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Abstract

Automatic speech recognition (ASR) has
evolved from a pipeline architecture with pro-
nunciation dictionaries, phonetic features and
language models to the end-to-end systems per-
forming a direct translation from a raw wave-
form into a word sequence. With the increase
in accuracy and the availability of pre-trained
models, the ASR systems are now omnipresent
in our daily applications. On the other hand,
the models’ interpretability and their compu-
tational cost have become more challenging,
particularly when dealing with less-common
languages or identifying regional variations of
speakers. This research proposal will follow
a four-stage process: 1) Proving an overview
of acoustic features and feature extraction al-
gorithms; 2) Exploring current ASR models,
tools, and performance assessment techniques;
3) Aligning features with interpretable phonetic
transcripts; and 4) Designing a prototype AR-
POCA to increase awareness of regional lan-
guage variation and improve models feedback
by developing a semi-automatic acoustic fea-
tures extraction using PRAAT in conjunction
with phonetic transcription.

1 Introduction

Automated speech recognition (ASR) is the pro-
cess of automatically detecting and recognizing the
words that have been said in a sample of speech.
ASR has a wide variety of uses, such as voice assis-
tants, automatic transcription, speech-to-text, and
closed-caption generation. Many recent ASR mod-
els have been created using deep learning, with
other methods including neural networks, hidden
Markov models, and Gaussian mixture models (Pa-
pastratis, 2021).

ASR models are generally trained on a corpus,
which is a collection of audio recordings. Cor-
pora are widely available for more common lan-
guages, such as English. However, they are either
small or nonexistent for less common languages

and dialects. This is due to the resources needed
to construct a corpus and lack of available speak-
ers. Constructing a corpus involves gathering audio
recordings from a variety of speakers and is a time-
consuming and costly process. As a result, less
common languages remain under-resourced in the
ASR field. The performance accuracy will also
vary with regional language variation and among
different groups of users. ASR performs espe-
cially poorly when given the task of recognizing
the speech of nonnative speakers of a language,
leading to model biases in common AI-assisted
speech technologies (DefinedCrowd, 2021).

Furthermore, there is a lot of variation in ASR
systems. In the last decade, the ASR technology
has evolved from probabilistic frameworks with
hand-crafted features and pronunciation dictionar-
ies to deep learning models in which features are
extracted and learned in hidden layers (Georgescu
et al., 2021). Speech signals also consist of vari-
ous components, such as acoustic, phonetic, and
language-dependent, which jointly provide a repre-
sentation of word sequences. While some features
are interpretable by humans (e.g., place of articula-
tion, vowel formants, pitch), others are the results
of transformations and cannot be directly associ-
ated with any specific phonetic sound.

Finally, various evaluation systems are put forth
to measure speech model accuracy (Negri et al.,
2014). Grapheme-based metrics (a written word)
are commonly used to compare results, such as
word error rate (WER). These measurement sys-
tems, however, are not able to diagnose whether
phonetic errors resulted from a variation in pronun-
ciation, speech boundary misalignment, noise, or
the lack of sufficient data.

This research is focused on existing ASR evalu-
ation systems and speech signal features used for
training. We explore solutions for improving mea-
suring performance metrics. Our goal is to 1) de-
velop a semi-automatic phonetic classification be-
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tween vowels and consonants as these classes are
traditionally associated with different salient fea-
tures (e.g., vowel formants, consonant intensity,
aspiration), 2) help ASR developers to identify im-
provement areas by focusing on specific feature
engineering tasks, and 3) design an alternative eval-
uation system to encourage the ASR research for
less-commonly used languages by incorporating
development cost, corpus size, and phonetic tran-
script as compared to a traditional word error rate
evaluation metric.

The paper is organized as follows. Section 2
presents the overview of ASR performance evalua-
tion metrics, current ASR models and corpora. Sec-
tion 3 describes the most common types of speech
features and tools for their generation. In Section
4, we present our proposed evaluation system AR-
POCA (Assessment of ASR using phonemes, orig-
inality, cost, and accent performance). Finally, we
provide our preliminary results in Section 5, fol-
lowed by conclusion and future direction.

2 Literature Review

2.1 Measuring ASR Performance

One common way of measuring the performance
of automatic speech recognition (ASR) models is
word error rate (WER). WER is a way to measure
the accuracy of ASR. The best possible value is
0% error, and higher percentages are considered
worse. WER is counted by letting a model tran-
scribe a section of audio, then comparing it to the
correct transcription. Both transcriptions are nor-
malized before comparing, which standardizes the
transcripts by removing stop words, forming con-
tractions, etc. The words that the model has in-
serted, deleted, or substituted are counted and used
to calculate WER using the formula illustrated in
Eq.1, where S is a word substitution, D is a deletion,
and I is a word insertion:

WER =
(S +D + I)

TotalWords
(1)

WER is a commonly used method to assess the
performance of ASR models, and creating a model
with a low WER is assumed to result in a model
with better language understanding accuracy. How-
ever, a better WER may not actually result in a
model with a better understanding of spoken lan-
guage, meaning that even if a transcript is mostly
accurate, it may not correctly represent the mean-
ing of the spoken language (Wang et al., 2003).

This problem of accuracy is especially perti-
nent for models that are trained with small cor-
pora, since these models often have a poor WER.
The early study comparing different spoken lan-
guage models (Wang et al., 2003) found that, while
the Model developed using Hidden Markov and
Context Free Grammar (HMM/CFG) had a worse
WER than other language models (e.g. a trigram
model) it achieved a better task classification er-
ror rate, which is a way to measure how well the
model understands the spoken language. This re-
sult was even more pronounced for models trained
with small amounts of data: the HMM/CFG model
was able to use less training data and still gener-
ate a model with a better level of understanding
than the trigram model. It is worth noting that the
HMM/CFG model used domain knowledge and
a grammar library, which helped it achieve good
results without a large training dataset (Wang et al.,
2003). So, while WER can be used as a way to
measure performance, other metrics (e.g., task clas-
sification error rate) may be more useful, especially
for models trained with smaller corpora.

In addition, WER does not provide much feed-
back for developers. While it measures the number
of mistakes a model made, it does not help in re-
vealing why the mistakes were made or whether
similar mistakes were made repeatedly. Providing
more feedback could aid developers in diagnosing
problems with their models more quickly and in the
end, creating better models. This project discusses
the possibility of providing more feedback for ASR
models by identifying commonly mistaken sounds
and recognizing different pronunciations for words.

Another metric for the accuracy of ASR is
phoneme error rate (PER), which is calculated sim-
ilarly to WER. However, while WER is at the word
level, PER counts the number of deleted, inserted,
and substituted phonemes. Phonemes are smaller
than words, which could potentially help pinpoint
errors better.

2.2 Methods for ASR

Deep learning is commonly used for ASR. There
are typically four steps in ASR: 1) pre-processing,
2) feature extraction, 3) classification, and 4) lan-
guage modeling. Pre-processing is a process ap-
plied to recordings which reduces noise and filters
the audio. Feature extraction converts the audio to
features, which are then analyzed and converted to
language in the classification step. Mel-frequency
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Cepstral coefficients (MFCC) is commonly used
for the feature extraction step. MFCC converts au-
dio signals into a linear model of human auditory
processing, which is non-linear.

Deep neural networks can be used for ASR, such
as recurrent neural networks (RNN), convolutional
neural networks, and transformer networks. One
limitation of RNNs is that they process speech
using only the previous input. However, speech
depends on both what comes before and what
comes after. This problem can be solved using bi-
directional RNNs, which process speech forward
and backward. Furthermore, Connectionist tem-
poral classification (CTC), can be used to find the
most probable alignment, which is the arrangement
of speech and silence. Silence can be either not
speaking or transitioning between words or sounds.
CTC must be used in combination with a decoding
step, such as the best-path decoding algorithm. The
best-path decoding algorithm aims to find the most
likely word for each sequence of sound. A method
called RNN-transducer uses an RNN with CTC to
analyze input and also a separate RNN to predict
likely words in the sequence based on previous
words (Papastratis, 2021).

Dialect detection uses similar methods as ASR,
so dialect detection could be used to help improve
ASR. There are several motivations for dialect iden-
tification, including determining the regional origin
and ethnicity of a speaker in order to adapt content
(Ismail, 2020). For example, deep neural networks
have been used to distinguish between dialects of
Arabic. A recent study by Lulu and Elnagar (2018)
used an existing dialectal dataset called the AOC
(Arabic Online Commentary), which has about 110
thousand labeled sentences. The motivation for the
study was to improve dialect detection for Arabic as
informal dialects of Arabic are widely used on the
internet, especially for applications such as blogs,
forums, social media, and more. The study showed
that dialect detection is also useful for machine
translation and sentiment analysis. Four different
types of deep neural network were used: long-short
term memory (LSTM), convolutional neural net-
works (CNN), bi-directional LSTM (BLSTM), and
convolutional LSTM (CLSTM). Three different
dialects were examined - Egyptian, Gulf (which
included the similar Iraqi dialect) and Levantine.
Of the neural networks, the LSTM was the most
accurate overall, with approximately 80% accuracy
on average, which is below the human accuracy of

about 90% (Lulu and Elnagar, 2018).

2.3 Data for ASR

There is a large amount of variability in the corpora
used for ASR. Often, corpora are built at the word
or phrase level. However, for some languages, such
as Tibetan, a corpus at the syllable level can work
better due to the lack of accuracy for word and
phrase recognition (Dao et al., 2021). Many cor-
pora use speech samples that have been recorded
with minimal environmental noise and are of good
quality, which results in models that work best in
these ideal conditions. However, real life condi-
tions can result in noisier speech, so models that
have not been trained with noisy speech can strug-
gle under such conditions (Borský, 2016).

Corpus creation can be a difficult and expensive
process, which often results in smaller or nonexis-
tent corpora for less spoken and under-resourced
languages. Even if corpora exist for a language,
they may not be suitable for certain applications,
as was the case for an experiment conducted by
Zissman et al. (1996). They found that while Span-
ish corpora existed, there was no corpus that had
enough speakers of a variety of dialects. This led to
the creation of the Miami corpus, which collected
speech from Spanish speakers from Peru, Cuba,
and other countries (Zissman et al., 1996). There
are a number of steps involved in corpus creation.
First, recordings must be obtained. This means re-
searchers either have to find people to record their
speech or find existing recordings. There are a
variety of sources for existing recordings, such as
audio books or YouTube videos (Ismail, 2020). If
a transcript does not exist for the recording, then
one must be created. Then, the transcript and audio
must be aligned to ensure that the words shown in
the transcript are placed where the same words are
spoken in the recording (Panayotov et al., 2015).
Recordings may also be cleaned of background
noise and normalized. While there have been ef-
forts to automate the corpus creation process, it is
not guaranteed to be accurate. Therefore, much of
this process is done manually.

3 Speech Signal Features

Feature extractions is a pre-processing task which
transforms sound files into feature vectors that can
be processed and analyzed by a computer. This
tasks can be classified into two main groups: seg-
ment and suprasegmental prosodic features versus
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speaker-dependent and speaker independent fea-
tures (Georgescu et al., 2021; Shahnawazuddin
et al., 2020). While most of acoustic phonetics
utilize interpretable features (e.g. vowel formant,
duration, voice onset time) to describe phonemes
(mental representation of sound) and phones (actual
sounds), the ASR field relies on transformed fea-
ture vectors optimized for Machine learning tasks
(e.g. Linear Prediction and Mel-Frequency coeffi-
cients).

3.1 Acoustic Features

Formant is a common interpretable measurement
that correspond to resonance frequencies in a vo-
cal tract. The first formant (F1) is correlated with
high-low dimension and inversely related to vowel
height, where high values represent open vowels
(e.g. /a/) as compared to low values for low vow-
els (e.g. /i/). The second formant (F2) is corre-
lated with front-back dimension, namely the de-
gree of backness for a vowel. For example, front
vowels (e.g., /i/) will have higher F2 values than
back vowels (e.g., /o/). The third formant (F3)
indicates the round shape of a vowel (Ladefoged,
2006; Kent and Vorperian, 2018). These values can
be seen in a spectogram as dark bands. It should
be noted that these values are not uniform across
speakers, speech style, morphological context, and
language variation, as can be seen from Spanish
acoustic data illustrated in Fig.1, where solid line
represents a vowel space obtained in a controlled
laboratory sampling of Peninsular Spanish and dot-
ted lines demonstrate a much smaller vowel space
from a spontaneous speech of Venezuelan Spanish
(Scrivner, 2014).

Figure 1: Comparison of Spanish vowel formants
between controlled (solid line) and spontaneous
speech (dotted line) and between two Spanish dialects
(Venezuelan and Peninsular).

Similarly, consonants have three dimensions but

related to 1) place of articulation (e.g. dental, glot-
tal), 2) manner of articulation (e.g., nasal, fricative),
and 3) voicing (Ladefoged, 2006).

In sum, three classes of distinct sound landmarks
have been proposed: 1) abrupt discontinuity of
consonants, 2) steady periods of vowels, 3) non-
abrupt transition of glides (e.g. /w/) (Park, 2008).

3.2 Feature Vectors Extraction Algorithms

One of the preliminary operations to generate vec-
tor features is framing. Framing breaks the sound
into small frames, typically 25ms long with 10ms
overlap with neighboring frames. The overlap is
important due to the dependence which speech has
on preceding and following sounds. During fram-
ing, windowing is carried out, in which a Hamming
or Han (sometimes referred to as Hanning) filter
is performed. The window function decreases the
amplitude at the beginning and end of the frame,
which again, makes overlapping frames necessary
to prevent anomalies (Georgescu et al., 2021).

Several feature extraction methods can be ap-
plied after framing, namely, Fast Fourier Transform
(FFT), Linear Prediction Coefficients (LPC), Mel-
Frequency Ceptrum Coefficients (MFCC), Mel-
Filterbanks, Discrete Cosine Transform (DCT).
FFT is a common technique used to transform
speech signal from a time domain to a frequency
domain. The FFT separates the air exhaled from
the lungs and the time response of the vocal tract by
converting from the time domain to the frequency
domain, which allows these two features to be sep-
arated. When framing, windowing, and FFT are
applied to an audio sample, a spectrogram can be
created from the results. In contrast, LPC relies on
linear prediction. It uses past samples to predict the
current sample. However, this method has some
drawbacks, such as inability to distinguish similar
vowel sounds and its inaccurate analysis of speech
signals due to the assumption that speech signals
are stationary. Finally, MFCCs can be obtained by
applying DCT to the log power spectrum of mel
frequencies (Gupta et al., 2018).

4 ARPOCA Approach

In response to the problems previously identified
in the field of speech recognition, this proposal
aims to develop a more in-depth evaluation sys-
tem called ARPOCA. ARPOCA is an acronym for
Assessment of ASR using Phonemes, Originality,
Cost, and Accent performance. The main goal is
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to develop a phoneme recognition system using
phoneme classification and transcription, indepen-
dent from a grapheme representation used in WER.

First, we selected open source existing tool
Praat, a software designed for sound processing
(Boersma, 2001; Styler, 2011), to extract inter-
pretable feature representations for each phoneme.
Second, we identified the following salient features
for phoneme classification: frequency formants,
dispersion (also called standard deviation), center
of gravity, and intensity. Standard formant ranges
for F1, F2, F3 are used to identify vowels. Dis-
persion, center of gravity, and intensity are used to
identify consonants. Center of gravity measures at
what frequency a sound is most concentrated, while
dispersion measures how widely the frequencies of
a sound are spread. Intensity measures the loudness
of a sound in decibels. For testing, we obtained a
non-transcribed free sample Spanish audio corpus
(Defined.ai, n.d.).

In our next stage, we will create a manual pho-
netic transcription of utterances from the corpus, in
addition to segmenting and labeling the utterances
for usage in PRAAT. We will collect information
about expected values of acoustic features used
for identifying phonemes and compare our man-
ual phonetic transcription with the output from an
available speech recognizer library in python. In
addition, we will analyze several existing models
to establish a baseline for originality and cost in
these models, and use this to create a rating system.
Furthermore, the phoneme recognition system will
incorporate an accent performance analysis. That
is, the phoneme recognition system will identify
whether a model has a wide pronunciation gap and
identify particular areas where a model struggles,
which will help close the accent gap.

5 Preliminary Results

In the first stage of this proposal, we are exploring
features extracted from spectogram and speech-
wave. Fig. 2 displays an example of Spanish word
‘necesito‘ (I need). The sound waves help distin-
guish between sound and silence, amplitude and
intensity of sounds, while the spectrogram provides
a view of formant frequencies, consonants obstruc-
tion and frication.

While PRAAT includes scripting, using Python
in addition makes running the PRAAT script easier
to automate, especially for large amounts of audio
samples. Python code calls a PRAAT script, then

Figure 2: An example of using Praat to segment speech
and label phonemes. Sound waves are shown at the top,
followed by a spectrogram, then the segmentation. Red
dots in the spectrogram show formants, while the blue
line shows pitch.

performs additional operations on the results of the
PRAAT script, such as matching the formants to the
correct phoneme class. Table 1 demonstrates pre-
liminary results from using PRAAT in conjunction
with Python. The PRAAT script obtained formant
values at the median time of each segment. Then,
the results are matched to the phoneme based on
formant range. For example, the /e/ phoneme typ-
ically has F1 values between 485 and 565 and F2
values between 2170 and 2430. While some of the
vowels fell within the expected ranges of formants
during testing, others did not. This could be for sev-
eral reasons. One such reason is not normalizing
speech prior to attempting to recognize phonemes.
Normalization could help reduce variance between
individual speakers. Dialectal variation may also
be a factor, since vowel frequencies can vary be-
tween different dialects.

Phoneme Duration F1 F2 F3
n 0.0522 - - -
e 0.0726 572 2438 2960
s 0.0713 - - -
e 0.0657 484 2086 2964
s 0.0654 - - -
i 0.0708 489 2575 3439
t 0.1040 - - -
o 0.0932 6034 1274 2862

Table 1: Preliminary results from formant analysis us-
ing Praat and Python to identify formants in the audio
segment ’necesito’ (I neeed). F1, F2, and F3 are values
for formants 1, 2, and 3 respectively.

Since consonants cannot be identified using for-
mants only, we use different measurements, includ-
ing center of gravity, intensity, and standard devia-
tion. Currently, using these measurements is only
precise enough to differentiate between fricative
and non-fricative consonants. More work must be
done to refine the expected ranges for consonants
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to be able to identify individual consonants.
Originality is another aspect of ARPOCA. We

have determined that a scoring rubric would likely
be best to assess originality, since there is little
research on this topic. Thus, research that is an ad-
dition or improvement on an existing model will re-
ceive a lower score than more novel research. Cost
is also an important element of ARPOCA. Prelimi-
nary research suggests that a budget of $500,000
would be attainable for many researchers (NIH,
n.d.). An overall cost, including corpus cost and
compute cost, which does not exceed $500,000
would score the highest, with score decreasing as
total cost increases. The reason for this is twofold.
Firstly, there are many applications that require
smaller, less costly models. For instance, such
models could be used to assist people with hearing
loss by providing real-time transcriptions. Sec-
ondly, many costly models with large corpora al-
ready exist and are prioritized under the prevalent
measurement system of WER. Therefore, in or-
der to encourage innovation in the field of ASR,
smaller, less costly models will be encouraged.

There are several important outcomes from
the preliminary results. In its current state, the
phoneme recognizer is unlikely to work with En-
glish, due to the presence of a large number of
vowels which are not easily distinguishable. The
phoneme identifier has been tested using Spanish,
which is better suited to this purpose due to the
smaller number of vowels, which are relatively easy
to distinguish. An additional flaw in the phoneme
identifier is its difficulty distinguishing between
vowels and voiced consonants. Table 2 shows that
the /n/ phoneme is identified as a vowel, but should
be identified as a voiced consonant. The speech seg-
ments used were relatively noiseless; the phoneme
recognizer is likely to be less accurate in a more
noisy environment.

6 Conclusion and Future Work

The objective of this work is to supplement ASR
models and developers with an additional tool pro-
viding not only a feedback but also more inter-
pretable representation of sound models via pho-
netic transcription. Such feedback could include
highlighting phonemes that have been consistently
misidentified and/or measuring performance of the
model when given audio samples produced by non-
native speakers, which is an area in which ASR
models typically struggle. This feedback could im-

Time Phoneme ID SR
1.935 vowel n
1.987 e e
2.059 voiceless fricative s
2.129 e e
2.184 voiceless fricative s
2.275 e i
2.331 voiceless non-fricative t
2.441 o o

Table 2: A comparison of preliminary results from the
phoneme identifier and a transcript created by the speech
recognizer. Phoneme ID represents the results from the
phoneme identifier, while SR represents the results from
the python speech recognition.

prove the accuracy of ASR models and lessen the
accent gap. Accuracy of models could also be im-
proved by providing developers more feedback on
their models than just using standard performance
metrics. For instance, commonly mistaken sounds
(phonemes) could be used as a form of feedback to
help improve models and augment existing corpora.
Furthermore, a phonetic approach could help create
dictionaries with dialectal variation (regional alter-
native pronunciation) that can be added to training
corpora. Finally, language transfer (using the re-
sources from one language to develop resources
in another similar language or dialect) could help
provide resources for underrepresented spoken lan-
guages.

ARPOCA needs more development in order to
become more accurate. This could include addi-
tional data for improving the cost baseline and grad-
ing in addition to more research into expected val-
ues of formants, center of gravity, intensity, and
dispersion. In its current state of research, AR-
POCA serves as a proof of concept for the de-
velopment of a more robust assessment tool for
ASR models. We envision ARPOCA being used
in settings such as peer reviews and conferences
to promote discussion and improvement of ASR
models. ARPOCA can aid in supporting different
research goals than WER. For instance, a model
with a smaller corpus typically costs less to produce
and would therefore score better in the cost section
of WER. This could encourage the production of
models for under-resourced and less widely spoken
languages, even if such models do not immediately
have a good enough WER score to compete with
models for languages such as English. Another
possible benefit of using ARPOCA is closing the
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accent gap. Although the accent performance anal-
ysis system has not been developed yet, the existing
phoneme identification could help developers de-
termine if there are specific groups of formants that
a model has misidentified. On the other hand, AR-
POCA must be carefully revised to ensure that the
scoring system is fair and accurate. If there are inac-
curacies in ARPOCA or top scores are unattainable,
this could result in a variety of unwanted outcomes,
such as giving models the wrong scores or discour-
aging developers. In addition, while ARPOCA has
been developed with collaboration and discussion
in mind, it has the possibility to fuel competition
as well, due to its role as a tool for assessment.
Therefore, ARPOCA must be used with care and
consideration as to whether its use is appropriate
for a given situation.
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