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1 Tutorial Description

State-of-the-art sequence generation models are
mostly autoregressive (AR, Vaswani et al., 2017;
Brown et al., 2020) where each generation step
depends on the previously generated tokens. How-
ever, such models are inherently sequential, leading
to high latency at inference time and suffering la-
bel bias (Lafferty et al., 2001) problem due to the
locally normalized searching steps and exposure
bias (Bengio et al., 2015) problem due to mismatch
between training and inference.

Recently, increasing attention has been paid to
modeling sequence generation in a non- or semi-
autoregressive manner, which attempts to generate
the entire or partial output sequences in parallel to
speed up the decoding process and avoid potential
issues (e.g., label bias, exposure bias) in autoregres-
sive generation. In this tutorial, for simplicity, we
summarize both approaches as non-autoregressive
(NAR) sequence generation models. NAR mod-
els have been explored in many sequence gener-
ation tasks for text (e.g., neural machine transla-
tion (Gu et al., 2018), text summarization (Gu et al.,
2019), text error correction (Awasthi et al., 2019;
Leng et al., 2021b)), speech (e.g., speech recogni-
tion (Chen et al., 2019) and speech synthesis (Ren
et al., 2019)). However, naive NAR models still
face many challenges to close the performance gap
between state-of-the-art autoregressive models be-
cause of a lack of modeling power. This tutorial
will provide a thorough introduction and review of
the basics of non-autoregressive sequence gener-
ation, including the background, the capabilities,
and limits, popular methods that improve NAR
models, and their applications on text and speech
generation.

Introduction The tutorial will start with a brief
discussion on the motivation of NAR generation,
the problem definition, the evaluation protocol, and
the comparison with standard autoregressive ap-

proaches. We use machine translation as the exam-
ple generation task for the in-depth discussion as
the first of its kind in NLP (Gu et al., 2018), and
many follow-ups focus on this direction. Notably,
we will show the underlying reasons (i.e., multi-
modality problem) why NAR models generally per-
form worse and give some high-level instructions
on improving NAR systems (Gu et al., 2018; Ren
et al., 2020; Gu and Kong, 2021).

Methods Based on the high-level instructions,
we will then dive into the detailed improvements
from five aspects: model architecture, objective
function, training data, learning paradigm, and
additional inference tricks, respectively.

For model architecture, we divide existing ap-
proaches into four major categories according to
the inference process: (1) fully NAR models that
outputs the whole sequence in a single forward pass
(Gu et al., 2018; Kaiser et al., 2018; Guo et al.,
2019; Gu and Kong, 2021); (2) iteration-based
NAR models which iteratively refine the paral-
lel decoding results (Lee et al., 2018; Ghazvinine-
jad et al., 2019, 2020b; Gu et al., 2019; Kasai
et al., 2020); (3) partially NAR models where
a sequence is still predicted autoregressively while
each step multiple tokens are generated in paral-
lel (Wang et al., 2018; Stern et al., 2018, 2019;
Deng and Rush, 2020); (4) locally AR models
which are, on the other hand, overall NAR while
predict “phrases” autoregressively (Huang et al.,
2017; Kong et al., 2020b). Aside from these major
types, explicitly modeling NAR with latent vari-
ables is another useful approach that can boost the
overall capability of all above NAR models. We
will highlight several implementations including la-
tent fertilities (Gu et al., 2018) and alignments (Sa-
haria et al., 2020), VAEs with continuous (Shu
et al., 2020; Lee et al., 2020; Gu and Kong, 2021)
or discrete (Kaiser et al., 2018; Roy et al., 2018) la-
tent variables, flow-based models (Ma et al., 2019b)
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and stochastic diffusion models.

Next, we will discuss in-depth the objective func-
tion of NAR models starting from the standard
cross-entropy (CE) loss which, however, leads to
duplicated tokens in NAR outputs. To overcome
this, we will introduce two types of advanced ob-
jective functions in this tutorial: (1) loss function
with latent information which can be effectively
marginalized/approximated through dynamic pro-
gramming. For instance, we will cover latent align-
ments (CTC, AXE) (Graves et al., 2006; Libovický
and Helcl, 2018; Saharia et al., 2020; Ghazvinine-
jad et al., 2020a) and latent orders (OAXE) (Du
et al., 2021); (2) the other type of objective function
focuses on loss beyond token-level, which consid-
ers n-gram (Shao et al., 2020; Liu et al., 2021) or
sequence-level (Sun et al., 2019; Shao et al., 2019;
Tu et al., 2020) energy to optimize NAR models.

From the perspective of training data, we will
first describe the sequence-level knowledge distil-
lation (KD, Kim and Rush, 2016), and then ex-
plain its effectiveness of using KD on NAR gen-
eration (Zhou et al., 2020; Xu et al., 2021). In
addition, we will also include the discussion about
the drawbacks of over-relying on distillation for
training NAR models (Ding et al., 2020) and pro-
pose potential alternatives.

For the fourth part, we will deepen the discus-
sion on how to train NAR models more effectively.
Due to the lack of modeling power, it may be cru-
cial for NAR models to be trained with a more
suitable learning paradigm to help match the per-
formance of AR systems. In this tutorial, we will
introduce the previous efforts from three primary di-
rections: (1) curriculum learning where we train
NAR models with tasks from easy to difficult pro-
gressively (Guo et al., 2020a; Liu et al., 2020; Qian
et al., 2020); (2) adversarial training where a dis-
criminator is jointly learned and the NAR model is
forced to fool the discriminator. In this way, NAR
models will not be directly exposed to the real train-
ing data, which is “too difficult” to fit. Adversarial
training itself is not so popular in text generation
in general. However, it is widely applied in other
modalities such as NAR speech synthesis (Kong
et al., 2020a). (3) pre-training where we will also
show that combining with recent advances in self-
supervised pre-training (e.g., BERT), we can nat-
urally leverage the monolingual data to improve
the learning of NAR models (Guo et al., 2020b; Qi
et al., 2021; Jiang et al., 2021).

At the end of this part, we will also include addi-
tional discussions on valuable methods and tricks
which help NAR models at inference time. For
example, searching with length beams, reranking
the AR model, incorporating the n-gram language
model, etc.

Applications In the third section, we review
some typical tasks that adopt non-autoregressive
sequence generation, including text generation and
speech generation. For text generation, we cover
several tasks: (1) neural machine translation (Gu
et al., 2018; Lee et al., 2018; Wang et al., 2018;
Kong et al., 2020b; Gu and Kong, 2021); (2)
text summarization (Gu et al., 2019; Qi et al.,
2021; Jiang et al., 2021); (3) text error correc-
tion (Awasthi et al., 2019; Mallinson et al., 2020;
Leng et al., 2021a,b); (4) automatic speech recog-
nition (Chen et al., 2019; Higuchi et al., 2020;
Chan et al., 2020). For speech generation, we
cover: (1) text to speech (Ren et al., 2019; Peng
et al., 2020; Oord et al., 2018; Kim et al., 2020,
2021); (2) voice conversion (Hayashi et al., 2021;
Kameoka et al., 2021).

Beyond the introduction of task-level character-
istics for non-autoregressive sequence generation,
we also introduce some advanced topics in appli-
cations, including: (1) some advanced length pre-
diction methods for text summarization (Qi et al.,
2021) and speech recognition (Chen et al., 2019);
(2) alignment modeling between source and tar-
get sequence in text to speech, e.g., duration pre-
diction (Ren et al., 2019) or source-target atten-
tion (Peng et al., 2020); (3) analysis on the depen-
dency among target tokens that can influence the
modeling difficulty of non-autoregressive gener-
ation models (Ren et al., 2020); (4) the relation-
ship between non-autoregressive sequence genera-
tion and streaming sequence generation (Ma et al.,
2019a), considering they are both for inference
speedup.

Conclusion At the end of the tutorial, we will
describe several research challenges and list the
comparison with other speed-up approaches for AR
models (e.g., quantization, pruning, distillation).
Finally, we will also discuss the potential future
research directions to close this tutorial.

2 Type of the Tutorial

Cutting-edge.
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3 Target Audience

This tutorial targets those audiences who work on
1) neural sequence generation (e.g., neural machine
translation, etc.); 2) natural language and speech
processing; 3) deep learning and artificial intelli-
gence in general. Some prerequisites for the atten-
dees are:

• Math: calculus, linear algebra, and probability
theory.

• Machine learning: basic machine learning
paradigms and basic deep learning models
such as MLP, RNN, CNN, and Transformer.

• Neural sequence generation: Be familiar with
at least one sequence generation task, such
as neural machine translation, text summa-
rization, automatic speech recognition, text to
speech, etc.

4 Tutorial Outline

PART I Introduction (∼ 20 minutes)

1.1 Problem definition

1.2 Evaluation protocol

1.3 Multi-modality problem

PART II Methods (∼ 90 minutes)

2.1 Model architectures

2.1.1 Fully NAR models

2.1.2 Iteration-based NAR models

2.1.3 Partially NAR models

2.1.4 Locally AR models

2.1.5 NAR models with latent variables

2.2 Objective functions

2.2.1 Loss with latent variables

2.2.2 Loss beyond token-level

2.3 Training data

2.4 Learning paradigms

2.4.1 Curriculum learning

2.4.2 Adversarial training

2.4.3 Self-supervised pre-training

2.5 Inference methods and tricks

PART III Applications (∼ 50 minutes)

3.1 Text generation

3.1.1 Neural machine translation

3.1.2 Text summarization

3.1.3 Text error correction

3.1.4 Automatic speech recognition

3.2 Speech generation

3.2.1 Text to speech

3.2.2 Voice conversion

3.3 Advanced topics in applications

3.3.1 Advanced length prediction

3.3.2 Alignment (duration vs attention)

3.3.3 Target token dependency

3.3.4 Relationship with streaming

PART IV Open problems, future directions,
Q&A (∼20 minutes)

5 How the tutorial includes other people’s
work

We organize our tutorial content from a broad view
of non-autoregressive sequence generation, span-
ning from basic methods to applications, which
cover diverse work in this area, most of which are
other people’s work.

6 Diversity Considerations

Methods We introduce the methods of non-
autoregressive sequence generation in a compre-
hensive and diverse view, covering model architec-
tures, objective functions, training data, learning
paradigms, and additional tricks. These methods
are general and not limited to specific languages or
domains.

Applications We introduce a variety of non-
autoregressive sequence generation tasks, spanning
from the text (e.g., neural machine translation, text
error correction) to speech (e.g., text to speech,
voice conversion).
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Instructors We are from different institutions
(Facebook and Microsoft) and work on diverse
topics in machine learning, NLP, and non-
autoregressive sequence generation.

Audiences Due to the diversity in the methods
and applications of our tutorial and the tutorial in-
structors, we can attract audiences interested in
diverse sequence generation tasks and modalities
(text and speech) and from both academia and in-
dustry.

7 Reading List

Please see the citations in Section 1. For partici-
pants interested in reading important studies be-
fore this tutorial, we recommend the following
basic papers: (1) the typical AR model (Trans-
former) (Vaswani et al., 2017); (2) the vanilla NAR
model (Gu et al., 2018); (3) the typical iteration-
based NAR model (Ghazvininejad et al., 2019); (4)
a study on NAR models for both text and speech
tasks (Ren et al., 2020).

8 Bio of Speakers

8.1 Jiatao Gu

Dr. Jiatao Gu is a Research Scientist at Facebook
AI Research (FAIR). Jiatao received his Ph.D. de-
gree in 2018 from the University of Hong Kong
and B.Eng from Tsinghua University in 2014. His
research interests cover representation learning
and generative models and their applications on
NLP, speech, computer vision, and multi-modal
learning. Particularly, his research focuses on
developing efficient learning and inference algo-
rithms and applying them successfully to neural
machine translation and 3D-aware image synthe-
sis. He has over 40 papers published at top-tier
conferences and journals, including ACL, EMNLP,
NeurIPS, ICLR, and TACL. Jiao has also served
as an area chair for several top conferences. Jiatao
has rich research experience on the topic of non-
autoregressive sequence generation. He published
the first of its kind paper for non-autoregressive
neural machine translation in 2018 and has led
the following exploration and extensions. Website:
https://jiataogu.me/.

8.2 Xu Tan

Xu Tan is a Senior Researcher at Microsoft
Research Asia (MSRA). His research interests

cover deep learning and its applications in lan-
guage/speech/music, including neural machine
translation, text to speech, automatic speech recog-
nition, pre-training, music generation, etc. The
machine translation systems have achieved hu-
man parity on Chinese-English news translation
in 2018 and won several champions on WMT ma-
chine translation competition in 2019. He has
designed several popular language/speech/music
models, and systems (e.g., MASS, FastSpeech,
and Muzic) and has transferred many research
works to the products in Microsoft (e.g., Azure,
Bing). He has rich research experiences on non-
autoregressive sequence generation and has de-
signed several models such as FastCorrect 1/2, Fast-
Speech 1/2. He has given several tutorials on lan-
guage/speech/music at international conferences:
1) A tutorial on text to speech at IJCAI 2021; 2) A
tutorial on AI music composition at ACM Multi-
media 2021. Website: https://www.microsoft.

com/en-us/research/people/xuta/.

9 Ethics Statement

Non-autoregressive sequence generation can im-
prove the inference speed of various sequence gen-
eration tasks in text and speech. Unfortunately,
this technology may be misused to generate deep-
fake content (Thies et al., 2016) such as mimicking
one’s writing style or speaking style. However,
great attempts have been made to detect the deep-
fake content (Kaggle, 2019), which can minimize
or avoid its potential negative impact.
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