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Abstract

We introduce Textstar, a graph-based
summarization and keyphrase extraction
system that builds a document graph using
only lemmatization and POS tagging. The
document graph aggregates connections
between lemma and sentence identifier nodes.
Consecutive lemmas in each sentence, as
well as consecutive sentences themselves, are
connected in rings to form a "ring of rings"
representing the document. We iteratively
apply a centrality algorithm of our choice to
the document graph and trim the lowest ranked
nodes at each step. After the desired number
of remaining sentences and lemmas is reached,
we extract the sentences as the summary, and
the remaining lemmas are aggregated into
keyphrases using their context. Our algorithm
is efficient enough to process large document
graphs without any training, and empirical
evaluation on several benchmarks indicates
that our performance is higher than most other
graph-based algorithms.

1 Introduction

Contemporary natural language processing is
mostly done through neural networks. However,
this is resource intensive and requires large
amounts of data. This can be a problem for
languages that are not widely spoken, due to
insufficient data for training these models. Even
for tasks where neural network based models
excel, they are often an overkill. State of the art
Transformer-based tools such as BERT (Devlin
et al., 2019), GPT-3 (Brown et al., 2020), and
even Longformer (Beltagy et al., 2020) have size
limits and require hierarchical approaches to long
documents. However, graph-based approaches are
one-shot algorithms that do not require expensive
computational resources to train. The need for a
fast graph-based summarizer is also justified as
a preprocessor to assist these neural models by

enabling them to work on salient smaller subsets
of a large document.

To address this insufficiency, we propose
Textstar, a lightweight graph-based summarization
and keyphrase extraction algorithm that
outperforms most other graph-based methods. Our
model is language-independent, making it suitable
for application to languages with insufficient
training data. Additionally, it simultaneously
supports keyphrase extraction and summarization.
This flexibility, along with its short runtime, opens
up possibilities for many applications.

We will start with an overview of our system,
as presented in Figure 1. After a document
is uploaded, it is pre-processed. Then, each
sentence is converted into a connected ring of
nodes (Figure 2). Additionally, the sentence
IDs are also connected into a ring of nodes.
Afterwards, the graph is fed to the Textstar
algorithm, which gradually trims out word nodes
and sentence ID nodes that have low ranking
values. When the graph contains only the desired
number of sentence ID nodes or keyword nodes,
we feed this information to the postprocessing
component. The postprocessing component then
converts certain keywords into keyphrases and
combines the sentences represented by the sentence
ID nodes into a summary.

Our contribution is as follows:
(1) We introduce a novel graph-based algorithm

that extracts both summaries and keyphrases at the
same time.

(2) We construct textgraphs via the ring-of-rings
method.

(3) Our Textstar algorithm is an iterative text
graph trimming approach for identifying in one
pass the most important sentences and keyphrases.

(4) We show that our system improves the state-
of-the-art with respect to other similar graph-based
algorithms.



The rest of the paper is organized as follows:
Section 2 overviews related work.
Section 3 describes the algorithm and

implementation.
Section 4 provides empirical analysis.
Section 5 analyzes the results and discusses the

limitations.
Section 6 concludes the paper.

2 Related Work

Graph-based approaches to text summarization
and keyphrase extraction are well-established.
TextRank (Mihalcea and Tarau, 2004) and its
derivatives are popular unsupervised approaches
to text summarization and keyphrase extraction.
They utilize graph-based centrality algorithms to
score sentences or words with the assumption
that sentences or words with the highest centrality
scores are expected to have the highest importance
in a document. TextRank, in particular, uses the
PageRank algorithm (Page et al., 1999) as its
scoring mechanism.

Several methods have been proposed that
improve the base TextRank algorithm by changing
the scoring metric (Barrios et al., 2016) or by
changing the construction of the textgraph using
salient information about the text or by use of word
embeddings.

Bougouin et al. (2013) discover and categorize
candidate keyphrases to topics by applying the
Hierarchical Agglomerative Clustering algorithm.
Then, a weighted complete and undirected graph
is generated where nodes represent the topics and
weighted edges show the semantic relations of the
topics. Keyphrases that best represent each topic
are chosen with three criteria: appearing first in
the document, appearing most frequently in the
document, and being the most similar to other
keyphrases in the topic. Then, each topic is ranked
by the Textrank algorithm. Choosing the topics
with the N highest scores and selecting the most
significant keyphrase per topic generates the final
set of keyphrases.

Florescu and Caragea (2017) retrieve nouns and
adjectives and construct an undirected word graph
in which each node is a unique word and the
weight of an edge is calculated from the number
of bigram co-occurrences in the document. The
biased PageRank score of each word is counted by
considering both its position and its frequency. The
sum of scores of words in each keyphrase generates

the keyphrase’s score.
Boudin (2018) selects keyphrase candidates and

classifies word stems to topics in a manner similar
to Bougouin et al. (2013). Then, a complete
directed k-partite graph is constructed where each
node is a keyphrase, an edge connects 2 different
topics, the weight of an edge shows a distance
between 2 nodes in the document, and k is the
number of topics. In addition, the incoming weight
of the first node of each topic is adjusted. Then the
TextRank algorithm gives the score for each node,
and the N top scoring keyphrases are extracted.

LexRank (Erkan and Radev, 2004) showcases
improved summarization by introducing the idea
of computed eigenvector centrality. This method
constructs a weighted undirected cosine similarity
graph cluster from the given multiple documents,
where nodes denote sentences and a weighted edge
signifies the idf-modified-cosine of 2 nodes. Then,
the graph is transferred to an undirected graph
which focuses on the salient similar sentences by
setting a threshold. The LexRank score of each
node is calculated based on eigenvector centrality.
The summary is N top scoring sentences.

Most graph-based methods perform either
extractive text summarization or automatic
keyphrase extraction, but not both. Neural methods
have recently been shown to be effective at
multi-task natural language processing. However,
like graph-based methods, there is little work
on neural methods that perform both extractive
summarization and keyphrase extraction.

Our approach implements a multi-task approach
to summarization and keyphrase extraction by
creating a textgraph sharing both sentences and
word nodes. We also introduce a different
topology for building a textgraph using a ring-of-
rings construction for connecting both words in a
sentence and sentences among them. At the same
time, a new method is used to compute rankings
by successive trimming of unimportant nodes until
the required number of sentences and keyphrases
is reached.

3 Method

Our overall method is shown in Figure 1. The first
step of processing a document is to remove words
and sentences that are unlikely to contain relevant
information. A text graph with a ring-of-rings
structure is then constructed using the remaining
words and sentences. Using the graph, the core
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Figure 1: Overview Method

Textstar algorithm works by repeatedly computing
a centrality metric and then removing low ranked
nodes. This process continues until the desired
number of summary sentences and key words is
reached. Finally, the word and sentence nodes left
in the graph are post-processed to create the final
summary and keyphrases.

3.1 Text Preprocessing

Using the NLTK Python package1 (Bird et al.,
2009), we first split the text into sentences
(sentence tokenization) and the sentences into
words (word tokenization). The words and
sentences are filtered to remove those that are
unlikely to contain useful information. Sentences
are removed if they are too long and/or noisy after
the pdftotext translation. We also perform stopword
removal. Finally, we also use NLTK to lemmatize
the words and apply a basic POS tagging.

3.2 The Ring of Rings Textgraph
Construction

We construct the textgraph of the document as a
ring of rings meta-structure, in which each sentence
is a ring and each sentence is connected to a
node in the central ring. This structure allows for
the natural encapsulation of information from the
document, including word and sentence position in
a directed graph. Moreover, the ring structures
of words and sentences allow both words and
sentences to be connected back to front; this is
important because later words/sentences refer to
earlier introductions.

1https://www.nltk.org/api/nltk.html

Figure 2: Example Graph

The graph is created from the cleaned and
lemmatized text. To facilitate both summarization
and keyphrase extraction, the graph’s nodes
represent both words and sentences. Strings
represent words, and sentences are represented by
an integer ID.

The cleaned and lemmatized words of a sentence
are connected in reverse order, and the sentence’s
id is connected between the first and last word of
the sentence to form a ring. The sentence nodes
are also connected in reverse order, and the last
sentence node is adjacent to the first sentence node
to form the central ring. As a result, a ring of rings
with a structure similar to that shown in Figure 3
is formed. An example of the resulting graph of
an extremely short text is shown in Figure 2. The
ring of sentence ids is shown as the nodes labeled
0 to 3. At the same time, the ring-of-rings torus
topology is distorted by the shared occurrences of
words such as ‘Steven’ and ‘store’ that originate
from multiple word rings. Note that some nodes
are shared by multiple rings, since some words (e.g.
store) are shared by multiple sentences. We also
add edges between compounds.

https://www.nltk.org/api/nltk.html


3.3 The Trimming Algorithm

After the graph (containing both word and sentence
nodes) is generated, it is passed to the Textstar
algorithm. The algorithm first ranks the nodes in
the graph using a ranking function. From our tests,
the degree centrality ranking function performs
best, although Pagerank also works well. The
nodes are sorted based on rank and only the highest
X percent are kept, where X is a parameter that
can be tuned. For summarization, a value of X
around 70-80 percent works best, and for keyphrase
extraction X can be a bit lower.

This process is then repeated, with the graph
being re-ranked and then trimmed. When the
number of remaining sentence nodes and word
nodes drops below the desired number of summary
sentences and key words, respectively, iteration
stops.

Algorithm 1: The Textstar Algorithm
Input: g: Textgraph of the document

ranker: ranking algorithm
sumsize: final number of sentences,
kwsize: final number of keyphrases,
trim: percent of lowest ranked
nodes to remove per step

Result: final_sids, final_kwds
1 while true do
2 ranks← Ranker(g);
3 sids← ∀x ∈ ranks, if x is a sentence id;
4 kwds← ∀x ∈ ranks, if x is a lemma;
5 s_done← length of sids ≤ sumsize;
6 w_done← length of kwds ≤ kwsize;
7 n← number of nodes in g;
8 if not s_done then
9 final_sids← sids;

10 end
11 if not w_done then
12 final_kwds← kwds;
13 end
14 if s_done and w_done then
15 break;
16 end
17 split← trim * n // 100;
18 for i = split...n do
19 g.remove(ranks[i])
20 end
21 end

Figure 3: Ring of Rings Structure

3.4 Postprocessing

The summary is generated by taking the remaining
sentence nodes from the graph. These nodes have
the highest ranks, and the associated sentences
from the original text are extracted. To make the
summary more readable, the summary sentences
are sorted according to the order they appear in the
original text.

Similarly, the keyphrases are extracted from the
word nodes in the final graph. Only unique word
nodes with the highest ranks are taken.

4 Evaluation

We have used the Degree Centrality ranking
algorithm, with the summary size and keyphrase
size as 6 and the trim percentage set to 80%.

Table 1 provides extractive summarization
results on the arXiv and PubMed datasets. The
PubMed dataset, which has 133K scientific
documents, is divided into a training set
(125,020 documents, 94%); a validation set
(3,990 documents, 3 %); and a test set (3,990
documents, 3%). The ArXiv dataset, which
contains 215K scientific documents, is distributed
between a training set (193,500 documents, 90%);
a validation set (10,750 documents, 5 %); and a test
set (10,750 documents, 5%).The gold summary of
each document in both these datasets is the abstract
of the document.(Cohan et al., 2018).

We compare Textstar against well-known
extractive graphical algorithms: LSA (Steinberger
et al., 2004) , SumBasic (Vanderwende et al., 2007),
and LexRank (Erkan and Radev, 2004). We use the
results of these algorithms found in Cohan et al.
(2018).

Table 2 provides the results for automatic



keyhprase extraction. We evaluate on the following
well-known datasets:

• Inspec: This dataset contains 2,000 short
English texts, which are collected from the
Inspec database from between 1998 and 2002.
Each piece consists of an abstract, a title, and
keyphrases. (Hulth, 2003).

• SemEval: This dataset consists of 284 English
scientific articles from the ACM Digital
Library in four topics: Distributed Systems,
Information Search and Retrieval, Distributed
Artificial Intelligence, and Behavioral
Sciences - Economics. The distribution of
each topic is equal. The gold keyphrases
were cautiously selected by both authors and
readers. (Kim et al., 2010).

Our model is evaluated by f-mesure on the top K
keypharses (F1@K). Textstar is compared against
the following graph-based keyphrase extraction
algorithms: TextRank (Mihalcea and Tarau, 2004),
SingleRank (Wan and Xiao, 2008), TopicRank
(Bougouin et al., 2013), PositionRank (Florescu
and Caragea, 2017), and MultipartiteRank (Boudin,
2018). The results of Inspec and SemEval2010 for
the baseline algorithms are obtained from Liang
et al. (2021). Textstar is also comparable to
CopyRNN (Meng et al., 2017) and outperforms
RNN (Meng et al., 2017) deep learning model on
both the Inspec and SemEval dataset. These results
are gained from Meng et al. (2017)

To evaluate these algorithms, we use a Python
implementation of the ROUGE (Lin, 2004) metric2.
Our tests show that we outperform other graph-
based algorithms for text summarization on arXiv,
and are competitive to LexRank on the PubMed
dataset. For keyphrase extraction, we outperform
all other graph-based algorithms on all datasets
with the exception of the Inspec dataset.

5 Discussion

The experiments show that the algorithm is
competitive on benchmarks of both extractive
summarization and automatic keyphrase extraction.
Whereas separate sentence and word text graphs
lose information from the original text, reducing
the effectiveness of either task, our multi-task
approach takes advantage of the synergies between
summarization and keyphrase extraction, allowing

2https://github.com/Diego999/py-rouge

for better results than either individually. The
important words in a document are strongly
correlated to the important sentences. We make
use of the relationship between the words and the
structure of the document explicitly.

5.1 Limitations
The Textstar algorithm shares its limitations with
the larger graph-based family of extractive
summarization and keyphrase extraction
algorithms:

• performance is usually worse than state-of-
the-art of deep learning algorithms

• textgraphs generally do not rely on deeper
syntactic and semantic information

• textgraph-based algorithms do not make use
of domain knowledge

• extracted summaries are not natural to human
readers

• textgraphs generally do not perform well on
very short documents

Some of these limitations can be alleviated by
bringing in richer syntactic information (e.g.,
dependency trees) and semantic relations extracted
from the text or from knowledge graphs specific
to the domain of the document along the lines of
Tarau and Blanco (2021).

6 Conclusions

We introduced Textstar, a multi-task graph-
based extractive text summarization and automatic
keyphrase extraction algorithm. By iteratively
simplifying the text graph while eliminating the
lowest ranked scores as determined by a centrality
algorithm, we efficiently determine the most salient
sentences and keyphrases. Moreover, by building
the textgraphs from both sentence and word
nodes, we extract in one pass both summaries and
keyphrases.

By aggregating information about word
subsequences occurring in a sentence and sentence
subsequences occurring in a document, we show
that we outperform most other graph-based
methods.

While like most other graph-based methods,
Textstar’s performance does not match that of
state-of-the-art deep learning frameworks, Textstar
can act as a useful preprocessor to them to

https://github.com/Diego999/py-rouge


Algorithm
arXiv PubMed

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
LSA 29.91 7.42 25.67 33.89 9.93 29.70
SumBasic 29.47 6.95 26.30 37.15 11.36 33.43
LexRank 33.85 10.73 28.99 39.19 13.89 34.59
Textstar 38.8 12.8 32.1 38.6 13.9 32.0

Table 1: Summarization results on PubMed and arXiv dataset.

Algorithm
Inspec SemEval 2010

F1@5 F1@10 F1@5 F1@10
Graph_based Models

TextRank 27.04 25.08 3.80 5.38
SingleRank 27.79 34.46 5.90 9.02
TopicRank 25.38 28.46 12.12 12.90

PositionRank 28.12 32.87 9.84 13.34
Textstar 24.70 34.70 15.20 22.80

Deep Learning Models
RNN 8.50 6.40 15.70 12.40

CopyRNN 27.80 34.20 29.30 30.40

Table 2: Result of keyphrase extraction with metrics F1@5 and F1@10 in Inspec and SemEval 2010 datasets.

accommodate the input size limitations in various
neural systems.

Future work is planned to evaluate the use of
Textstar as a preprocessor for transformer-based
systems that have input-size limitations as well
for enhancing the text graph with similarity links
between sentence and word embeddings.
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Appendix A. Examples of Textstar Output

Below are the results of the Textstar algorithm on
a near final version of this paper.

Summary: Our contribution is as follows: (1)
We introduce a novel graph-based algorithm that
extracts both summaries and keyphrases at the
same time. The words and sentences are filtered
to remove those that are unlikely to contain
useful information. Sentences are removed if
they are too long or too noisy after the pdftotext
translation. This structure allows for the natural
encapsulation of information from the document,
including word and sentence position in a directed
graph. Moreover, the ring structures of words
and sentences allow both words and sentences
to be connected back to front; this is important
because later words/sentences refer to earlier
introductions. The algorithm first ranks the
nodes in the graph using a ranking function.
Table 1 provides extractive summarization results
on the arXiv and PubMed datasets. Moreover,
by building the textgraphs from both sentence
and word nodes, we extract in one pass both
summaries and keyphrases.

Keyphrases: ’word’, ’node’, ’sentence’, ’ring’,
’document’, ’connected’, ’score’

Below are the results of running Textstar on the
following few paragraphs from a news article about
the Bloom deep learning-based language model 3.

Now there is a true open-source alternative
to GPT-3, BigScience Bloom, which is freely
available for research and enterprise purposes.
Bloom was trained over 117 days at the
supercomputing center of the French National
Center for Scientific Research and is 176 billion
parameters in size. The development involved
over 1000 volunteer researchers, organized in the
BigScience project, coordinated by Hugging Face,
and co-funded by the French government. Bloom
can be downloaded for free on Hugging Face and
is said to be on par with GPT-3 for accuracy ?
and also toxicity. A key difference from GPT-3
is a stronger focus on languages away from the
otherwise dominant English language. Bloom can
process 46 different languages, including French,
Vietnamese, Mandarin, Indonesian, Catalan, 13
Indian languages (such as Hindi) and 20 African
languages. BigScience collected numerous new
datasets for this and is publishing full details on
datasets, development and training of Bloom. The
release falls under the Responsible AI License
developed by BigScience, which prohibits the
use of Bloom in areas such as law enforcement,
healthcare, or deception. However, unlike
OpenAI, for example, BigScience has no way
to effectively prevent misuse because the
model is available directly and not through an
interface. Bloom is now expected to serve as
the foundation for numerous applications and,
more importantly, research projects that create
alternative AI applications away from the big tech
companies.

3https://mixed-news.com/en/
bloom-is-a-real-open-source-alternative-to-gpt-3/

The summary and keyphrases generated by
Textstar. The resulting textgraph for this article
contains 153 nodes and a fragment of it is shown
in Figure 4.

Summary: BigScience Bloom is open science
and open source. Bloom was trained over
117 days at the supercomputing center of the
French National Center for Scientific Research
and is 176 billion parameters in size. The
development involved over 1000 volunteer
researchers, organized in the BigScience project,
coordinated by Hugging Face, and co-funded by
the French government. Bloom is now expected to
serve as the foundation for numerous applications
and, more importantly, research projects that
create alternative AI applications away from the
big tech companies.

Keyphrases: ’National Center’, ’Center
Scientific’, ’Scientific Research’, ’Now true
alternative’, ’volunteer researchers’, ’BigScience
project’

https://mixed-news.com/en/bloom-is-a-real-open-source-alternative-to-gpt-3/
https://mixed-news.com/en/bloom-is-a-real-open-source-alternative-to-gpt-3/


Figure 4: Fragment of the News Article Textgraph


