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Abstract
Cross-lingual alignment methods for monolingual language representations have received no-
table attention in recent years. However, their use in machine translation pre-training remains
scarce. This work tries to shed light on the effects of some of the factors that play a role
in cross-lingual pre-training, both for cross-lingual mappings and their integration in super-
vised neural models. The results show that unsupervised cross-lingual methods are effective at
inducing alignment even for distant languages and they benefit noticeably from subword infor-
mation. However, we find that their effectiveness as pre-training models in machine translation
is severely limited due to their cross-lingual signal being easily distorted by the principal net-
work during training. Moreover, the learned bilingual projection is too restrictive to allow said
network to learn properly when the embedding weights are frozen.

1 Introduction

Unsupervised cross-lingual embeddings (CLE) concern a group of methods that exploit latent
similarities between word embeddings in different languages to generate their own bilingual
dictionary or parallel corpus. Fully unsupervised cross-lingual mappings have received notable
attention due to being solely reliant on the distributional similarities of language continuous
vector representations.

However, semi-supervised cross-lingual pre-training methods, which require very small
amounts of parallel corpora – and in some cases only a simple bilingual dictionary for initial-
ization – tend to outperform their unsupervised counterparts (Vulic et al., 2019; Doval et al.,
2019; Patra et al., 2019). It is only in situations where no bilingual data exists that unsuper-
vised techniques are preferable. In the case of languages with extensive written records where
resources are plentiful, there is little reason to use a fully unsupervised method rather than one
that takes advantage of a small bilingual dataset (Artetxe et al., 2020). Even for low-resource
languages for which a reduced number of corpora exist, it is exceedingly probable that some sort
of translation dictionary that associates them with a more widely studied language is available.
This leads us to the question: are unsupervised cross-lingual models useful at all?

While they might not be the best performing tools in a realistic use case, drawing a hard
line between unsupervised and semi-supervised cross-lingual mappings does not make much
sense, because they are extremely similar processes. Semi-supervised cross-lingual methods
are just forfeiting the generation of a seed bilingual dictionary in favor of one provided by
the user or other strategies based on back-translation. But their remaining steps are analogous
to that of unsupervised cross-lingual projection methods: they both use the seed translation
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dictionary to align and project the monolingual subspaces in a hypothetical cross-lingual space.
In the case of many unsupervised models, seed generation is actually an adaptation of these
previous steps, where some assumption on the structures of the matrices is made in order to
obtain an initial set of translation pairs. Given that unsupervised and semi-supervised cross-
lingual strategies share so many traits, most improvements over unsupervised methods can be
transferred to semi-supervised ones.

This work aims to uncover some of the limitations of pre-training strategies based on un-
supervised cross-lingual embeddings. These methods are fully dependent on intrinsic language
similarities to operate, and therefore constitute a great vehicle to explore how different contin-
uous representations may capture distinct linguistic and structural features. Previous research
has already taken advantage of this property to analyze the behavior of language representation
spaces (Nakashole and Flauger, 2018). In this work, we consider three different approaches
to unsupervised cross-lingual embedding projection, and explore their interaction with differ-
ent linguistic characteristics and model features, such as subword encoding and vector space
structure. The resulting evaluations are put into context to propose potential improvements to
language representation strategies as a whole.

2 Related Work

Modern mapping-based cross-lingual embeddings, which are sometimes also called projection-
based embeddings, have become very popular by outperforming earlier mapping methods and
many supervised cross-lingual methods that are dependent on segment-level alignment. As
many initial mapping-based approaches (Mikolov et al., 2013b; Faruqui and Dyer, 2014), they
require monolingual embeddings, but often also a small parallel corpus or a bilingual seed
translation dictionary to perform the initial alignment. However, some do not need any parallel
signal at all, as they can also perform the original alignment relying only in estimations based on
structural similarities between the monolingual vector spaces (Artetxe et al., 2018; Lample et al.,
2017). Another family of cross-lingual word embeddings are the so-called pseudo-bilingual
word embeddings (Ruder, 2017). These approaches use a concatenation of large monolingual
corpora and integrate it with some amount explicit bilingual information – such as replacing
translation pairs in the dataset Gouws and Søgaard (2015) or substituting tokens based on their
semantic cluster (Ammar et al., 2016) – . Both mapping-based and pseudo-bilingual word
embeddings are especially useful for prototyping in extremely low-resource language models
when no parallel data is available.

However, cross-lingual embeddings have not been particularly effective in deep neural
network pre-training, and often do not seem to represent a significant improvement over using
off-the-shelf monolingual embeddings (Qi et al., 2018). In contrast, cross-lingual language
models such as BERT (Devlin et al., 2019) have fared better. Some approaches try to create a
universal neural language model for all the languages included in a final multilingual system
(Ji et al., 2020; Lin et al., 2020). A very successful alternative to these strategies has also been
proposed by Lample and Conneau (2019), who create a cross-lingual neural language model
by training a masked language model (Devlin et al., 2019) using a shared vocabulary between
languages and subsampling frequent outputs as per Mikolov et al. (2013c). Ren et al. (2019)
refine this masked language model (MLM) by introducing an explicit cross-language training
objective, creating a cross-lingual masked language model (CMLM). Recent research in Wang
and Zhao (2021) has obtained top-of-the-line results by using a large-scale CMLM and training
the final supervised model using a joint optimization objective (Sun et al., 2019) that aims to
maintain the original distribution of the CMLM while maximizing translation performance.
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3 Unsupervised Cross-lingual Pre-training

3.1 Unsupervised cross-lingual embeddings
This work explores cross-lingual pre-training through three particular unsupervised cross-
lingual embedding methods: VecMap (Artetxe et al., 2018), MUSE (Lample et al., 2017) and
embeddings trained over multilingual corpora.

Both VecMap and MUSE are projection-based cross-lingual embeddings. Projection-
based CLE generate an alignment between monolingual word embeddings, subsequently pro-
jecting them into a common representation space that facilitates a direct mapping between the
distribution of both embeddings. The initial alignment is commonly produced using a seed
dictionary of translation pairs. However, in some cases these translation pairs are estimated by
the cross-lingual method itself. This capacity to generate a common vector space of aligned
embeddings with no bilingual signal defines fully unsupervised cross-lingual embeddings.

The specifics behind alignment and projection are also dependent on the general topol-
ogy of the embeddings that are to be mapped. In this work, all experiments are performed
over Word2Vec embeddings, which offers two possible topologies: continuous bag-of-words
(CBOW) and skip-gram. The former trains a shallow network to predict a word given an in-
put context, while the latter learns to predict a context window from an input word. In this
work, only skip-gram is used for all experiments, particularly skip-gram with negative sam-
pling (SGNS) (Mikolov et al., 2013c).

For VecMap, Artetxe et al. (2018) assume that word translations have approximately iden-
tical vectors of monolingual similarity distribution. The proposed method operates on top of
this idea, adding empirically motivated enhancements that make the procedure more robust.

In contrast, MUSE (Lample et al., 2017) uses adversarial training to create a generator
network able to project word vectors from each monolingual embedding in a way such that it
is very difficult to distinguish the space to which they originally belonged, thus achieving a
common mapping between both embeddings.

Another approach to cross-lingual embeddings explored in this work are embeddings
trained over multilingual corpora. The model proposed in this section is trained on corpora
with no alignment or contextual proximity. The procedure is remarkably simple: two mono-
lingual corpora in different languages are concatenated, and a word embedding is trained over
the resulting multilingual text. Just as in the previous two methods, the result is a bilingual
vector space that tends to group translation candidates close to each other. Therefore, it can also
be used as bilingual pre-training for a translation model in the task studied in this work. This
approach serves as a baseline to determine how much of the alignment achieved from cross-
lingual embeddings is innate to the distribution of both languages and can be extracted with no
mapping procedures.

3.2 Cross-lingual Pre-training
The aforementioned cross-lingual embeddings are integrated as pre-training in the input and
output embedding layers of a machine translation neural network, in substitution of the em-
bedding transformation that would otherwise be initialized randomly. The model used follows
the Transformer architecture proposed by Vaswani et al. (2017), with some slight modifications
that are described in detail in section 4.3.4. Although Qi et al. (2018) report that orthogonal
alignment was not helpful when pre-training embeddings for an attention-based neural machine
translation model, in this work we aim to evaluate new strategies that may influence pre-training
performance. Namely, by trying out other state-of-the-art cross-mapping strategies based on or-
thogonal mapping Lample et al. (2017); Artetxe et al. (2018) and considering techniques that
help better transfer and maintain cross-lingual alignment during training, such as using a joint
BPE vocabulary or freezing the embedding layers of the translation model.
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4 Experimental framework

4.1 Corpora
The corpora used in this work were selected from the data collection provided in the WMT14
Machine Translation shared task1 (Macháček and Bojar, 2014). This collection of corpora al-
lows to study language similarity as a variable, since all of the language pairs available feature
English data aligned with languages with which it presents varying degrees of phylogenetic re-
latedness and typological similarity. The language pairs chosen are French–English, German–
English, Russian–English and Hindi–English. This selection was also motivated by the interest-
ing properties of the relationship triangle formed by English, German and French. English and
German are the closest genetic relatives, and both are included in the West Germanic family.
While German and English are similarly phylogenetically distant to French according to their
classification, French and English share many more typological features. Notably, an estimated
25% of English loanwords come from French (Cannon, 1989). This three-way relationship
is interesting because it juxtaposes genetic and typological features, both of which can have
different effects over cross-lingual mappings. Additionally, Russian and Hindi provide increas-
ingly more distant languages that help study projection methods for cases with low cross-lingual
similarity and different alphabets.

Language Corpora Sentences Tokens

English News Crawl 2011-2013 51M 1,167M
French News Crawl 2007-2013 30M 696M
German News Crawl 2012-2013 55M 970M
Russian News Crawl 2007-2013 32M 576M
Hindi News Crawl 2007-2013 + HindMonoCorp 0.5 43M 932M

Table 1: Breakdown of training monolingual corpora sources, number of sentences and total
number of tokens by source.

Language pair Corpora Sentences Tokens

Source English

French–English Europarlv7 + Common Crawl corpus 5M 117M 129M
German–English Europarlv7 + Common Crawl corpus 4.1M 99M 94M
Russian–English Common Crawl corpus + Yandex 1M corpus v1.3 1.8M 41M 39.5M
Hindi–English HindiEnCorp 0.5 0.26M 2.6M 4.1M

Table 2: Breakdown of training parallel corpora sources, number of sentences and total number
of tokens by source.

The monolingual training set, which is described in Table 1, also includes a corpus outside
the WMT14 set, HindMonoCorp (Bojar et al., 2014) collections. This dataset was added in or-
der to keep a roughly similar volume of training data between all monolingual corpora, which is
especially important for embedding cross-mapping procedures. Similarly, parallel corpora have
been built by combining different corpora in such a way that the volume of data is comparable
across all languages, as shown in Table 2

For all datasets, the following pre-processing steps have been applied: 1. Normalization of
unicode punctuation encoding; 2. Tokenization; 3. Clean and eliminate empty sentences, those
containing more than 60 words, and sentences with a source-target ratio greater than 1-9.

1https://www.statmt.org/wmt14/translation-task.html
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4.2 Evaluation Metrics
4.2.1 Bilingual Lexicon Induction
The quality of the different cross-lingual representations generated is evaluated according to
their bilingual lexicon induction (BLI) performance. As in Artetxe et al. (2018), this is calcu-
lated as the average accuracy of the induced cross-lingual vector space in a word translation task
for a ground-truth bilingual dictionary, which in this work will be referred to as word translation
accuracy. The evaluation only considers the source language words from this bilingual ground-
truth dictionary that are also included in the vocabulary of the source language embedding. For
each of these source language words, the closest word vector in the target embedding is found
and taken as the most likely translation. The procedure then compares the translations obtained
with this method and those provided by the bilingual dictionary, taking as correct the transla-
tion induced from the cross-lingual space if the target language closest vector is included in the
list of possible translations that appears in the bilingual dictionary. The distance between word
vectors is calculated using cross-domain similarity local scaling (CSLS), proposed by Lample
et al. (2017). The ground-truth bilingual dictionaries used are provided by the MUSE toolkit2,
specifically those belonging to the ”full” set. The purpose of this evaluation is not to obtain a
state-of-the-art unsupervised BLI system. Instead, it is to assess the interactions of the differ-
ent cross-mapping methodologies studied in this work with the different degrees of language
similarities present in each of the language pairs.

4.2.2 Machine Translation
As mentioned previously, the generated cross-lingual embeddings are also assessed on their
utility as pre-training embeddings. To this end, they are integrated in a Transformer-based
machine translation model, which then receives limited training and is evaluated using multi-
BLEU as provided by the Moses toolkit (Koehn et al., 2007).

4.3 Model Configuration
4.3.1 BPE
In some experiments, Byte Pair Encoding (BPE), particularly the subword-level adaptation of
this method proposed by Sennrich et al. (2015), is applied to the corpora in order to study its
effect in the performance of cross-lingual embedding mappings. BPE encodings build a shared
subword-level vocabulary for the source and target language corpora, which reduces the to-
tal size of the vocabulary. Moreover, it allows the model to represent words not seen during
training by combining subword units. As a result, some lexical information is transferred more
effectively between languages, particularly in the case of certain word classes such as proper
nouns, compounds, cognates and loanwords (Sennrich et al., 2015). The number of merge op-
erations used in BPE is its single determining hyperparameter, which governs vocabulary size.
Gowda and May (2020) show that large vocabulary sizes only maximize BLEU performance
when using vast datasets with 4.5M sentences. However, since our monolingual datasets are all
far bigger, and given that for Transformer-based neural machine translation it is recommended
the largest possible BPE vocabulary (Gowda and May, 2020), we opt to guarantee a large vo-
cabulary by using 48,000 merge operations.

4.3.2 Embeddings
All skip-gram word embeddings used in the experiments proposed in this work are trained
during 5 epochs with a learning rate of 0.05. Changes in epoch size have not had any significant
effect, as the corpora used to train the embeddings is sufficiently large and does not require
of more training cycles. The main parameter to study when training the embeddings has been

2https://github.com/facebookresearch/MUSE
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their dimension. A range of values between 100 and 1000, with steps of size 100, is used to
examine the effect of embedding dimension in unsupervised cross-lingual methods. The results
are displayed in Figure 1 as an evolution of the BLI performance of the model relative to the
dimensionality of the embeddings.
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Figure 1: BLI performance evolution for each language pair and cross-mapping method accord-
ing to the dimension of the monolingual embeddings. Each plot corresponds to a language pair,
and the different series to one of the cross-mapping approaches considered.

In the case of the cross-mapping strategies of VecMap and MUSE, BLI increases rapidly
with dimension up to close to 300 dimensions. From here on to 500 dimensions, performance
still seems to be correlated to dimension, and it only sees very marginal growth from this point.
This behavior is in line with the directives originally given for Word2Vec embeddings (Mikolov
et al., 2013a). However, as seen in the section (d) of figure 1, relative to the hi–en language
pair, it seems that increasing the dimension of the embeddings past a certain point may affect
the viability of learning an effective cross-lingual projection for the adversarial approach in
MUSE. In the absence of additional experiments with a larger number of distant languages,
it is hypothesized that using too many dimensions while dealing with a complicated projection
between very different languages that do not even share a common alphabet can lead to a failure
in learning a reasonable projection matrix. VecMap is not affected by this phenomenon for the
showcased experiments, which may be due to the use of ZCA whitening (Bell and Sejnowski,
1997), which encourages exploring dimensions that may not fit the current solution to help
escape poor local optima.
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Lastly, in the case of embeddings trained over concatenation of monolingual corpora, di-
mension does not affect significantly their BLI score as a cross-lingual model. This can be
attributed to the fact that the implicit bilingual alignment in which this method relies is not
influenced by any transformations or projections of the vector space, so long as the distance be-
tween points is measured with a dimension-invariant metric. This work uses CSLS to measure
word translation accuracy between embeddings, which relies only on cosine similarity between
the embedding vectors, a metric that remains unaffected by dimension scaling.

Since the embeddings used in this work will be integrated is a Transformer neural network
in charge of machine translation, a dimension value of 512 has been chosen for them. This
is in the range where cross-lingual performance is stabilized, while being a common encoder-
decoder dimension value for Transformer-derived machine translation models (Vaswani et al.,
2017; Lample and Conneau, 2019).

4.3.3 Cross-lingual mappings

Both the MUSE and Vecmap cross-mapping techniques have a number of parameters that dic-
tate some of the characteristics of the alignment procedure. For VecMap we use the standard
unsupervised configuration, which is equivalent to that of the models presented in VecMap,
Artetxe et al. (2018). The maximum vocabulary is set to 20,000 words, the vocabulary used to
generate the initial unsupervised translation table is limited to 4,000 words, the CSLS neigh-
borhood used for vector distance calculations is of size 10 and the embeddings are normalized
before the cross-mapping is initiated. In contrast, all MUSE cross-mappings are performed us-
ing the default unsupervised parameters. The only explicit adjustments made are the maximum
size of vocabulary considered, which is set to 20,000, and the number of word vectors used
for discrimination, which is set to the 7,500 more frequent words. Distance between vectors is
calculated using a CSLS neighborhood of size 10, and the embeddings are normalized before
the cross-mapping process begins. Memory limitations for the available setup meant that repro-
ducing the VecMap benchmark was far easier than that of MUSE, and these changes were made
to keep VecMap and MUSE running over with as similar of a set of parameters as possible.

4.3.4 Neural Machine Translation Pre-training

For the neural machine translation model that integrates cross-lingual embeddings for pre-
training, we rely on an OpenNMT-py (Klein et al., 2017) model that mimics the original Trans-
former architecture proposed by Vaswani et al. (2017). It contains a stack of 6 encoder and 6
decoder layers . Each encoder layer includes positional encoding, 8 attention heads and a dense
feed-forward network. The decoders use instead an initial masked multi-head attention layers
that receives the shifted outputs, followed by another multi-head attention layer that is fed by
the output of the encoder stack, and have a final feed-forward layer. All feed-forward layers and
attention heads use a dropout probability of 0.1, and rely on the Adam optimization criterion
(Kingma and Ba, 2015). The feed-forward layers have been changed to have a dimension of
1,024 units from the original 2,048 present in Vaswani et al. (2017). This accelerates model
training and does not massively impact performance for models that are not trained extensively
(Lample and Conneau, 2019). Similarly, the number of training steps is reduced from 200,000
to 20,000 maintaining a batch size of 4,096 tokens, as a compromise between training cost and
minimum performance of the model to allow for pre-training integration.
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5 Results and Discussion

5.1 Cross-lingual models

5.1.1 BPE
In the past, Lample et al. (2017) have shown that BPE (Sennrich et al., 2015) improves consider-
ably the alignment of monolingual language spaces, particularly for cases where the languages
share the same alphabet or anchor tokens (Smith et al., 2017). Anchor tokens are words with
equivalent meaning that are written identically across languages and are therefore common vo-
cabulary to both languages, such as proper nouns of places, organizations or people, acronyms,
loanwords and digits.

Model Dimension BPE Word Translation Accuracy

fr–en de–en ru–en hi–en

MUSE 512 No 56.2 38.1 44.3 0.1
MUSE 512 Yes 62.2 41.4 0.1 42.3

VecMap 512 No 58.2 38.8 46.2 29.2
VecMap 512 Yes 65.0 46.2 60.0 44.8

Concatenation 512 No 47.7 53.8 0 0
Concatenation 512 Yes 46.6 45.3 0 0

Table 3: Results obtained for the best cross-lingual embeddings selected for neural model pre-
training. Accuracy is measured comparing pairs from ground-truth bilingual dictionaries and
employing CSLS as distance metric.

Table 3 illustrates the effect of BPE on the BLI performance of the generated cross-lingual
embeddings. BPE usage seems to generally improve the score of the projection-based map-
pings, while having a slightly negative or non-existent influence on embeddings trained over
concatenation of monolingual corpora. While the former result is expected (Lample et al.,
2017), the latter phenomenon is more interesting, and can be explained by the fact that these
embeddings are jointly learning both languages, but no cross-mapping is performed, so the
relative position of words in the representation space should remain similar whether subword
information is captured or not. In many cases there may be a certain loss of semantic informa-
tion when creating a shared byte-paired encoding between languages (Ren et al., 2019). Since
they will not will be compensated by the subword features that are retrieved – as the approach
does not take advantage of them – , the overall effect of BPE tends to be negative.

The impact of BPE is especially significant for the MUSE mapping in language pairs
ru–en and hi–en. In the case of ru–en, the use of this tokenization approach apparently does
not allow for any sensible alignment, unlike the projection that uses non-BPE embeddings,
which performs fine. A likely explanation for this is that Russian and English do not use the
same alphabet or share many common words and anchor tokens. Therefore, almost no joint
subword information is learned, while some semantic features may be diluted (Ren et al., 2019).
However, the hi–en pair in Table 3 shows the opposite phenomenon, where the application of
BPE has made possible a previously unavailable alignment. This case is especially puzzling,
since Hindi also uses a completely different alphabet from that of English there should be very
little transfer of information between the subword vocabularies. Upon closer inspection, both
BPE vocabularies for ru–en and hi–en have a very similar size, which indicates that this behavior
is not a function of semantic diversity. Moreover, the size of the common lexicon found in the
training corpus between English and Hindi is an order of magnitude lower than that of English
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and Russian3, which puts into question really how relevant anchor tokens are when it comes
to generating a joint BPE vocabulary. A possible explanation for this phenomenon could be
that the generated vector spaces simply have a slightly different distribution when using BPE,
which can affect the chances of finding a good projection into a common bilingual space for the
embeddings. The VecMap projection does not seem to be affected in the same way, which could
be due to it having a more robust initialization and being able to escape local optima better than
MUSE, as shown in (Vulic et al., 2019; Glavaš et al., 2019).

5.1.2 Language similarity
Table 3 showcases the performance of the considered cross-lingual models for all language
pairs. Language similarity does seem to be somewhat indicative of BLI performance, although
a weak signal at that.

The fr–en language pair is the best performing one across the board, especially for the
projection-based alignments. This is expected, since these methods are reliant on semantic
similarities. They also make great use of anchor tokens in their initial unsupervised dictionary
induction (Lample et al., 2017), of which there are plenty in the English–French pair.

Although English and German are phylogenetically closer to each other, the performance
for this pair is inferior to that of English and French for MUSE and VecMap. In contrast, em-
beddings trained over a concatenation of monolingual corpora surpass projection-based cross-
maping methods, and their own BLI score for the fr–en pair. French and English share many
anchor tokens, whereas German and English have a noticeably smaller common vocabulary,
but show a greater degree of similarity in other typological features common in languages from
the same family tree, such as word ordering or verbal categorization. Since for the concatena-
tion strategy the pair de–en is actually performing better than fr–en, it can be hypothesized that
the natural alignment resulting of training embedding over multilingual text is more sensible to
other typological categories. This is especially likely for word ordering, since the skip-gram
architecture is learning to predict contexts in a reduced local window (Mikolov et al., 2013a,c),
which is sensible to large discrepancies in sentence structure.

For the ru–en and hi–en pairs, training embeddings over a multilingual corpus seems to
produce no alignment whatsoever, as the selected languages do not share a common alphabet.
However, both of the projection-based cross-lingual techniques, ru–en and hi–en are shown
to be competitive with de–en. This casts some doubts on which are actually the typological
features that govern explicit cross-linguality, since by all accounts German should be more se-
mantically and grammatically similar to English than Russian or Hindi (Georgi et al., 2010).
Further research that isolates typological features for cross-lingual evaluation is needed in order
to produce meaningful guidelines on the adaptation of cross-lingual models according to lan-
guage similarity, though the experiments show that semantic relatedness is not the only factor
at play.

Overall, VecMap has been shown to be the best performing cross-lingual method and also
the most robust one when dealing with distant languages, which is consistent with previous
research (Vulic et al., 2019; Glavaš et al., 2019). MUSE appears to be generally weaker for
cases where inducing an initial translation table is more difficult due to low language similarity,
though seems to perform fine when this phase is completed successfully, which is a common
trend in projection-based cross-lingual methods. Remarkably, training word embeddings over
a concatenation of monolingual corpora outperforms projection-based methods for the de–en
pair, although is not effective for distantly related languages. From this it can be inferred that
some features learned by skip-gram word embeddings during training are valuable when it

3For 1M sentences considered, where numeric tokens have been discarded, there are around 11,800 common tokens
for the ru–en pair, but only 1,670 for hi–en.
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comes to producing an alignment and, like many other typological characteristics, are not being
considered by current explicit cross-mapping methods but could prove to be valuable.

5.2 Neural machine translation pre-training

Pre-trained embeddings Frozen embeddings BLEU

Cross-mapping Dimension BPE fr–en de–en ru–en hi–en

(None) 512 Yes No 34.1 25.4 28.7 6.1
(None) 512 Yes Yes 32.1 23.6 26.8 5.8

MUSE 512 Yes No 33.9 26.0 29.4 6.7
MUSE 512 Yes Yes 32.2 24.3 27.9 6.1

VecMap 512 Yes No 33.4 26.3 30.0 9.2
VecMap 512 Yes Yes 32.4 24.1 28.9 8.4

Concatenation 512 Yes No 33.5 25.5 30.2 6.6
Concatenation 512 Yes Yes 33.1 24.9 29.6 6.2

Table 4: Results obtained for the best Transformer translation models that use pre-trained vec-
tors. Cross-mapping is indicated as (None) when no explicit cross-lingual technique is applied
to the pre-trained word embeddings.

5.2.1 Freezing embeddings
As indicated in Sun et al. (2019) and Wang and Zhao (2021), embeddings used as the encoder-
decoder pieces of an attention-based neural network tend to degenerate as the global model is
fine-tuned for a particular task, which for this work corresponds to machine translation. For this
reason, it has been decided to assess the impact of freezing the encoder and decoder embeddings
during training. The results are shown in Table 4. Freezing the pre-trained embeddings does
not improve BLEU performance in comparison with models that do modify the weights of their
encoder and decoder during supervised training, which score slightly better. This effect is in line
with prior work (Sun et al., 2019; Wang and Zhao, 2021), which shows that the integrated model
needs to modify the pre-trained components during fine tuning to maximize its performance,
but this behavior tends to break the cross-lingual alignment created previously. As a result,
they propose to optimize supervised training based on two different objectives: maintaining the
structural correspondence of the initial pre-trained components and maximizing the translation
objective. Though the implementation of this strategy is not readily available for general use –
which is the reason why they have not been considered for these experiments – , they have been
shown to be the best current approach to transfer cross-lingual knowledge in pre-training.

5.2.2 Cross-linguality
The effect of cross-linguality in the pre-trained embeddings is relatively low across the board.
We think that this could be attributed to two main factors. First, as shown by Qi et al. (2018),
most of the increase in performance provided by pre-trained embeddings can usually be at-
tributed to a better encoding of the source sentence. Since the cross-lingual alignment contained
in the embeddings does not aid significantly in this task, the overall performance may not in-
crease much. The second is the degeneration phenomenon (Sun et al., 2019), which distorts the
structure of the embeddings during training, and therefore their cross-lingual alignment.

Still, the cross-ling projection-based cross-lingual methods showcase some amount of im-
provement, that seems to increase the more distant the languages are. This result can seem
counter-intuitive at first, since BLI performance is generally a strong indicator of performance
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for a pre-training method in translation models. Such a behavior is shown in Lample and Con-
neau (2019), where cross-lingual language models outperform unsupervised cross-lingual em-
beddings both in terms of BLI performance and effectiveness as pre-training strategy. However,
we should keep in mind that the scenarios involving distant language pairs correspond to the
cases where cross-lingual alignments have the biggest impact on the global structure on the em-
beddings. For similar source and target languages, the projection learned by the neural network
is of higher quality, and therefore initialization is less relevant. In contrast, translation of dis-
tant language pairs requires that the model learns a more complex projection, and therefore in
this case it benefits more from a stronger initialization. This is in line with previous claims on
the importance of initialization in attention-based encoder-decoder translation models (Devlin
et al., 2019; Liu et al., 2020), and the results derived from cross-lingual language models such
as that of Lample and Conneau (2019). It most importantly also suggests that initialization is
a factor that can limit the quality of a translation model even when de facto unlimited training
data and time is available. Recent advances on cross-lingual language models appear to follow
this trend by consistently improving substantially on translation models for distant language
pairs (Wang and Zhao, 2021).

6 Conclusions

This work makes use of fully unsupervised cross-lingual models to explore some of the fac-
tors that affect the performance of cross-lingual methods. The experimental results showcase
agreement with prior publications regarding the usefulness of subword information in cross-
linguality, and suggest that character-level encoding might be especially relevant for language
pairs of low similarity. Moreover, reveal that phylogenetic relatedness should not be directly
taken to dictate cross-lingual performance, and that purely semantic similarity is not the only
typological feature captured by projection-based mappings.

Cross-lingual transfer remains ineffective even if the structure of the pre-trained encoder
and decoder is fixed during fine-tuning, which is indicative of the degeneration of cross-lingual
projections in supervised training, and the limited scope of pre-trained embeddings. Current
pre-training approaches that rely on joint optimization appears to be the most promising ap-
proach going forward.

Future research may benefit from designing strategies that adapt cross-mapping methods
to different language pairs according to their features, and that are able to capture typological
information that is currently lost. Model initialization seems to be a fundamental factor that is
able to limit machine translation ceiling, especially for long distance pairs.
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Glavaš, G., Litschko, R., Ruder, S., and Vulić, I. (2019). How to (properly) evaluate cross-lingual word
embeddings: On strong baselines, comparative analyses, and some misconceptions. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 710–721.

Gouws, S. and Søgaard, A. (2015). Simple task-specific bilingual word embeddings. In Proceedings of
the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1386–1390. Association for Computational Linguistics.

Gowda, T. and May, J. (2020). Finding the optimal vocabulary size for neural machine translation. In
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3955–3964, Online.
Association for Computational Linguistics.

Ji, B., Zhang, Z., Duan, X., Zhang, M., Chen, B., and Luo, W. (2020). Cross-lingual pre-training based
transfer for zero-shot neural machine translation. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(01):115–122.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. (2017). OpenNMT: Open-source toolkit for neural
machine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, pages 67–72.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,
Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open source
toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180.

Lample, G. and Conneau, A. (2019). Cross-lingual language model pretraining. CoRR, abs/1901.07291.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas 
 

Orlando, USA, September 12-16, 2022. Volume 1: Research Track 

186



Lample, G., Denoyer, L., and Ranzato, M. (2017). Unsupervised machine translation using monolingual
corpora only. CoRR, abs/1711.00043.

Lin, Z., Pan, X., Wang, M., Qiu, X., Feng, J., Zhou, H., and Li, L. (2020). Pre-training multilingual neural
machine translation by leveraging alignment information. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, pages 2649–2663.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., and Zettlemoyer, L. (2020).
Multilingual denoising pre-training for neural machine translation. CoRR, abs/2001.08210.
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