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Abstract
In this work, we explore the novel idea of em-
ploying dependency parsing information in the
context of few-shot learning, the task of learn-
ing the meaning of a rare word based on a lim-
ited amount of context sentences. Firstly, we
use dependency-based word embedding mod-
els as background spaces for few-shot learning.
Secondly, we introduce two few-shot learning
methods which enhance the additive baseline
model by using dependencies.

1 Introduction

Distributional semantics models create word em-
beddings based on the assumption that the meaning
of a word is defined by the contexts it is used in
(for an overview, see: Sahlgren, 2008; Lenci, 2018;
Boleda, 2020; Emerson, 2020). A fundamental
challenge for these approaches is the difficulty of
producing high-quality embeddings for rare words,
since the models often require vast amounts of train-
ing examples (Adams et al., 2017; Van Hautte et al.,
2019). To address this problem, various few-shot
learning methods have been previously introduced.
The goal of a few-shot learning technique is to
learn an embedding that captures the meaning of
a word, given only a few context sentences. The
rare word’s vector has to be placed in an existing
background space of embeddings.

Few-shot learning in distributional semantics is a
relatively underexplored area, with important prac-
tical applications. Having good representations of
rare words is highly desirable in applications aim-
ing to understand dialects or regionalisms, as well
as specific technical language.

In this work, we explore the idea of incorpo-
rating information from the dependency parse of
sentences in the context of few shot-learning. An
intuition why this might be useful is provided in
Figure 1. In the given sentence, the most relevant
word for inferring the meaning of the target rare
word “conflagration" is “destroyed". Even if this

word is located far from the target, it is directly con-
nected to it through a nominal subject dependency.
Moreover, the fact that the target word is used in a
certain dependency structure might reveal impor-
tant characteristics related to its meaning. Since
in the case of few-shot learning the data is limited,
using dependency parsing information is a resource
with great potential to boost existing models.

As a first effort in this direction, this work pro-
vides three contributons. Firstly, we explore the ef-
fect of using dependency-based word embeddings
as background spaces. Secondly, we introduce new
few-shot learning methods leveraging the depen-
dency parsing information. Lastly, we update a
previous dependency-based background model to
make it more suitable for few-shot learning.

2 Background: dependency-based word
embeddings

The widely-used Skip-Gram model introduced by
Mikolov et al. (2013) takes the contexts of a word
to be those words surrounding it in a pre-defined
window size. The model learns the embeddings in
an unsupervised manner, using a feed-forward neu-
ral network trained on large amounts of sentences.

Levy and Goldberg (2014) proposed a different
way to construct the contexts of a target word in the
training process of the Skip-Gram model. Instead
of taking the words from a pre-defined window,
one takes the words that are connected to the target
word by a syntactic dependency. The contexts were
defined as the concatenation of the connected word
and the label of the dependency. This allowed the
model to differentiate between same words used in
different syntactic roles.

The dependency-based word embeddings were
found to be better at capturing similarity, while
the window-based models capture relatedness. For
example, a dependency-based model would pro-
duce close embeddings for “Rome” and “Florence”,
which are syntactically similar since they can be
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The severe conflagration which affected Troy on 10 May 1862 destroyed 507 buildings.

amod

det

relcl

nsubj

Figure 1: A dependency parse, illustrating that context words connected by a dependency can be important for
inferring meaning in a few-shot setting, such as “destroyed” for the rare word “conflagration”.

used in the same grammatical contexts, while a
window-based model is likely to place closely the
embedding of highly related terms such as “Rome"
and “ancient", even if they cannot be used inter-
changeably since they are different parts of speech.

Levy and Goldberg’s model successfully cap-
tured syntactic similarity, but failed to express how
different dependency types affect relations between
words. Moreover, it introduced sparsity issues.
Czarnowska et al. (2019) developed the Depen-
dency Matrix model to address these shortcomings.
Instead of incorporating the dependency labels in
the context vocabulary, each dependency type d is
associated with a matrix Td, which acts as a mean-
ing representation of the link between the target
and the context words. The matrices Td, as well as
the vectors holding the target vectors e and context
vectors o, are learned during training. Let D be the
set of training examples given by tuples of target
word t, context word c and dependency type d. For
each tuple, we generate a set D′ of negative sam-
ples (t, c′, d) by drawing context words c′ from a
noise distribution and maintaining the same target
word t and dependency type d. The learning goal
is to maximise the function in (1), where σ is the
sigmoid function and et and oc are the vectors of
the target and context word.
∑

(t,c,d)∈D

(
log σ(ut,c,d) +

∑

(t,c′,d)∈D′
log σ(−ut,c′,d)

)
(1)

ut,c,d = et · Td · oc (2)

3 Background: few-shot learning

As a straight-forward yet successful baseline, the
vector of the rare word is estimated by the sum of
the vectors of the words in contexts, as proposed
by Lazaridou et al. (2017) and Herbelot and Baroni
(2017). The latter noticed that not including the
stop-words greatly improves the performance on
the evaluation tasks. To optimise the performance
of the additive model, Van Hautte et al. (2019)
proposed weighting the context words according
to distance and frequency, as well as subtracting
a “negative sampling” vector. These modifications

take hyperparameters that are important for Skip-
Gram’s strong performance, such as number of
negative samples k and window size n (Levy et al.,
2015), and apply them to the few-shot setting. For
each word w in the vocabulary V , with frequency
f(w) and distance m from the target rare word t,
and for a frequency threshold τ , we calculate the
subsampling weight s(w), the window weight r(w)
and negative sampling coefficient n(w).

s(w) = min

(
1,

√
τ

f(w)

)
(3)

r(w) = max
(
0,
n−m+ 1

n

)
(4)

n(w) =
f(w)0.75∑

w∈V f(w)
0.75

(5)

Assume C is the collection of non-stop context
words for the given target rare word t and vc is the
vector in the background space for each c ∈ C. The
vector of the target rare word t will is:

vt =
∑

c∈C
vadd
c where (6)

vadd
c = s(c)r(c)

(
vc − k

∑

w∈V
n(w)vw

)
(7)

More involved models have been proposed for
the task of few-shot learning. Khodak et al. (2018)
introduced A La Carte, which applies a linear trans-
formation to the sum of the context words obtained
by the additive model. The weights of the lin-
ear transformation are optimised based on the co-
occurrence matrix of the corpus. Van Hautte et al.
(2019) takes this approach further in the Neural A
La Carte model, by using a neural network with a
hidden layer to produce a non-linear transformation
matrix, which adds flexibility.

The meaning of a rare word can often be de-
duced from the word form itself. This information
has been leveraged in few-shot learning models.
For example, the Form-Context Model (Schick and
Schütze, 2019) is a hybrid method which retrieves
the weighted sum between the surface form em-
bedding of the rare word, obtained using FastText
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(Bojanowski et al., 2017) and the context-based
embedding, produced using the A La Carte model.

In this paper, we focus on additive methods,
which do not require additional training on few-
shot learning examples. This keeps the inference
fast and in line with the true few-shot learning set-
ting proposed by Perez et al. (2021).

4 Dependency-based FSL methods

Dependency relations proved to be an informative
tool in the context of creating distributional seman-
tics models. Based on this success, we introduce
two dependency-based few-shot learning methods
which build on top of the Additive model. In this
section, we assume we have already trained a back-
ground space of embeddings vi for each word i. In
our setup, we chose to consider only the target em-
beddings learnt by the aforementioned background
models, i.e. vi = ei. Alternatively, one could use
the concatenation of the target and context embed-
dings.

Dependency Additive Model The starting point
of our methods is the assumption that the closer a
word is to the target word in the dependency graph,
the more relevant it is for inferring the target’s
meaning, as seen in Figure 1.

Our method assigns weights for each word in
the sentence by considering the distances from the
rare word in the dependency parse. For each con-
text word c, let dc be the number of dependency
links from the target rare word t to c in the parse.
Note that we consider links in both directions. The
inferred vector vt of the rare word is the weighted
sum of the vectors of context words, where the
weight wc of each context word c is given in (8).
The weight is chosen so that it is inversely propor-
tional to the distance from the target, and we add 1
in order to avoid discarding context words which
are far from the target in the dependency tree.

vt =
∑

c∈C
wcv

add
c where wc = 1 +

1

dc
(8)

Initially, we experimented with simply apply-
ing the coefficients wc on the vectors of the con-
text words vc. However, a better performance was
achieved when we incorporated the the weighting
steps in (7), so we used vadd

c instead of vc.

Dependency Matrix Additive Model The De-
pendency Additive model above does not take into

account the type of dependency on each edge in
the graph, which, as we have seen, plays an impor-
tant role in capturing the meaning of the words in
relation to each other. We thus devised a strategy
to make use of this information.

Czarnowska et al. proposed the idea of using
the learnt dependency matrices of the Dependency
Matrix model for the task of semantic composition,
by multiplying word embdeddings with matrices
over chains of dependencies. We apply the same
idea in the context of few-shot learning. More pre-
cisely, instead of giving a weight for each vector of
a context word, we multiply it with corresponding
dependency matrices on the chain of dependencies
from the target to the context. To be able to do this
based on the original Dependency Matrix model,
we would have to take into account that when we
advance in the dependency parse, we have to switch
between using the context vector (retrieved from o)
and target vector (retrieved from e).

To simplify this process, we modified the Depen-
dency Matrix model to use only one embedding
per word, instead of separate context and target
embeddings.1 This also reduces the training time
of the model. More precisely, we have the same
training loss as in (1), but (2) is replaced by:

ut,c,d = vt · Td · vc (9)

Having trained this model, we then make use
of the matrices Td, optimised for each dependency
type d. For the target rare word t and each non-
stop context word c, Let D(t, c) be the path of
dependency types from t to c. The vector of the
target rare word is calculated as:

vt =
∑

c∈C
v′c where v′c =


 ∏

d∈D(t,c)

Td


 vadd

c

(10)

5 Experiments

In our setup, we considered three background mod-
els: window-based Skip-Gram, dependency-based
Skip-Gram and the modified Dependency Matrix
model which only uses one embedding for each

1This cannot be applied to Skip-Gram without causing
every word to predict itself as a context. To allow Skip-Gram
to use only one vector per word, Zobnin and Elistratova (2019)
propose using an indefinite inner product, which corresponds
to T in (9) being a diagonal matrix of 1s and −1s. In a similar
vein, Bertolini et al. (2021) propose a more radical simplifi-
cation of the Dependency Matrix model, which uses matrices
that are non-zero only on the diagonal and off-diagonal.
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Backgr. Model FSL Model DN Chimera CRW
MRR MR L2 L3 L6 1 2 4 8 16

Skip-Gram
Additive 0.010 5312 0.12 0.19 0.20 0.11 0.12 0.13 0.15 0.15
Dep. Additive 0.021 4007 0.13 0.20 0.21 0.12 0.13 0.14 0.15 0.16

Dependency
Skip-Gram

Additive 0.023 4671 0.14 0.21 0.21 0.11 0.14 0.15 0.16 0.17
Dep. Additive 0.027 3785 0.16 0.21 0.23 0.12 0.15 0.16 0.17 0.18

Dependency
Matrix

Additive 0.017 3367 0.13 0.23 0.25 0.15 0.17 0.20 0.22 0.22
Dep. Additive 0.034 3140 0.14 0.26 0.29 0.18 0.20 0.22 0.24 0.25
DM Additive 0.019 3163 0.15 0.24 0.31 0.16 0.20 0.20 0.21 0.22

Table 1: Results for different combinations of background and few-shot learning model, on three evaluation
datasets. The best result for each column is marked in bold. Higher is better for all columns except MR.

word. To allow a direct comparison, we trained
them all on the WikiWoods (Flickinger et al., 2010)
snapshot of English Wikipedia. The same hyper-
parameters were used: a dimensionality of 100, 15
negative samples, a batch size of 5, and an Ada-
grad optimiser with an initial learning rate of 0.025.
For the dependency models, we used the universal
dependency parser provided by spaCy (Honnibal
et al., 2020). We applied the two few-shot methods
we devised, as well as the Additive model with
window weighting, subsampling and negative sam-
pling described in §3. The hyperparameters were
t = 10−6, k = 15 and n = 5.

5.1 Few-shot learning tasks

Definitional Nonce (DN) This task (Herbelot
and Baroni, 2017) provides a single definition sen-
tence for each test word. The test words are fre-
quent words, which have gold vectors of high qual-
ity in the background space. At evaluation time, a
new vector is computed for each test word, based
on the few-shot learning model. The rank of the
gold vector relatively to the inferred vector is then
calculated, i.e.the number of words from the vocab-
ulary which are closer to the inferred vector than
the gold vector is. The distance metric is cosine
similarity - the bigger the similarity, the smaller
the distance. The metrics retrieved are the Mean
Reciprocal Rank (MRR) and median rank.

Chimera The Chimera task (Lazaridou et al.,
2017) provides non-existing words (chimeras) with
6 context sentences, as well as similarity scores
between the chimera and other existing words. The
way in which the dataset was built simulates few-
shot learning for humans, since the participants of
the experiment needed to infer the meaning of a
word they never saw before and rate its similarity
with other concepts, based only on the 6 context

sentences. Trials with 2, 4 and 6 context sentences
are conducted. After each trial, the similarity scores
between the inferred vector and the vectors of the
words provided is compared against the human
similarity scores by retrieving the Spearman’s rank
correlation coefficient.

Contextual Rare Words (CRW) Like Chimera,
the CRW task (Khodak et al., 2018) is based on hu-
man ratings between pairs of words. This time the
pairs contain a rare word and a frequent one, with
an assumed reliable embedding in the background
model. For each rare word, 255 context sentences
are provided. The vector is generated using the
few-shot model for 1, 2, 4, 8, 16 context sentences,
selected at random. For each such experiment, the
similarity scores between the few-shot vector and
the background embedding of the non-rare word
are calculated and compared against the human
scores using the Spearman’s rank correlation co-
efficient. The scores are averaged out across 10
random selections of context sentences.

5.2 Results and Discussion

The results in Table 1 show that the dependency-
based background models performed better than
window-based Skip-Gram on all three evaluation
tasks. For all background models, applying the
Dependency Additive technique consistently im-
proved the results of the Additive model. For the
DN task and DM background model, there were
three cases where the Additive model gave a rank
of over 30,000, while the Dependency Additive
model gave a rank of 1 or 2, showing the method’s
potential for sentences of specific structures. The
DM additive model showed a promising result for
the Chimera task, but was still outperformed by
the Dependency Additive model, and its scores had
the biggest variance across all combinations. This
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suggests that more careful weighting might be re-
quired.

6 Conclusion

We investigated the use of dependency information
for few-shot learning in distributional semantics.
We found that dependency-based contexts are more
useful than window-based contexts, with better per-
formance across three evaluation datasets. We pro-
posed a simplified version of the Dependency Ma-
trix model, using only one vector per word, which
makes it easier to apply in a few-shot setting.

An important next step would be to investigate
the use of the proposed methods for other lan-
guages, since our work was limited to English data
and it is possible that the dependency structure is
more relevant for few-shot learning in the case of
specific languages. In order to do such an analy-
sis, one would additionally need to create test data
for the few shot-learning tasks, which would re-
quire the participation of speakers of the selected
languages.

In future work, performance might be further im-
proved by training an A La Carte model (discussed
in §3), where the use of dependencies would make
it possible to use a graph-convolutional network
(Marcheggiani and Titov, 2017).
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