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Abstract

We tackle the tasks of image and text retrieval
using a dual-encoder model in which images
and text are encoded independently. This
model has attracted attention as an approach
that enables efficient offline inferences by con-
necting both vision and language in the same
semantic space. However, whether an image
encoder as part of a dual-encoder model can
interpret scene-text, i.e., the textual information
in images, is unclear. We propose pre-training
methods that encourage a joint understanding
of the scene-text and surrounding visual infor-
mation. The experimental results demonstrate
that our methods improve the retrieval perfor-
mances of the dual-encoder models.

1 Introduction

When pre-trained on a large-scale corpus of im-
age and text pairs, vision and language models can
obtain effective multi-modal representations that
bridge the semantic gap between visual and textual
information. In general, two approaches are used:
1) the cross-encoder approach, in which textual
and visual information are jointly fed into a single
Transformer-based model (Vaswani et al., 2017),
and 2) the dual-encoder approach, in which the
textual and visual information are independently
fed into two modality-specific encoders. Cross-
encoder models use cross-modal attention, which
facilitates the interpretation of the different modal-
ities. However, such models are not suitable for
image retrieval and other tasks requiring fast and
large-scale inferences (Miech et al., 2021; Luan
et al., 2021). In contrast, dual-encoder models can
make quick inferences, but their interpretation of
concomitant modalities is insufficient; in particu-
lar, such models have difficulty jointly interpreting
scene-text and the surrounding visual information.

Given the above background, this paper investi-
gates the effectiveness of incorporating scene-text
into a dual-encoder. The contributions of this study
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Figure 1: Overview of the proposed architecture. We
propose pre-training methods to enable the image en-
coder to jointly interpret the scene-text and surrounding
visual information.

are as follows. 1) We introduce pre-training meth-
ods for a dual-encoder to facilitate a joint interpre-
tation of the textual information in the images and
surrounding visual information (Figure 1). The per-
formance of the model is then evaluated for image
and text retrieval tasks. 2) We experimentally show
that, similar to cross-encoder approaches, the joint
scene-text and semantic representations improve
the retrieval performance of the dual-encoder.

2 Related Work

To make sense of visual and textual semantics, re-
cent studies concerning vision and language pre-
training, such as image captioning and text-aware
VQA (Singh et al., 2019; Biten et al., 2019; Mishra
et al., 2019; Mathew et al., 2021), incorporate con-
comitant textual information, such as scene-text
and object tags, in terms of regions-of-interest to
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enable cross-modal interactions using self-attention
in a Transformer-based model (cross-encoder) (Hu
et al., 2020; Li et al., 2020; Yang et al., 2021;
Tanaka et al., 2021; Biten et al., 2021). However,
cross-encoders are not suitable for image retrieval
or other tasks requiring fast and large-scale infer-
ences. Although cross-encoder models typically
allow expressive token-wise interactions for an in-
put pair of a query and retrieval target, the simi-
larity score cannot be decomposed and is not in-
dexable (Miech et al., 2021; Luan et al., 2021).
Therefore, such models are impractical for appli-
cation in tasks with many queries requiring quick
responses, such as retrieval tasks.

In contrast, dual-encoder approaches (Sun et al.,
2021; Alec et al., 2021; Jia et al., 2021; Yao
et al., 2021) can successfully perform downstream
tasks, enabling efficient offline inferences of all pre-
encoded image and text embeddings. However, the
effectiveness of incorporating concomitant modali-
ties, such as scene-text, in dual-encoder models has
not been thoroughly investigated or demonstrated
in the community.

3 Scene-Text Aware Dual-Encoder

This paper proposes the incorporation of textual
information in images into the dual-encoder archi-
tecture. We build our method based on the Light-
ningDOT (Sun et al., 2021) framework, a cutting-
edge dual-encoder that encodes both object-wise
and token-wise representations. We first briefly
introduce LightningDOT in its current use. We
then describe the proposed method, including the
learning objectives, to incorporate the textual infor-
mation in the images into the image encoder.

3.1 LightningDOT

LightningDOT outputs a visual feature V and a tex-
tual feature W 1. To obtain a visual feature, Light-
ningDOT first extracts multiple objects from an in-
put image using a pre-trained object detector based
on Faster R-CNN (Anderson et al., 2018). The ob-
tained visual feature V is a list of vectors, namely,
V = (vCLS,v1, . . . ,vI), where I is the number
of extracted objects and vCLS is the vector for a
special object “CLS.” Similarly, the textual fea-
ture is a list of vectors W = (wCLS,w1, . . . ,wJ),
where J is the number of tokens in a given caption
and wCLS is the vector for a special token “CLS.”

1Appendix A provides additional details of LightningDOT.

LightningDOT attempts three pre-training objec-
tives: (1) visual-embedding fused masked language
modeling (VMLM), (2) semantic-embedding fused
masked region modeling (SMRM), and (3) cross-
modal retrieval (CMR). Both VMLM and SMRM
predict masked tokens from their surrounding con-
text. Let M represent a set of mask indices. W\M
denotes W after substituting all m-th vectors of
m ∈ M in W with the special vector assigned
to the [MASK] token. Similarly, V\M is V after
substituting the m-th indices of all m ∈ M with
the [MASK] vector2. The training objectives of
VMLM and SMRM are formulated as follows:

L(∗)
θ (M) =

1

|M|
∑

m∈M
L(∗)
θ (m,M). (1)

Here, the mask index for the caption feature Mw

lies in the range of 2, . . . , I + 1 because an index
of 1 corresponds to wCLS, which is not masked.
The VMLM objective L(VMLM)

θ (Mw) can then be
written by substituting L(∗)

θ (m,M) into Eq. 1 with

L(VMLM)
θ (m,Mw) = ℓθ(wm|W\Mw

,vCLS), (2)

where ℓθ(·) = − log(Pθ(·)). Similarly, the SMRM
objective L(VMLM)

θ (Mv) can be obtained with

L(SMRM)
θ (m,Mv) = Dθ(vm|V\Mv

,wCLS) (3)

where Mv = {2, . . . , J + 1} and Dθ is any differ-
entiable distance function3.

The CMR task leverages the paired semantics
between the visual and textual representations.
Specifically, the similarity (obtained by calculating
the inner product sim(wCLS,vCLS) = wCLS · vCLS
is optimized to promote pair matching with in-
batch negative sampling. The details of CMR are
omitted here because this objective is not related to
the presented extensions of the proposed method.4

3.2 LightningDOT with scene-text
To obtain scene-text features from images, we ap-
ply an optical character recognition (OCR) sys-
tem to each input image. Each token in the scene-
text obtained by OCR is then converted to a dv-
dimensional token embedding (“Text Emb” in Fig-
ure 1). Let sk be the embeddings corresponding to

2The [MASK] for the visual feature is the zero vector.
3The goal of the model prediction is to reconstruct the

masked features themselves (masked region feature regres-
sion) or their object class (masked region classification with
the Kullback–Leibler divergence)

4See Appendix A.2 for additional details concerning CMR.
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the k-th token in the scene-text, and let K denote
the number of tokens in the scene-text. We then
modify and redefine the visual feature V as the con-
catenation of the visual features explained in Sec-
tion 3.1 and the textual features sk in the images,
that is, V = (vCLS,v1, . . . ,vI ,vSEP, s1, . . . , sK),
where vSEP is a vector of separators.

3.3 Masked scene-text modeling (MSM)

This section proposes masked scene-text modeling
(MSM) for training the scene-text features. We
extended VMLM such that the mask prediction
is applied directly to the scene-text. By masking
only the textual information in the scene-text, the
model can read the scene-text from the surround-
ing visual information. Let Ms = {I + 2, . . . , I +
K + 2}. Ms is the mask for the scene-text.5 Sim-
ilar to the SMRM objective, the MSM objective
L(MSM)
θ (Ms) can be obtained via Eq. 1 by substitut-

ing L(∗)
θ (m,M) with

L(MSM)
θ (m,Ms) = ℓθ(sm|V\Ms

,wCLS). (4)

3.4 Cross-modal VMLM (co-mask)

Inspired by Alexis and Guillaume (2019); Zhou
et al. (2021), we also propose a cross-modal co-
masking strategy (co-mask) that leverages the
cross-modal correspondence. Following the same
strategy as VMLM, we randomly replace a token
from a caption and then simultaneously replace the
duplicated token from the scene-text in [MASK] to
promote cross-modal relationships. When at least
one paired token exists between a caption and a
scene-text and is outside the targets for masking,
we randomly select one masked token and switch
the masking target to the paired token. While both
VMLM and MSM promote multi-modal relation-
ships between the textual information in the im-
ages and a caption describing the scene image, the
“co-mask” promotes textual semantic alignment to
leverage cross-modal relationships.

4 Experiments

We designed experiments to investigate the effec-
tiveness of incorporating the scene-text as an addi-
tional feature for visual features in image and text
retrieval tasks.

5The index for the scene-text starts at I + 2 because we
redefine V = (vCLS,v1, . . . ,vI ,vSEP, s1, . . . , sK).

4.1 Experimental setup

Dataset As the training and evaluation dataset,
we selected TextCaps (Sidorov et al., 2020) be-
cause it provides “caption,” “image,” and “scene-
text”6 triples. TextCaps includes 22, 953 images
and 109, 764 captions on training set, and 3, 166
images and 15, 830 captions on development set.
Each image is described by five human-annotated
captions. Textual information in an image context
can be correctly extracted from the TextCaps data
because 96.9% of the images and 81.3% of the
captions contain scene-text.

Base model Following Sun et al. (2021), we used
BERT (Devlin et al., 2019) as the text encoder and
UNITER (Yen-Chun et al., 2020) as the image en-
coder. Note that we used UNITER as the image
encoder only, not as the cross-encoder, although
it can also simultaneously model text. This is be-
cause the inference speed of UNITER, as reported
by Sun et al. (2021), is too slow for practical use
in retrieval tasks7. In our setting, we employed
the dual-encoder to model captions and images.
However, the scene-text was concatenated with the
visual features and input to the image encoder be-
cause this text is part of the visual information.
The scene-text vocabulary of the image encoder
was initialized with that of the text encoder.

Pre-training setting To pre-train LightningDOT
with four tasks, MSM, CMR, VMLM (with co-
mask), and SMRM, we randomly sampled one task
for each mini-batch with 1 : 2 : 1 : 1 weightings8

for 300, 000 optimization steps.9

Conventional models To reveal the effective-
ness of the proposed method, we compared its re-
trieval performance with those of the SCAN (Lee
et al., 2018), VSRN (Li et al., 2019), and STAR-
Net (Mafla et al., 2021) models, which were tested
by Mafla et al. (2021). All models were trained on
TextCaps and evaluated on its development set. We
compared STARNet as a baseline for modeling the
interaction among scene text, visual objects, and
captions. The difference from the proposed method

6To obtaining the scene-text using OCR, Sidorov et al.
(2020) employed Rosetta-en (Borisyuk et al., 2018).

7In an identical setting, the inference speed of Light-
ningDOT is 639× faster than that of UNITER on the
Flickr30K (Plummer et al., 2015) test set, in which the re-
trieval target includes 1K images

8SMRM was divided into MRFR and MRC-kl tasks. These
weights were allocated with a ratio of 1 : 1.

9Appendix A.3 describes the implementation details.
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IR@k TR@k
k=1 k=5 k=10 k=1 k=5 k=10

VSRN 9.5 26.2 37.2 14.3 34.9 46.2
SCAN 14.1 37.6 52.1 23.2 50.5 63.5
STARNet 19.8 40.1 51.6 28.7 53.7 65.1

LightningDOT 16.6 36.0 46.2 21.3 43.6 54.5
w/ ST 38.7 60.4 68.4 50.6 73.7 81.3
w/ ST+co-mask 39.4 61.6 70.2 52.3 74.8 82.2
w/ ST+MSM 40.5 63.0 71.1 52.9 76.4 83.2

Table 1: Results of the image (IR) and text retrieval
(TR) performances with recall@k on the TextCaps
development set. We extended LightningDOT to input
scene-text (w/ ST). In addition, we evaluated our pro-
posed method with the co-mask and MSM.

is that STARNet is trained by using the triplet rank-
ing loss. Moreover, the final visual representations
are obtained via a dot product following a graph
convolutional network (Kipf and Welling, 2017)10

on scene-text and visual objects.

Inference The visual and textual embeddings
(vCLS,wCLS) from the development set were in-
dependently indexed using FAISS (Johnson et al.,
2021). We then conducted an exact maximum inner
product search (IndexFlatIP) for each query embed-
ding, that is, for each wCLS in the image retrieval
(IR) and each vCLS in the text retrieval (TR). The
image retrieval (IR@k) and text retrieval (TR@k)
tasks were evaluated in terms of the recall at k.

4.2 Retrieval results
Table 1 shows the retrieval performances of the
tested methods on the TextCaps development set.
In our experimental setting, the baseline Lighting-
DOT model consistently delivered an inferior per-
formance compared with that of STARNet. After
considering scene-text (w/ ST), the performances
in both the IR and TR settings were significantly
improved and surpassed that of STARNet. Our pro-
posal, which incorporates the co-mask (w/ ST+co-
mask) and the MSM objective (w/ ST+MSM), fur-
ther improved the retrieval performance. These
observations indicate that modeling the scene-text
directly is effective for modeling visual information
that enhances semantic affinities with captions.

4.3 Ablation study on visual modalities
To investigate whether the image encoder can inter-
pret the joint visual information in scene-text and

10The output of the scene-text and visual objects are fed
into the average pooling layer and gated recurrent unit (Cho
et al., 2014), respectively.

modality model IR@k TR@k
k=1 k=5 k=10 k=1 k=5 k=10

w/ ST 38.7 60.4 68.4 50.6 73.7 81.3
IMG+ST +co-mask 39.4 61.6 70.2 52.3 74.8 82.2

+MSM 40.5 63.0 71.1 52.9 76.4 83.2

IMG
w/ ST 11.6 28.2 37.9 14.1 31.3 41.6
+co-mask 13.3 31.5 42.1 16.0 34.1 45.3
+MSM 11.7 29.1 39.3 13.8 32.0 41.6

ST
w/ ST 0.0 0.1 0.3 5.0 15.4 24.7
+co-mask 0.0 0.2 0.4 12.9 28.8 37.9
+MSM 16.7 31.4 37.8 16.1 33.3 42.0

Table 2: Ablation study on selecting visual modali-
ties. The “modality” indicates the input for the image
encoder, which is used as the retrieval target in image
retrieval (IR) and as the query in text retrieval (TR).

object regions, we evaluated the retrieval perfor-
mance by excluding one of the modalities. When
the object regions or the scene-text alone was in-
put into the image encoder, the retrieval perfor-
mance was significantly reduced in the TR and IR
settings (see Table 2). The cross-modal masking
strategy (w/ ST+co-mask) improved the modeling
compared with that of the scene-text strategy (w/
ST) on both modalities but was especially effec-
tive in the object regions. MSM (w/ ST+MSM)
for multi-modal optimization improved the model-
ing of the scene-text but had a small effect on the
images. These results suggest the necessity of mod-
eling not only joint representations of visual and
textual semantics in images but also fine-grained
cross-modal relationships in future work.

4.4 Benefit of duplicated tokens

Here, we define the term duplicated token as a
token that appears both in the caption and in the
scene-text. To investigate whether the retrieval
model leverages cross-modal relationships, we fo-
cus on the duplicated tokens because we will obtain
a higher performance if such tokens share an ade-
quate amount of information. For example, given
a query that includes “Coca-Cola,” the model was
able to leverage the modality of the scene-text when
retrieving an image of a can or a bottle that was
labeled not as “Pepsi” but as “Coca-Cola.” We eval-
uated the retrieval performance via accuracy@k on
the development set in TextCaps (Sidorov et al.,
2020) versus the number of duplicated tokens. We
used spaCy11 to narrow down the content tokens 12

11https://spacy.io/
12Their part of speech tags are in “ADJ,” “ADV,” “NOUN,”

“PROPN,” and “VERB”.
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task (retrieval targets) IR (image and scene-text) TR (caption)

# of duplicated tokens 0 1 2 3 0 1 2 3
total # of tokens for retrieval targets 2,302 512 212 94 11,785 2,484 1,004 342

w/ ST
acc@1 51.13 47.85 50.94 52.13 36.25 41.14 51.10 55.56
acc@5 74.28 71.48 73.58 68.09 57.92 62.80 71.31 82.46

acc@10 81.75 80.08 82.08 76.60 66.26 70.57 78.39 86.55

w/ ST+co-mask
acc@1 52.48 52.54 51.89 50.00 37.07 41.14 50.10 61.70
acc@5 75.33 74.61 70.75 70.21 59.30 62.76 72.11 84.80

acc@10 82.41 81.64 79.72 85.11 68.25 71.30 78.69 89.47

w/ ST+MSM
acc@1 53.52 52.54 50.47 50.00 38.22 41.67 52.09 62.28
acc@5 77.15 75.20 72.64 74.47 60.76 63.93 75.50 80.12

acc@10 84.06 81.64 79.72 78.72 69.29 71.70 81.18 86.55

Table 3: Retrieval accuracy versus the number of duplicated tokens between the caption and the scene-text.

IR@k TR@k
k=1 k=5 k=10 k=1 k=5 k=10

LightningDOT 17.2 37.7 48.9 22.6 45.4 55.5
(mul - en) +0.6 +1.7 +2.6 +1.3 +1.8 +1.0

w/ ST+MSM 0.0 44.5 57.8 35.0 61.3 71.2
(mul - en) −40.5 −18.5 −13.3 −17.9 −15.1 −12.0

Table 4: Retrieval performance on the development
set in a multilingual setting. We employed multilin-
gual BERT and show differences obtained by subtract-
ing the recall@k of the monolingual BERT (en) from
that of the multilingual BERT (mul).

because the scene-text detected by an OCR system
contains a large number of false positive tokens.

From Table 3, we can see that the retrieval per-
formance in TR is proportional to the number of
duplicated tokens. This indicates that duplicated
tokens are one of the factors that enhance the se-
mantic affinity between a caption and the scene-
text13. In the IR setting, conversely, the retrieval
performance does not depend on the number of
duplicated tokens when the objectives are “w/ ST”
and “w/ ST+co-mask.” However, when using the
MSM objective, the retrieval performance in IR is
degraded depending on the number of duplicated
tokens. According to these results, the performance
gap is the result of differences in the modality of
the retrieval target (textual or visual semantics) and
in the inclusion of informative tokens between the
scene-text and caption.

4.5 Effectiveness of multilingual text encoder

Modeling scene-text is not so easy; we have to
essentially deal with various languages since they
depend on where the picture was taken and where

13Note that it may be possible to make the prediction easier
because captions and images in TextCaps contain scene-text.

the product was made in scene-text (Chen et al.,
2021). Recently, Biten et al. (2021) pre-trained
a model on a large text corpus and reported the
robustness of their model with respect to the OCR
errors. We also investigated the model performance
with multilingual (mul) BERT (Devlin et al., 2019)
as the text encoder in the baseline LightningDOT
and LightningDOT with MSM settings. Note that
the vocabulary size (119, 547) of the multilingual
BERT is approximately four times as large as that
of its monolingual counterpart (28, 996).

Compared with the monolingual encoder, the
multilingual encoder increased the retrieval perfor-
mance in the baseline method (LightningDOT) but
degraded the performance when using the scene-
text (w/ ST+MSM). In the multilingual setting, the
LightningDOT baseline could model the joint rep-
resentations well because the pre-training corpus
size and token fertility between the multilingual
and monolingual BERT were nearly the same (Rust
et al., 2021). In contrast, the degradation resulting
from using scene-text in the multilingual setting
indicates that scene-text may still be underrepre-
sented or that false positive tokens due to OCR
errors may harm the model. A better usage of mul-
tilingual BERT in scene-text needs to be explored
in future work.

5 Conclusion

We proposed a framework that incorporates the tex-
tual information in images into the dual-encoder
architecture. An evaluation on the TextCaps
dataset confirmed that modeling the scene-text-
aware cross-modal relationships benefited the dual-
encoder architecture. In future research, we will
attempt a more robust exploration of scene-text
modeling (Singh et al., 2021; Wang et al., 2021b,a).

426



Acknowledgments

We thank the three reviewers for their valuable
comments and suggestions to improve our paper.

References
Radford Alec, Wook Kim Jong, Hallacy Chris, Ramesh

Aditya, Goh Gabriel, Agarwal Sandhini, Sastry
Girish, Askell Amanda, Mishkin Pamela, Clark Jack,
Krueger Gretchen, and Sutskever Ilya. 2021. Learn-
ing Transferable Visual Models From Natural Lan-
guage Supervision. In Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, pages 8748–
8763.

Conneau Alexis and Lample Guillaume. 2019. Cross-
lingual Language Model Pretraining. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 7057–7067.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-Up and Top-Down Attention for Im-
age Captioning and Visual Question Answering. In
2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 6077–6086.

Ali Furkan Biten, Ron Litman, Yusheng Xie, Srikar
Appalaraju, and R. Manmatha. 2021. LaTr: Layout-
Aware Transformer for Scene-Text VQA. CoRR.

Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis
Gomez, Marcal Rusinol, Ernest Valveny, C.V. Jawa-
har, and Dimosthenis Karatzas. 2019. Scene Text
Visual Question Answering. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November
2, 2019.

Fedor Borisyuk, Albert Gordo, and Viswanath Sivaku-
mar. 2018. Rosetta: Large Scale System for Text De-
tection and Recognition in Images. In Proceedings
of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018, pages 71–79.

Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, Canjie Luo,
and Tianwei Wang. 2021. Text Recognition in the
Wild: A Survey. ACM Comput. Surv., pages 42:1–
42:35.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Ronghang Hu, Amanpreet Singh, Trevor Darrell, and
Marcus Rohrbach. 2020. Iterative Answer Prediction
With Pointer-Augmented Multimodal Transformers
for TextVQA. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages
9989–9999.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling Up Vi-
sual and Vision-Language Representation Learning
With Noisy Text Supervision. In Proceedings of the
38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, pages
4904–4916.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-Scale Similarity Search with GPUs. IEEE
Trans. Big Data, pages 535–547.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations ICLR.

Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu,
and Xiaodong He. 2018. Stacked Cross Attention for
Image-Text Matching. In Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part IV, pages
212–228.

Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and
Yun Fu. 2019. Visual Semantic Reasoning for Image-
Text Matching. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pages
4653–4661.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao.
2020. Oscar: Object-Semantics Aligned Pre-training
for Vision-Language Tasks. In Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXX,
pages 121–137.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations ICLR.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and atten-
tional representations for text retrieval. Trans. Assoc.
Comput. Linguistics, pages 329–345.

427

http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1109/CVPR.2018.00636
https://arxiv.org/abs/2112.12494
https://arxiv.org/abs/2112.12494
https://doi.org/10.1109/ICCV.2019.00439
https://doi.org/10.1109/ICCV.2019.00439
https://doi.org/10.1145/3219819.3219861
https://doi.org/10.1145/3219819.3219861
https://doi.org/10.1145/3440756
https://doi.org/10.1145/3440756
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPR42600.2020.01001
https://doi.org/10.1109/CVPR42600.2020.01001
https://doi.org/10.1109/CVPR42600.2020.01001
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/jia21b.html
http://proceedings.mlr.press/v139/jia21b.html
https://doi.org/10.1109/TBDATA.2019.2921572
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-3-030-01225-0_13
https://doi.org/10.1007/978-3-030-01225-0_13
https://doi.org/10.1109/ICCV.2019.00475
https://doi.org/10.1109/ICCV.2019.00475
https://doi.org/10.1007/978-3-030-58577-8_8
https://doi.org/10.1007/978-3-030-58577-8_8
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://transacl.org/ojs/index.php/tacl/article/view/2383
https://transacl.org/ojs/index.php/tacl/article/view/2383


Andres Mafla, Rafael S. Rezende, Lluis Gomez, Diane
Larlus, and Dimosthenis Karatzas. 2021. StacMR:
Scene-Text Aware Cross-Modal Retrieval. In IEEE
Winter Conference on Applications of Computer Vi-
sion, WACV 2021, Waikoloa, HI, USA, January 3-8,
2021, pages 2220–2230.

Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawa-
har. 2021. DocVQA: A Dataset for VQA on Docu-
ment Images. In IEEE Winter Conference on Appli-
cations of Computer Vision, WACV 2021, Waikoloa,
HI, USA, January 3-8, 2021, pages 2199–2208.

Antoine Miech, Jean-Baptiste Alayrac, Ivan Laptev,
Josef Sivic, and Andrew Zisserman. 2021. Think-
ing fast and slow: Efficient text-to-visual retrieval
with transformers. In IEEE Conference on Computer
Vision and Pattern Recognition CVPR, pages 9826–
9836.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,
and Anirban Chakraborty. 2019. OCR-VQA: Visual
Question Answering by Reading Text in Images. In
2019 International Conference on Document Analy-
sis and Recognition, ICDAR 2019, Sydney, Australia,
September 20-25, 2019, pages 947–952.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In International Conference on
Computer Vision (ICCV), pages 2641–2649.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,
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A Detailed Explanation of LightningDOT

A.1 Input tokens for the image encoder

As mentioned in Section 3.1, LightningDOT (Sun
et al., 2021) first extracts multiple object regions
from an input image using a pre-trained object de-
tector based on Faster R-CNN (Anderson et al.,
2018). Let I represent the number of extracted ob-
jects. In fact, the object detector provides two fea-
tures: object regions and their locational features14.
From these features, “Image Emb” (Figure 1) re-
generates the input features to the image encoder.
Specifically, an object feature and its locational
feature are projected into the same dv-dimensional
space using an independent fully connected layer
and then their embeddings are summed and finally
fed into the normalization layer. By this means,
input features O for object regions can be obtained,
that is, O = (o1, . . . ,oI).

The proposed method described in Section 3.2
also extracts multiple tokens of scene-text from
an input image using an OCR system (Rosetta-
en (Borisyuk et al., 2018)). Let K represent the
number of tokenized tokens for the scene-text. In
addition, we apply positional indices to each to-
ken instead of the locational features. Similar to
“Image Emb,” the input feature of the scene-text
is obtained by “Text Emb” (Figure 1). Specifi-
cally, a scene-text token and its positional index
are looked up in their dv-dimensional embeddings
and then their embeddings are summed and finally
fed into the normalization layer. By this means, the
input features T for the scene-text tokens can be
obtained, that is, T = (t1, . . . , tK).

We denote an image encoder as fθv . In
the baseline setting, the image encoder encodes
V = fθv(ṽCLS,o1, . . . ,oI), where ṽCLS is a spe-
cial object “CLS.” In our setting of a scene-text
aware framework, the image encoder encodes
V = fθv(ṽCLS,o1, . . . ,oI , ṽSEP, t1, . . . , tK),
where ṽSEP is a special object “SEP.”

A.2 Cross modal retrieval

Cross modal retrieval (CMR) is a task leveraging
the paired semantics between the visual and tex-
tual representations. Specifically, the similarity
according to the inner product sim(wCLS,vCLS) =
wCLS ·vCLS is optimized to promote a matched pair

14Each locational feature consists of seven-dimensional
vectors: normalized top, left, bottom, and right coordinates,
width, height, and area.

and vice versa with in-batch negative sampling15:

L(CMR)(B) =
1

2B

B∑

b=1

L(TR)(b) + L(IR)(b) (5)

L(TR)(b) = − log

(
esim(vb

CLS,w
b
CLS)
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j=1 e

sim(vb
CLS,w

j
CLS)

)
(6)

L(IR)(b) = − log

(
esim(wb

CLS,v
b
CLS)

∑B
i=1 e

sim(wb
CLS,v

i
CLS)

)
, (7)

where B is the number of instances in a single
(mini-)batch during the training process.

A.3 Implementation details

The model dimensions of both encoders are set
to 12 Transformer layers, 768 hidden dimensions,
and 12 attention heads. In our masking strategy,
following Devlin et al. (2019), we decomposed
15% of the total input tokens into 80% [MASK],
10% random tokens, and 10% unchanged. We used
AdamW (Loshchilov and Hutter, 2019) as the opti-
mizer for pre-training with β1 = 0.9andβ2 = 0.98
and set the learning rate to 5e − 5. We adopted a
learning rate warmup strategy, where the learning
rate was linearly increased during the first 10, 000
training steps, followed by a linear decay to 0. We
set the L2 weight decay to 0.01. We set the batch
size to 4096 per GPU with six accumulation steps.

A.4 Qualitative examples

In this section, we show several qualitative results
of the top-5 image retrievals using the TextCaps
development set (Sidorov et al., 2020). We com-
pare two models, “LightningDOT” and “Lightning-
DOT w/ST+MSM,” which showed the best scores
in Table 1. Figure 2 and 3 show true positive exam-
ples when employing the MSM objective with the
scene-text. The results indicate that both models
can retrieve similar images given the entity level
information and that the model using the MSM
objective retrieved appropriate images, including
the scene-text of “Voll-Damm” (Figure 2b) and

“Sibelius Symphonies from Minnesota Orchestra”
(Figure 3b). Figure 4 shows true negative examples.
In the case when it is necessary to achieve read-
ing comprehension, our proposed method does not
work well. For a more robust and fine-grained com-
prehension, we need to consider the geometrical
relationships between multiple scene-texts (Wang

15Other images and captions in the mini-batch are selected
as negative instances
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et al., 2021b), as well as a pre-training framework
with a large-scale text corpus (Biten et al., 2021),
in future work.
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(a) LightningDOT (out of top-100 range)

(b) LightningDOT w/ ST+MSM (1)

Figure 2: Top-5 retrieval images from the query “A glass bottle and glass of Voll-Damm beer.” The ground truth is
indicated by the green rectangle. The number in parentheses indicates the ranking index of the retrieval result for
the positive image.

(a) LightningDOT (33)

(b) LightningDOT w/ ST+MSM (1)

Figure 3: Top-5 retrieval images from the query “The music book cover with Sibelius Symphonies from Minnesota
Orchestra.” The ground truth is indicated by the green rectangle. The number in parentheses indicates the ranking
index of the retrieval result for the positive image.
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(a) LightningDOT (86)

(b) LightningDOT w/ ST+MSM (20)

Figure 4: Top-5 retrieval images from the query “Open book on a page that says the young man dried up his tears.”
The number in parentheses indicates the ranking index of the retrieval result for the positive image.
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