropy loss as is standard
with language modeling, and freeze the parameters of the entire network except for θ.

Embedding 
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Figure 1: Prompt format for training and inference time. Training loss is computed on the
sequences in blue. The token [S*] corresponds to additional row(s) of the embedding matrix
which are the only parameters trained by backpropagation. At inference time, we replace [Sy]
with the trained [S*] to conditionally generate ytest. Note that [S*] can also be used to
generate sequences in the target language directly (subsection 5.4).

3.3 Weakly Supervised Training (In-context Translate with Bitext)
In the previous section, training of θ uses only the target language, without any bilingual su-
pervision for the in-context translation task. To guide θ to a better local optima, we include a
very small amount of bitext, 100 parallel sentence pairs which are a subset of the training set.
We adopt a weakly supervised setup where we initialise the prefix embeddings using existing
tokens, and also where the prefix embeddings are initialised from the monolingual trained prefix
embeddings (referred to as mono-trained-lang in section 4).5 An alternative training approach is
a multi-task setup where losses from the monolingual language modeling and translation tasks
are minimised in alternative batches, however this was thought to be less effective due to the
extreme data imbalance of the setting that we consider (30k monolingual sentences to 100 bi-
text pairs), which might require arbitary reweighting schemes. Since the end-goal is translation,
directly tuning towards this is a more straightforward approach.

Figure 1 shows a single in-context translate training sample for the model. Note that loss
is computed only for the last target sentence ytraink

. In all our experiments we use k = 6 for
training, i.e., 5 priming examples. For each datapoint, we randomly sample from the Dtrain

to construct the prompt set, so that the parameters of [S*] do not overfit to any particular
choice of prompt set. Note that for large language models, |Dtrain| is less than the number of
parameters being trained; a single prefix token has already over 2000 dimensions. We do not

5Note that since monolingual data had been used to initialise the prefix, this can be interpreted as a continual semi-
supervised learning set up.
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expect Dtrain to allow the model to learn a mapping for translations, and its role is merely to
weakly supervise the training of the monolingual prefix towards loss basins that are compatible
with the prompt-translate paradigm.

4 Experiments

We organise our experiments investigating the effects of prefix embedding tuning 1) across
three en-fr domains, medical, social media, and TED talks, 2) across three languages in TED
Talks.6 In both sets of experiments, we explore three basic initializations (described in Prefix
Embedding Initialisations). We also use priming examples of various sizes to investigate if
the effects persist across different prompt sizes. To account for prompt selection and ordering
effects, all inference runs were repeated with 5 randomly sampled prompt sets from the training
data, where each of the source sentences in the prompt examples are between 10 to 20 words
long. Scores are reported using SacreBLEU(Post, 2018).7

Model We use GPTNeo2.7B (32 layers, 20 heads) (Black et al., 2021) which has been pre-
trained on The Pile (Gao et al., 2020). The Pile contains Europarl which has been fed into the
model at a document level and not a sentence level.8 To our knowledge, there has not been any
reports of sentence level parallel corpora in the training dataset of this model. Note that unlike
most dedicated Machine Translation models which have an encoder-decoder architecture, this
model is trained autoregressively and is decoder only. 9

Data We adopt three datasets; multilingual TED talks (Duh, 2018), MED (Bawden et al.,
2019), and MTNT (Michel and Neubig, 2018). We use 30,000 monolingual sentences for unsu-
pervised training of the prefix embeddings (mono in results table). For TED, MED and MTNT,
the monolingual sentences are obtained from their bitext training data. We use 100 bitext sen-
tence pairs for the weakly supervised case (bitext in results table). These bitext sentence
pairs served as a self-contained prompt set and training data instances as described in subsec-
tion 3.3. In both the unsupervised and weakly supervised scenarios, During testing, we sample
sentence pairs for prompts examples from the training set. The sentence pairs in weakly super-
vised training, validation, and inference time prompt selection are all separate splits; there is no
overlap between prompt sets seen across these phases.

Preprocessing We preprocess digits to as we find that this helps the prefix tuning to converge
for the MED and TED domains, without compromising on the ability to copy or generate digits.
We run a langid check and restrict training sentence length to 3 to 25 words to avoid trivial
sequences and out-of-memory errors.

Prefix Embedding Initialisation We investigate two simple forms of initialisation

• random refers to the default behavior of the model when adding new parameters to the
embedding. For GPTNeo model, this is drawn from N (0, 0.02) as the model uses GELU
activation units (Hendrycks and Gimpel, 2016). We report results for random using the
best out of 3 trained prefix embeddings based on the dev set.

• lang uses existing words from the vocabulary which is related to the language and the
domain. For fr, pt, de, we initialise with the words “French, Portuguese, German”, for

6Code at https://github.com/suzyahyah/prefixes_incontext_machinetranslation.
7nrefs:1 | case:lower | eff:no | tok:13a | smooth:exp | version:2.0.0
8https://github.com/thoppe/The-Pile-EuroParl
9We report SOTA results on the datasets although this is not directly comparable because of completely different

training data setup of the base model. TED en-fr: 35.9 en-pt: 38.3 en-de: 28.1 (Renduchintala et al., 2019) MED: 39.5
(Bawden et al., 2019) MTNT: 29.7 (Michel and Neubig, 2018)
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MTNT, MED and TED we use “social, medical, talks” respectively. This means that for
French MED, we would initialise the first prefix with the embedding corresponding to “
French” and the second prefix with the embedding corresponding to “medical”. 10

• mono-trained-lang are embeddings initialised from monolingual training (the previous bul-
let point) for further (weakly) supervised training using 100 additional parallel sentences.

Validation Loss For both monolingual training and weakly supervised bitext training, we use
the prompt-translation paradigm as the validation loss. This avoids overfitting to the monolin-
gual target sentence at the expense of being able to translate in the in-context setup. The set
of translation prompts for the validation set are randomly drawn from within that set itself, re-
moving dependency on any particular prompt set used at inference time. It may be possible to
achieve better performance if practitioners were to use the same prompt set at train, validation
and test time.

Training Details We apply early stopping with patience over 5 epochs and threshold 0.001
loss. We adopt 4 gradient accumulation steps with a batch size of 8 for an effective batch size of
32 for the monolingual training, and 4 gradient accumulation steps with a batch size of 2 for an
effective batch size of 8 for the weakly supervised bitext training to avoid out-of-memory errors.
All experiments can be run with a single NVIDIA-TITAN RTX GPUs (24GB). Monolingual
training takes about 1 hour per epoch and can range from 8-20 hours for convergence.

Prompt Format (u) We tried several manual variants of [Sx] and [Sy] but did not optimise
over this extensively. Our preliminary experiments showed that using untrained lang tokens in
the separator performed slightly better, i.e., using the token “French” as [Sy] performed better
than a separator choice such as ‘ A:’. We also experimented with prepending the entire prompt
sequence with Natural Language Instructions: “Translate English to French” but found that this
did not help consistently across datasets, hence we opted to exclude it to simplify design choices
and isolate the effects of the trained prefix.

4.1 Results for Performance Across Domains [Table 3]
We present the results for 1-prompt and 20-prompt setting in Table 3. The 1-prompt example
shows the extreme case of having no bitext data. While this is perhaps an overly restrictive
assumption especially in industrial settings, the goal of this experimental setting is to illustrate
the effect of the extreme monolingual scenario. The 20-prompt setting simulates a “saturated”
prompt setting, which we also investigate with more prompt intervals in Figure 2.

Unsupervised (monolingual) Prefix Training helps 1-prompt setting. Across all domains,
unsupervised (mono) prefix training tends to improve BLEU score. This improvement is much
more prominent in the 1-prompt setting, with improvements of around 5 BLEU points across
the three data domains of MED, TED and MTNT. Recall that the mono trained lang initialised
token embedding has no knowledge of translation and only serves to condition the model to
generate the target language.

Weakly supervised (bitext) Prefix Training helps the 20-prompt “saturated” setting. A
very small amount of supervision with 100 examples can be used to do better than the baseline
(0.3 to 1.3 BLEU point gains).11 It is not always clear whether initialising from a mono-trained-
lang embedding helps as the performance is the same for TED and MED, but slightly better (0.5
gains) for MTNT. Looking at the 1-prompt case for bitext, mono-trained-lang always does

10Note that having two words does not necessarily correspond to having two tokens.
11How much supervision is required? We separately find that increasing from 100 to 1000 training examples per-

forms within 0.1 BLEU points of the bitext mono-trained-lang (last column of Table 3.
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untrained mono (unsupervised) bitext (supervised)
exp direction nprompts lang random lang lang mono-trained-lang

MED en-fr 1 8,8 (1.6) 13.3∗(2.4) 12.0∗(4.8) 7.6 (4.8) 10.7 (4.1)
MTNT en-fr 1 10.7 (3.5) 7.3 (4.2) 15.5∗(2.5) 14.2 (2.6) 18.4 (1.3)
TED en-fr 1 12.7 (4.7) 16.4∗(3.8) 17.7∗(2.1) 18.8 (1.1) 19.1 (0.9)

MED en-fr 20 17.9 (0.7) 11.5 (1.4) 18.1 (0.8) 18.4∗(0.5) 18.4∗(0.5)
MTNT en-fr 20 21.0 (0.6) 1.5 (0.9) 21.2 (0.3) 21.5∗(0.4) 22.0∗(0.4)
TED en-fr 20 22.5 (0.2) 21.2 (0.9) 22.2 (0.2) 22.8 (0.2) 22.8 (0.1)

Table 3: BLEU points across different domains of Medical (MED), Social Media (MTNT)
and TED Talks. We report the average of 5 random prompt sets with standard deviation. The
best result is in bold row-wise, and (∗) indicates p < 0.01 for a paired permutation test (1000
rounds) against the baseline (untrained). For 1-prompt case, this assumes that there is no
bitext available, although we report bitext results (in lightgray) for the sake of completeness.
The number of prefixes tokens for all experiments in this table is 2.

Figure 2: k-shot performance with trained prefixes on MTNT, TED and MED datasets for en-fr.
Plots show k = {1, 5, 10, 15, 20} examples on the x-axis. Baselines include lang token without
further training (untrained; lang), an ”A” token without further training (untrained; ‘A’), and
the best out of 3 randomly initialised embeddings (mono; random).

better than lang, indicating that there is still an effect of having higher scores over the target
language logits, but that this effect vanishes with increasing prompts.

Plateau effect across increasing number of prompt sets. We observe a plateau effect after
5 prompts which is consistent with the hypothesis that the primary role of prompts is task
location rather than instruction (Reynolds and McDonell, 2021). With regards to individual
prompt set selection, we find that improvements occur across all prompt sets that had been
randomly selected, strongly suggesting that the improvements from training the target language
prefix are orthogonal (or can be used independently) of prompt selection and ordering effects
to achieve better translation results. We further analyse the improvements at a sentence level in
subsection 5.3.

Random initialisation has high variance. If not correctly initialised, the prefix might not
converge to a good local optima for in-context translation and can result in worse performances
than baseline despite having low perplexity on the monolingual training set. Very occasionally
we might observe a stronger performance, in the case of mono random in the 1-prompt setting).
This suggests that the primary reason why a monolingual trained prefix can still have good
performance when used in the in-context translation setting, is because it still retains properties
from the word embedding that it is initialised from that are compliant with the activation states
for in-context translation.
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4.2 Performance Across Languages
In this section we presents experiments with GPTNeo2.7B on TED talks for German(de) and
Portugese (pt). Overall the results are encouraging for prefix training; we observe improvements
in the 1-prompt setting with mono lang, and in the 20-prompt setting with bitext mono-
trained-lang with en-de and en-pt. The limited en-pt gain may be explained by the already high
scores on the untrained lang at 22.0 BLEU, but it remains unclear why the improvements
are limited for en-de.

untrained mono (unsupervised) bitext (supervised)
exp direction nprompts lang lang lang mono-trained-lang

TED en-fr 1 12.7 (4.7) 17.7∗(2.1) 18.8 (1.1) 19.1 (0.9)
TED en-de 1 8.5 (2.2) 9.7∗(2.2) 13.6 (0.6) 15.1 (0.5)
TED en-pt 1 22.0 (0.7) 22.9∗(0.8) 24.3 (0.8) 25.0 (1.2)

TED en-fr 20 22.5 (0.2) 22.2 (0.2) 22.8 (0.2) 22.8 (0.1)
TED en-de 20 16.6 (0.3) 16.1 (0.6) 17.4∗(0.2) 17.6∗(0.2)
TED en-pt 20 24.9 (0.4) 25.8∗(0.9) 27.2∗(0.4) 26.8∗(0.2)

Table 4: BLEU points across different language directions translating from English (en) to French (fr),
Portugese (pt), German (de). We report the average of 5 random prompt sets with standard deviation. The
best result is in bold row-wise and (∗) indicates p < 0.01 for a paired permutation test (1000 rounds)
against the baseline (untrained). For 1-prompt case, this assumes that there is no bitext available,
although we report bitext results (in lightgray) for the sake of completeness. The number of prefixes
tokens for all experiments in this table is 2.

Effect across languages are not equal. Translation into de and pt for the 20-prompt setting
under very weak supervision of 100 bitext examples gives around 1 to 2 point gains which is
slightly more encouraging than en-fr, suggesting that the performance gains are not equal across
languges. Curiously, the corresponding gains from the 1-prompt setting for en-de and en-pt are
much smaller around 1 point compared to the 5 point gain for the 1-prompt setting in en-fr.

5 Analysis

5.1 Trained Prefix in Embedding Space
What is the difference between lang initialised and random initialised prefix embeddings? To
get a better of understanding of the local minima, we compare them before and after training.
In Table 5 we present the top 20 closest tokens by cosine distance to the prefix (before and
after), and in Figure 3 we observe the ‘density’ of the closest 50 tokens by cosine distance in a
PCA plot. A similar pattern emerged across all domains regardless of whether unsupervised or
weakly supervised training.

Observations

1. For the lang token1, the closest 10 words are in the similar theme of country/language.
However after the 10th word, this diverges to a different set of words. From the PCA plots,
we can see that the red points (the closest 50 words) are largely a different set of words in
a different part of the embedding space.

2. For the lang token2, we observe that the top 20 words do not change much unlike lang
token1. This indicates that lang token1 may play a more critical role in conditioning the
model. We do not plot lang token2 in Figure 3 as this is domain specific and different
across different domains.
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[Before Training]
lang token1 French, French, France, french, Spanish, Italian, German, Dutch, Swedish, Belgian, Danish, Por-

tuguese, Russian, Frenchman, Japanese, Paris, Turkish, Irish, Polish, Norwegian
lang token2 social, social, Social, Social, socially, societal, socio, SOC, soc, Facebook, cultural, facebook, FB,

Soci, Twitter, sociop, civic, twitter, hugely, Instagram
random token1 exponent, Occ, ashi, 070, Redd, multiplication, Consumer, ost, grinning, promul, pos, crafted, apex,

Import, justifying, 778, Ing, std, spit, grad
random token2 Apply, EN, round, ail, private, fruit, su, San, marks, akra, wi, atin, tar, arb, ank, ADVERTISEMENT,

gi, ORN, ize

[After Training]
lang token1 French, French, french, France, Italian, German, France, Spanish, Russian, Dutch, Paris, scrut,

amazingly, showcasing, fueling, meticulously, nurturing, boosters, fiercely, British
lang token2 social, social, Social, Social, socially, societal, socio, SOC, soc, Facebook, FB, facebook, twitter,

Twitter, Soci, cultural, incess, sociop, Instagram, hugely
random token1 452, 647, 339, Maurit, 467, 751, 466, 146, bustling, 338, 383, 546, 626, 340, 604, 267, 287, 649,

447
random token2 soDeliveryDate, istg, Skydragon, ÛÛ, srfN,¯¯¯¯¯, embedreportprint, = = , quickShipAvailable,

natureconservancy, guiIcon,externalToEVA, RandomRedditorWithNo, largeDownload

Table 5: Top 20 tokens by cosine similarity to the prefix token before and after training. lang
token1, rand token1 and 2 are the same across MTNT, TED and MED datasets. lang token2 is
a domain specific word, in this case “social” for the prefix trained in MTNT dataset. Note that
the trained prefix token1 and token2 are concatenated as a prefix of length 2.

Figure 3: Each point in the plot corresponds to a token which is closest to the prefix by cosine
similarity in the full embedding space dimensionality before and after training. The top 50
nearest tokens are plot in 2D as reduced by PCA. Orange and red are tokens closest to random
prefix 1 and 2 respectively, while blue are tokens closest to the lang prefix 1, which corresponds
to the token “French”.

3. random token1 and token2 start out in a visually similar density spread to lang token1 and
the similar tokens are in some generic random space. However after training, the cluster
of similar words become very concentrated in the same 2D space (Figure 3). For random
token1 this is three digit numbers and for random token2 this is CamelCased words.

5.2 Validation Loss Across Training Epochs

We present the validation loss under a 5-prompt setting, as training loss for unsupervised and
weakly supervised are not directly comparable. We can observe that at the beginning of training,
the lang initialised prefixes are already performant. This corresponds to the untrained lang
prefix in Table 3. Validation loss increases for the mono although this is validation at the 5-
prompt validation setting. As reported in Table 4, the trained mono prefix give 5 BLEU points
at the 1-prompt test setting. For the weakly supervised bitext setting, the loss continues to fall
very gradually and consistently under the weakly supervised bitext setting.
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Figure 4: Validation (log) loss plots on en-fr for the TED dataset. The validation loss is the
in-context translate loss using 5 prompts. The validation loss for random which initially starts
at 17.6 is not shown in this chart.

5.3 Sentence Level Analysis for 1-prompt setting
In Table 3 and Table 4, we reported BLEU scores averaged across 5 random prompt sets. We
find that when the mono trained prefix method is performant in the 1-shot setting, it does better
than the baseline consistently across all 5 random prompt sets. We thus look at the scatter plot
of sentence level scores to see whether improvements are coming from across all sentences or
from a small group of sentences. Points in red are sentences which did not get translated into
the target language in the baseline case. We show the scatterplot for a single prompt set and
MTNT domain, as other plots follow a similar pattern.

domain prefix>base prefix=base prefix<base

MED 70.4% 10.4% 19.2%
MTNT 70.0% 7.7% 22.3%
TED 64.5% 12.8% 22.7%

Figure 5: Scatter plot for the 1-prompt setting, for en-fr in MTNT, where each point is a single
sentence, Y-axis shows mono trained lang prefix versus the baseline (untrained prefix) on the
X-axis. We report % of sentences where the prefix underperforms, equals to, and outperforms
the baseline, averaged across 5 prompt sets, for unsupervised (monolingual) trained prefix.

Observations

1. Prefix embedding does better “on average” rather than universally across all sen-
tences. We quantify the % of sentences where using prefix outperforms baseline and vice
versa. Many sentences which score higher with the prefix occurs when the baseline has
very low scoring sentences. This likely accounts for the higher BLEU scores. Interest-
ingly, about 20-25% of the sentences across the three domains perform worse with the
trained prefix, than without. Overall this suggests that a potential next direction might be
in translation reranking methods.

2. Most points in red appear to be above the diagonal, indicating that sentences that were
previously not translated into the target language are mostly scoring higher.
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5.4 Sampling from Prefix

Using [S*] as the starting token in a sentence, we sample subsequent tokens from the LM
using the vanilla softmax probability distribution without any other probability rescoring tricks.
We observe that the prefix token conditions the model to generate naturally diverse outputs,
indicating that it has a non-peaky distribution over the target language space. This indicates that
the prefix is highly flexible in conditioning the model to generate sequences from that language
and the domain. This might be potentially useful as a generic domain prefix for other tasks
beyond translation, such as generating dialogue in a particular style.

MTNT Après un peu d’attention, qu’est-ce que vous voudriez
(after a little attention, what would you like)

Et quelle est la façon d’interdire que ça ait lieu? Laisse moi parler le pignon, ...
(And what is the way of prohibiting that it takes place? Let me speak the gable, ...)

MED Une étude met en évidence une association entre ces facteurs et le degré d’état de santé chez les adolescents...
(A study highlights an association between these factors and the degree of health in adolescents ...)

Nous avons interrogé une grande majorité des parents ayant reçu des soins de santé pour connaı̂tre le résultat ...
(We interviewed a large majority of parents who received health care to find out the result ...)

TED Le taux annuel des demandeurs d’un emploi est de 2,4 %. L’enregistrement de ce taux en janvier...
(The annual rate of job seekers is 2.4 %. Recording this rate in January ...)

Sérieusement. Et c’était quand même pas trop. L’air mou et froide comme ça et la réalité se révéla que mes souvenirs
(Seriously. And it was not too much. The soft and cold air like that and the reality turned out that my memories )

Table 6: Random samples from prefixes trained on monolingual data for french MTNT, MED
and TED, together with their English translations (from Google Translate) in italics for read-
ability.

6 Conclusion

In this paper, we show that priming of in-context learning models can be improved using pri-
marily unsupervised methods. To our knowledge, this is the first work which emphasises the
target side language during decoding of a large language model for in-context translation. The
gains are modest but so are the number of parameters trained. In our experiments we have
shown that the simple method gives up to 5 BLEU point gains for monolingual training in the
1-shot setting, and weakly supervised bitext training in the 20-shot setting gives up to around
2 BLEU point gains across 3 domains and 3 languages. Given that we leverage primarily on
unsupervised (monolingual) target side training and carefully control for random prompt selec-
tion, this could be a generic approach for improving decoding into a weaker target distribution,
which is complementary to the vast literature on prompt example selection and optimisation
(Liu et al., 2021).

Limitations We have used one model, GPTNeo2.7B, in this set of experiments. Although
this accessible off-the-shelf model is considered a replication of GPT3 in terms of architec-
ture and is highly used (88k downloads in the month of January 2022), other factors such as
different training data or scale of the model (100B parameter vs 2B parameters) may affect
generalisability of the results. There are no known ethical concerns.
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