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1 Description

In the last few years, there has been an increased
interest in building multimodal (vision-language)
models that are pretrained on larger but noisier
datasets where the two modalities (e.g., image and
text) loosely correspond to each other (e.g., Lu
et al., 2019; Radford et al., 2021). Given a task
(such as visual question answering), these models
are then often fine-tuned on task-specific super-
vised datasets. (e.g., Lu et al., 2019; Chen et al.,
2020; Tan and Bansal, 2019; Li et al., 2020a,b). In
addition to the larger pretraining datasets, the trans-
former architecture (Vaswani et al., 2017) and in
particular self-attention applied to two modalities
are responsible for the impressive performance of
the recent pretrianed models on downstream tasks
(Hendricks et al., 2021).

This approach is appealing for a few reasons:
first, the pretraining datasets are often automat-
ically curated from the Web, providing huge
datasets with negligible collection costs. Second,
we can train large models once, and reuse them for
various tasks. Finally, these pretraining approach
performs better or on par to previous task-specific
models. An interesting question is whether these
pretrained models – in addition to their good task
performance – learn representations that are bet-
ter at capturing the alignments between the two
modalities.

In this tutorial, we focus on recent vision-
language pretraining paradigms. Our goal is to
first provide the background on image–language
datasets, benchmarks, and modeling innovations
before the multimodal pretraining area. Next
we discuss the different family of models used
for vision-language pretraining, highlighting their
strengths and shortcomings. Finally, we discuss
the limits of vision-language pretraining through
statistical learning, and the need for alternative ap-
proaches such as causal modeling.

We believe that the computational linguistics
(CL) community will benefit from this tutorial in
multiple ways. Language grounding research of-
ten uses or evaluates the most successful vision-
language approaches. Better understanding of the
shortcomings and strengths of these approaches –
which we hope our tutorial provides – will pave
the way for building stronger language grounding
agents. Moreover, vision-language pretraining has
been inspired by its parallel in pretraining language
models. As a result, the CL community has a
special role in thinking about the future of vision-
language approaches using lessons learned from
language pretraining.

2 Type of the Tutorial

This is a cutting-edge tutorial focusing on dis-
cussing the new trends in vision-language pretrain-
ing: if recent models result in better representations
and how they contribute to downstream tasks. We
plan to mostly discuss recent papers from 2018 and
after but will also include influential papers from
before 2018 that have played a crucial role in the
current vision-language paradigms.

3 Target Audience

We expect the target audience to be researchers in-
terested in the intersection of vision and language,
such as the language grounding or grounded com-
munication researchers. This tutorial is also of
interest for junior students who are starting their
career. Familiarity with recent architectures such
as transformers is a useful but not needed for at-
tending the tutorial.

4 Outline of the Tutorial

• Introduction: the goal of the tutorial (5 min-
utes)

• Vision-language landscape before the pretrain-
ing era (55 minutes)
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– Motivation for vision-language research
from both application and research point
of views.

– Popular vision-language tasks, datasets
and benchmarks (e.g., image-retrieval,
referring expressions, image captioning,
visual question answering).

– Task specific modelling approaches and
fundamental innovations before the pre-
training era (e.g., CNN + LSTM based
approaches, language guided image at-
tention, multimodal pooling, composi-
tional networks).

• Vision-language pretraining (VLP) (60 min-
utes)

– Inspiration from pretraining successes in
NLP (transformers, BERT, GPT).

– Different families of VLP models (all are
transformer based models):

* Models using task-specific heads for
each downstream task (e.g., ViL-
BERT, LXMERT, UNITER, OS-
CAR, VinVL).

* Models treating all downstream tasks
as language generation tasks, i.e. no
task-specific head (e.g., VL-T5, VL-
BART, SimVLM).

* Models using VLP data for improv-
ing performance on vision tasks (e.g.,
CLIP, ALIGN).

* Models using VLP data for improv-
ing performance on language tasks,
including multilingual data (e.g., Vo-
kenization, M3P, VL-T5, SimVLM).

– Different VLP datasets and how they af-
fect the downstream task performance
w.r.t their size, degree of noise, and simi-
larity with downstream datasets.

• Beyond statistical learning in vision-language
(55 minutes)

– Challenges yet to be tackled in vision-
language research that are inherent limi-
tations of the mainstream machine learn-
ing approach. These challenges include
shortcut learning, sensibility of distri-
bution shifts, model biases, adversarial
vulnerabilities, and generally poor out-
of-distribution generalization. We will
also briefly cover privacy and fairness

concerns when collecting large scale
datasets, and the problem of models am-
plifying biases.

– Background on causal reasoning neces-
sary to formalize these issues and intro-
duce potential solutions.

– Existing benchmarks and other possible
evaluation procedures that go beyond the
traditional i.i.d. setting and allow diag-
nosing these issues: contrast examples,
pairs of counterfactual examples, out-of-
distribution test sets, etc.

– Methods for learning better models by
exploiting expert knowledge / inductive
biases (Cadène et al., 2019; Ramakrish-
nan et al., 2018) or by utilizing different
training paradigms (e.g., across multi-
ple environments (Arjovsky et al., 2019;
Teney et al., 2020b) or from pairs of
training examples (Gokhale et al., 2020;
Teney et al., 2020a)).

• Conclusion: main takeaways and future re-
search (5 minutes)

5 Breadth of the Tutorial

We will mainly cover other people’s work (as out-
lined in §4 and §7). More specifically, we expect
the tutorial to include less than 15% of instructors’
work – speakers will spend at most 10 minutes
presenting their prior work.

6 Diversity Considerations

We are planning to increase diversity in a few
ways: First, the topic of the tutorial is multidisci-
plinary bringing together researchers from diverse
backgrounds (such as language, vision, and repre-
sentation learning). We also plan to discuss how
vision-language pretraining can benefit multilin-
gual applications through grounding multiple lan-
guages into vision. Second, the instructors are from
diverse backgrounds including their career stage
(mid-career / junior), geography, gender, as well as
their institution (academia / industry). Third, we
will share our reading list, slides, and the recording
of the talk publicly for people who cannot attend
the conference in person, and also as a resource for
junior researchers who are starting their career.
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7 Reading List

• Popular vision-language tasks, datasets
and benchmarks (Plummer et al., 2015;
Kazemzadeh et al., 2014; Mao et al., 2015;
Chen et al., 2015; Antol et al., 2015; Krishna
et al., 2016; Hudson and Manning, 2019).

• Task specific modelling approaches before the
pretraining era (Antol et al., 2015; Yang et al.,
2015; Lu et al., 2016; Anderson et al., 2017;
Fukui et al., 2016; Andreas et al., 2015).

• ∗Pretraining models in NLP (Devlin et al.,
2018; Brown et al., 2020).

• VLP models with task-specific heads (Lu
et al., 2019; Tan and Bansal, 2019; Chen et al.,
2020; Li et al., 2020b; Zhang et al., 2021).

• VLP models without task-specific heads (Cho
et al., 2021; Wang et al., 2021).

• VLP models for improving performance on
vision tasks (Radford et al., 2021; Jia et al.,
2021).

• VLP models for improving performance on
language tasks (Tan and Bansal, 2020; Huang
et al., 2020; Cho et al., 2021; Wang et al.,
2021).

• Analyzing VLP models (Hendricks et al.,
2021; Frank et al., 2021; Hendricks and Ne-
matzadeh, 2021; Bugliarello et al., 2020).

• Shortcomings of vision-language models
(Agrawal et al., 2016; Rohrbach et al., 2018;
Gan et al., 2020; Ross et al., 2020; van Mil-
tenburg, 2016; Misra et al., 2015; Raji et al.,
2020; Zhao et al., 2017a).

• Methods and evaluation benchmarks that go
beyond the traditional i.i.d. setting (Agrawal
et al., 2017; Cadène et al., 2019; Ramakrish-
nan et al., 2018; Teney et al., 2020c; Arjovsky
et al., 2019; Teney et al., 2020b; Gokhale et al.,
2020; Teney et al., 2020a; Ilse et al., 2020;
Agarwal et al., 2019).

∗ It would be great if the audience could read
these papers before the tutorial, but it is okay even
if they do not get a chance, as we will briefly cover
these topics in the tutorial.

8 Instructors

Aishwarya Agrawal [webpage: https://www.
iro.umontreal.ca/~agrawal] is an Assis-
tant Professor in the Department of Computer
Science and Operations Research at the Univer-
sity of Montreal. She is also a Canada CIFAR
AI Chair and a core academic member of Mila –
Quebec AI Institute. She also spends one day a
week at DeepMind as a Research Scientist. Aish-
warya’s research interests lie at the intersection
of computer vision, deep learning and natural
language processing. Aishwarya is one of the
two lead authors on the VQA paper (Antol et al.,
2015) that introduced the task and the VQA v1.0
dataset. She has played an active role in releas-
ing the dataset to the public. She is, in particu-
lar, keen about building vision-language models
that generalize to out-of-distribution datasets. She
used to co-organize the annual VQA challenge
and workshop, and has given numerous invited
talks (see https://www.iro.umontreal.
ca/~agrawal/index.html#talks).

Damien Teney [webpage: https://www.
damienteney.info] is a research scientist
heading the machine learning group at the Idiap
Research Institute in Switzerland. He is known
for his work at the intersection of computer vi-
sion, machine learning, and natural language pro-
cessing. He was part of the team that won the
Visual Question Answering Challenge at CVPR
2017, which introduced the bottom-up/top-down
attention mechanisms that are now ubiquitous for
vision and language. His current research focuses
on out-of-distribution generalization and learning
methods inspired by causal reasoning. He has given
multiple introductory talks on these topics and is a
regular invited speaker at workshops and seminars
on vision and language (e.g., VQA workshop at
CVPR 2021, Vision and Language workshop at
ACCV 2018).

Aida Nematzadeh [webpage: http://www.
aidanematzadeh.me] is a staff research sci-
entist at DeepMind. Her research interests are
in the intersection of computational linguistics,
cognitive science, and machine learning. Her re-
cent work has focused on multimodal learning
and evaluation and analysis of neural represen-
tations. She co-instructed a tutorial on “Lan-
guage Learning and Processing in People and Ma-
chines” at NAACL 2019, and has given numerous
invited talks (see http://aidanematzadeh.
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me/talks.html).

9 Ethics Statement

Vision-language systems have many potential ap-
plications beneficial for society:

• Aiding visually impaired users in un-
derstanding their surroundings (Human:
What is on the shelf above
the microwave? AI: Canned
containers.),

• Teaching children through interactive de-
mos (AI captioning a picture of Dall
Sheep: That is Dall Sheep. You
can find those in Alaska.),

• Aiding analysts in processing large quan-
tities of visual surveillance data (An-
alyst: What kind of car did the
man in red shirt leave in? AI:
Blue Toyota Prius.),

• Interacting with in-home physical robots (Hu-
man: Is my laptop in my bedroom
upstairs? AI: Yes. Human: Is the
charger plugged in?),

• Making visual social media content more ac-
cessible (AI: Your friend Bob just
uploaded a picture from his
Hawaii trip. Human: Great, is
he at the beach? AI: No, on a
mountain.).

But like most other technology, such vision-
language systems could also be used for potentially
harmful applications such as:

• Invasion of individual’s privacy by using
vision-language systems to query streams of
video data being recorded by CCTV cameras
at public places.

• Visually impaired users often need assistance
with parsing data containing personal informa-
tion (Ahmed et al., 2015), such as credit cards,
personal mails etc. Vision-language systems
providing such assistance could be configured
to leak / retain such personally identifiable
information.

In addition to the above potentially harmful ap-
plications of vision-language systems, there exist

ethical concerns around fairness and bias. The
vision-language models, as other deep learning
based models (Zhao et al., 2017b), could poten-
tially amplify the biases present in the data they are
trained on. Since the training data (images and lan-
guage) captures stereotypical biases present in the
society (e.g, the activity of cooking is more likely
to be performed by a woman than a man), am-
plification of such stereotypes by vision-language
systems is concerning as it has the potential to harm
the users in the relevant groups (based on gender,
race, religion etc.) by entrenching existing stereo-
types and producing demeaning portrayals (Brown
et al., 2020).

To raise awareness about such ethical concerns
and to promote discussions among researchers, the
last part of the tutorial (“Beyond statistical learn-
ing in vision-language”) will focus on such short-
comings of existing models and we will discuss
some methods that aim to tackle some of these
challenges.
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