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Abstract

Existing visual grounding datasets are artifi-
cially made, where every query regarding an
entity must be able to be grounded to a corre-
sponding image region, i.e., answerable. How-
ever, in real-world multimedia data such as
news articles and social media, many entities in
the text cannot be grounded to the image, i.e.,
unanswerable, due to the fact that the text is
unnecessarily directly describing the accompa-
nying image. A robust visual grounding model
should be able to flexibly deal with both an-
swerable and unanswerable visual grounding.
To study this flexible visual grounding prob-
lem, we construct a pseudo dataset and a so-
cial media dataset including both answerable
and unanswerable queries. In order to handle
unanswerable visual grounding, we propose a
novel method by adding a pseudo image re-
gion corresponding to a query that cannot be
grounded. The model is then trained to ground
to ground-truth regions for answerable queries
and pseudo regions for unanswerable queries.
In our experiments, we show that our model
can flexibly process both answerable and unan-
swerable queries with high accuracy on our
datasets.1

1 Introduction

Starting from conventional vision-and-language
tasks such as image captioning (Vinyals et al.,
2015) and visual question answering (Wu et al.,
2017), many studies have been conducted to pro-
mote joint vision-and-language understanding. Vi-
sual grounding, which aims to find a specific region
in an image given a query regarding an entity, is a
fundamental task for enhancing the performance of
various joint vision-and-language tasks (Plummer
et al., 2015). For instance, in image captioning, it
is important to ground to the corresponding image
region while generating words for that region; in

1The social media dataset is available at https://
github.com/ku-nlp/SMD4FVG.

Figure 1: A comparison between previous visual
grounding work and our flexible visual grounding work.
In previous work, a query must be able to be grounded
(see the left sub-figure), while our work can deal with
both answerable and unanswerable visual grounding
flexibly (in the right sub-figure, “two wonderful horses”
can be grounded, while “my favorite picture,” “a beau-
tiful sunrise,” and “a frosty day” cannot be grounded).
The green bounding boxes are the ground-truth for an-
swerable queries.

VQA, it is crucial to understand to which image
region the question is referring. Because of the im-
portance of visual grounding, many research efforts
have been dedicated to improve its accuracy (Plum-
mer et al., 2015; Wang et al., 2016a; Fukui et al.,
2016; Rohrbach et al., 2016; Wang et al., 2016b;
Yeh et al., 2017; Plummer et al., 2017; Chen et al.,
2017; Yu et al., 2018b; Yang et al., 2020a,b; Dong
et al., 2021).

Previous visual grounding work assume that
a query must be able to be grounded to an im-
age region and create many datasets such as the
Flickr30k entities (Plummer et al., 2015), RefClef
(Kazemzadeh et al., 2014), RefCOCO, RefCOCO+
(Yu et al., 2016), RefCOCOg (Mao et al., 2016),
and Visual7W datasets (Zhu et al., 2016) for the
task. However, this assumption is not true in real-
world multimedia data such as news, TV dramas,

285

https://github.com/ku-nlp/SMD4FVG
https://github.com/ku-nlp/SMD4FVG


and social media, where entities in the text are not
always able to be grounded to the visual data due to
the fact that text and visual data in these multime-
dia data are unnecessarily directly corresponding
to each other.

We name the case that a query can be grounded
to an image region as answerable visual ground-
ing; otherwise, unanswerable visual grounding
from here. The ignorance of unanswerable visual
grounding in previous work can lead to problems
for downstream tasks. For instance, in VQA, if
the VQA model cannot understand the case that
entities in the question cannot be grounded to the
image, it cannot deal with the case that a question
cannot be answered given the image either. There-
fore, a robust visual grounding model should be
able to flexibly deal with both answerable and unan-
swerable visual grounding. In this work, we study
this flexible visual grounding problem. Figure 1
compares our work with previous work.

To study flexible visual grounding, we construct
two types of datasets. The first one is a pseudo
dataset, which is constructed by randomly selecting
queries from other images and combining it with a
target image in the RefCOCO+ dataset (Yu et al.,
2016). The second one is a social media dataset
(SMD4FVG), which contains unanswerable real-
world queries. We construct the SMD4FVG dataset
by crawling tweets consisting of both images and
text and annotating answerable and unanswerable
queries via crowdsourcing.

Previous visual grounding models cannot han-
dle unanswerable visual grounding. To give a
model the ability to flexibly identify whether the
input query can be grounded or not, we propose
a novel method for unanswerable visual ground-
ing by adding a pseudo region corresponding to
a query that cannot be grounded. The model is
then trained to ground to ground-truth regions for
answerable queries and pseudo regions for unan-
swerable queries. Experiments conducted on both
the pseudo and SMD4FVG datasets indicate that
our model can flexibly process both answerable
and unanswerable queries with high accuracy. In
addition, we study the possibility of the usage of
using the pseudo dataset to improve the accuracy
on the SMD4FVG dataset.

The contributions of this paper are in three-folds:

• We propose a flexible visual grounding task
that includes unanswerable visual ground-
ing, where the unanswerable visual grounding

problem has not been studied before.

• We construct a pseudo dataset based on the
RefCOCO+ dataset and a social media dataset
based on tweets consisting of both images
and text via crowdsourcing for studying the
flexible visual grounding task.

• We propose a flexible visual grounding model,
which can deal with both answerable and
unanswerable queries and achieves high accu-
racy on our datasets.

2 Related Work

Previous visual grounding studies have been con-
ducted on different datasets. In the Flickr30k enti-
ties dataset (Plummer et al., 2015), a query corre-
sponds to a noun phrase (i.e., entity) containing in a
caption of an image. In the RefClef (Kazemzadeh
et al., 2014), RefCOCO, RefCOCO+ (Yu et al.,
2016), and RefCOCOg (Mao et al., 2016) datasets,
a query is an phrase referring to an object in an im-
age. In the Visual7W dataset (Zhu et al., 2016), a
query corresponds to a question regarding an image
region. However, all these datasets do not consider
unanswerable visual grounding. In contrast, we
propose flexible visual grounding and construct a
pseudo dataset and a social media dataset.

Regarding visual grounding models, Plummer
et al. (2015) proposed a method based on canoni-
cal correlation analysis (Hardoon et al., 2004) that
learns joint embeddings of phrases and image re-
gions. Wang et al. (2016a) proposed a two-branch
neural network for joint phrasal and visual em-
beddings. Fukui et al. (2016) used multimodal
compact bilinear pooling to fuse phrasal and vi-
sual embeddings. Rohrbach et al. (2016) proposed
a method to first detect a candidate region for a
given phrase and then reconstruct the phrase using
the detected region. Wang et al. (2016b) proposed
an agreement-based method, which encourages se-
mantic relations among phrases to agree with vi-
sual relations among regions. Yeh et al. (2017)
proposed a framework that can search over all pos-
sible regions instead of a fixed number of region
proposals. Plummer et al. (2017) used spatial re-
lationships between pairs of phrases connected by
verbs or prepositions. Chen et al. (2017) proposed
a reinforcement learning-based model that rewards
the grounding results with image-level context. Yu
et al. (2018b) improved the region proposal net-
work by training it on the Visual Genome dataset
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(Krishna et al., 2016) to increase the diversity of
object classes and attribute labels. Sadhu et al.
(2019) proposed to combine object detection and
grounding models to deal with unseen nouns during
training. Yang et al. (2020a) propagated relations
among noun phrases in a query based on the linguis-
tic structure of it. Yang et al. (2020b) addressed the
long and complex queries by recursive sub-query
construction. Dong et al. (2021) proposed a cross-
lingual visual grounding task, which transfers the
knowledge from an English model to improve the
performance of a French model.

Inspired by the success of pre-training language
models such as BERT (Devlin et al., 2019), vision-
and-language pre-training on large image caption
datasets such as the conceptual captions dataset
(Sharma et al., 2018) has been proposed such as
ViLBERT (Lu et al., 2019) VL-BERT (Su et al.,
2020; Lu et al., 2020), and UNITER (Chen et al.,
2020). Those vision-and-language pre-training
models differ from the model architecture. Vision-
and-language pre-training is evaluated on tasks in-
cluding visual grounding. However, same to pre-
vious studies, the visual grounding task does not
consider unanswerable cases (Lu et al., 2019; Su
et al., 2020; Chen et al., 2020). Our flexible vi-
sual grounding model is based on the multi-task
ViLBERT model (Lu et al., 2020), which achieves
state-of-the-art performance on visual grounding.

3 Dataset Construction

Because there are no existing visual grounding
datasets where unanswerable queries are contained,
we present two ways to construct two types of
datasets to study the flexible visual grounding prob-
lem.

3.1 RefCOCO+ Pseudo Dataset

As the construction of a new large-scale dataset is
costive and time-consuming, firstly, we constructed
a pseudo dataset based on the RefCOCO+ dataset
(Yu et al., 2016) using the negative pair sampling
method presented in (Yu et al., 2018a). To gen-
erate unanswerable data, we randomly select an
image and a query of another image from the Re-
fCOCO+ dataset and combine them as a pair of
visual grounding data. Because the query is from a
different image, we can assume that the query can-
not be grounded to the selected image. However,
there is still a possibility that the randomly selected
query can be grounded to the image, which may

lead to noise. We will discuss this problem in Sec-
tion 6.1. Next, we combined the generated unan-
swerable data to the original RefCOCO+ dataset to
make a pseudo dataset containing both answerable
and pseudo unanswerable queries.

3.2 Social Media Dataset (SMD4FVG)

Unanswerable visual grounding exists in real-world
multimedia data consisting of both text and visual
information such as news, TV dramas, and social
media. Among these, social media is one typical
case where there are many unanswerable visual
grounding data because the text and visual infor-
mation posted by users are not necessarily closely
related to each other. Due to this characteristic, in
social media, there could be more unanswerable
visual grounding data than answerable ones. This
might result in an unbalanced dataset, making train-
ing and evaluation difficult. In order to construct
a balanced dataset, we propose a pipeline shown
in Figure 2. We describe each step in detail in this
section.

Data Crawling

To construct the SMD4FVG dataset, we first
crawled image and text pairs from Twitter. We
will follow the fair use policy of Twitter regarding
copyright of the crawled data.2 We used Twitter’s
official library tweepy3 for this process. In order
to inherit previous visual grounding studies, we
decided to crawl data from the same domain as the
RefCOCO+ dataset. To this end, we searched the
hashtags in Twitter that match the object classes in
the RefCOCO+ dataset and only crawled the data
that hit. As a result, 20, 941 tweets of images and
text pairs were crawled.

Image Filtering

In order to construct a visual grounding dataset
balanced on both answerable and unanswerable
queries, we further conducted image filtering from
the crawled tweets. For the image filtering process,
we used EfficientnNet (Tan and Le, 2019) to clas-
sify images, Yolov4 (Bochkovskiy et al., 2020) to
detect objects and CRAFT (Baek et al., 2019) to
detect text in images.

The EfficientNet model was pre-trained on the
ImageNet dataset (Deng et al., 2009). With the

2https://help.twitter.com/en/
rules-and-policies/fair-use-policy

3https://www.tweepy.org/
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Figure 2: The pipeline for constructing the social media dataset. After crawling tweets containing both images
and text, we first filter images that do not belong to the RefCOCO+ classes, contain less than two objects, or are
dominated with text in the image step by step. After that, we extract noun phrases as queries in the tweet text.
Finally, we annotate answerable and unanswerable queries via crowdsourcing in two steps where in the first step,
unanswerable queries are identified, and in the second step, bounding boxes are annotated for answerable queries.

same purpose of inheriting previous visual ground-
ing studies, from the ImageNet classes output by
EfficientNet, we only chose the classes similar
to RefCOCO+ classes and removed the others.
When determining the similarities between the Re-
fCOCO+ classes, we calculated the Wu & Palmer
similarity (Wu and Palmer, 1994) and chose classes
that surpassed a similarity score of 0.85. It calcu-
lates similarity by considering the depths of the
two synsets (s1, s2) within the WordNet (Feinerer
and Hornik, 2020) hierarchy, along with the depth
of the least common subsumer (LCS) as:

Wu− Palmer = 2 ∗ depth(LCS(s1, s2))

depth(s1) + depth(s2)
(1)

As a result of the image classification-based filter-
ing, the crawled 20, 941 tweets decreased to 6, 813
tweets.

For the next step, we filtered more tweets using
the Yolov4 object detection model. The object de-
tection model was pre-trained with the Microsoft
COCO dataset (Lin et al., 2014). We chose images
that had two or more objects because images with
only one single object or background are consid-
ered to be too easy for our task. As a result, 4, 028
tweets were chosen from the 6, 813 tweets.

In the crawled tweets, we found that many im-
ages consisted of mostly text and website informa-
tion. As visual grounding is almost impossible for
text/website-dominated images, we further filtered
those images. To this end, we used the optical char-
acter recognition model of CRAFT. Based on the
results of the optical character recognition model,

we calculated a text proportion ratio in an image.
We only kept images that had a proportion ratio
lower than 0.05 with respective to the entire image.
As a result, 3, 425 images were left.

Due to the limitations of the above image pro-
cessing models, advertisement, inappropriate, and
duplicate images were still left in the dataset after
the above filtering process. Therefore, we further
manually checked the data and discarded them. As
a result, 988 tweets were finally left.

Query Extraction

Tweets contain emoji, links, and mentions, which
make query extraction difficult. Therefore, we pre-
processed the data and eliminated those expres-
sions. From the pre-processed text, we extracted
sentences and used the chunking model (Akbik
et al., 2018) to chunk the noun phrases within the
sentences. We did not use the pronoun (such as he,
her, she) and relative pronoun (such as which, who,
that) as queries. As for complex noun phrases that
contain other noun phrases within them, we split
them and only used single noun phrases as queries.
As a result, we obtained 8, 827 queries for the 988
images.

Crowdsourcing Annotation

From the 8, 827 pairs of image and query obtained,
we annotated image regions that can be grounded
by queries and finally constructed the SMD4FVG
dataset. For the annotation, we used Amazon Me-
chanical Turk. The compensation was 8-9 dollars
per hour.

288



The annotation process consists of two steps.4

The first step is the “bounding box requirement”
task. In this step, we asked workers if a query can
be grounded, and if not, which of the following
cases it belongs to: 1) What the query refers to
cannot be seen in the image. 2) The query does not
refer to something specific in the image but rather
to the background. 3) The query is an abstract noun
that might be confusing based on the contents of
the image.

In case 1, the query refers to an entity, but the
image does not contain that entity. For instance, in
the right part of Figure 1, the query “my favorite
picture” entity does not appear in the image. In
case 2, if the query is the background of an image,
it might make the annotation regions different by
different workers, or as there are many objects in
the background, it might make the definition of
background vague. For instance, in the right part
of Figure 1, it is hard to clearly determine the re-
gion for the query “a beautiful sunrise.” Also, there
might be many objects in the annotation. There-
fore, we asked workers to annotate this case as
unanswerable. In case 3, if the query is an abstract
noun, the judgment of annotation might differ from
workers. For instance, if the query is “sport,” and
some workers might define “sport” as a person do-
ing a sport and determine the query as answerable
based on the contents of an image, and some work-
ers might define “sport” as something invisible and
determine the query as unanswerable. Thus, we
set this case as unanswerable. As a result of the
crowdsourcing annotation for this step, we obtained
6, 941 unanswerable queries in total.

The second step is the “drawing the bounding
box” task. In this step, the annotation was done for
data that were not annotated as unanswerable in
the first step. Workers were asked to draw a bound-
ing box for an image region corresponding to a
query. The difficult part of this process was when
there were multiple instances that corresponded to
one query in an image. In this case, we instructed
the workers to annotate multiple instances to one
bounding box if the instances are not clearly sepa-
rated; otherwise, we annotate them with individual
bounding boxes. Besides that, queries in social
media data can contain proper nouns, which are
special compared to previous datasets and could
be interesting to study; thus, we asked workers to

4The screenshot of the interfaces for these two steps can
be found in Appendix A.

indicate if an answerable query belongs to these.
In total, 1, 886 answerable queries were annotated,
among which 576 queries belong to proper nouns.

Finally, we manually checked the results of the
two steps. We checked 100 unanswerable pairs and
found that 7 of them were wrongly labeled. Most
of them were simple misses where the entity that
the query refers to does exist in an image, which
we plan to improve as our future work. In addition,
we checked and corrected the bounding boxes that
were miss-labeled by workers of all answerable
pairs. As a result, we obtained 8, 827 annotated
query and image pairs for our SMD4FVG dataset.

4 Flexible Visual Grounding Model

We propose to add a pseudo region to a visual
grounding model to achieve flexible visual ground-
ing for both answerable and unanswerable queries.
An overview of our proposed model is shown in
Figure 3. In this section, we first present our vi-
sual grounding model, followed by the way to add
pseudo regions for unanswerable queries.

4.1 Visual Grounding Model
Our visual grounding model follows (Lu et al.,
2020), which consists of 2 stages. In the first stage,
we extract region proposals and feature vectors of
all regions with an object detection model. We
employ the Faster RCNN (Ren et al., 2015) model
in the first stage. In the second stage, a similarity
score between a region proposal and an input query
is calculated. We utilize the multi-task ViLBERT
(Lu et al., 2020) for the calculation of the similarity
between a region proposal and the input query. Our
model is trained to minimize a binary cross-entropy
(BCE) loss between a label vector and a similar-
ity score vector similar to (Sadhu et al., 2019). In
inference, the input query will be grounded to the
region with the highest similarity score.

In detail, after extracting a feature vector fv ∈
Rdv for a region proposal by Faster RCNN, a spa-
tial vector fs ∈ R5 is incorporated to it. The spatial
vector is encoded to a 5-d vector from normalized
top-left and bottom-right coordinates as:

fs =
[
xtl
W , ytlH , xbr

W , ybrW , wh
WH

]
, (2)

where (xtl, ytl) is the top-left coordinate, (wbr, ybr)
is the bottom-right coordinate, w and h are the the
width and the height of the region, and W and H
are the width and the height of the image, respec-
tively. The spatial vector is then projected to match
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Figure 3: The proposed flexible visual grounding model. For an unanswerable query, we add a pseudo region and
train the model to ground the query to the pseudo region.

the dimension of the visual feature by a learnable
weight matrix Ws ∈ R5×dv and then added to fv to
generate the final region feature vector vr as:

vr = fv +Wsfs. (3)

The query is given in both training and inference.
It is denoted as q. Next, vr and q are input to
the multi-task ViLBERT model, which generates a
representation hi ∈ Rdi for the ith region and the
query as:

hi = ViLBERT(vr,q). (4)

hi is then used to calculate a similarity score for
the ith region by:

si = Wihi, (5)

where Wi ∈ Rdi×1 is a learnable weight matrix.
The ground-truth label score is set to 1 if the IoU

between a region proposal and the ground-truth
region is larger than 0.5; otherwise, it is set to 0.
The similarity score vector sji and the ground-truth
label vector lji for the ith region in the jth image
are then used to minimize a BCE loss as:

BCE = − 1

N

N∑

j=1

M∑

i=1

ljilog(sji)+(1−lji)log(1−sji), (6)

where N is the number of image and query pairs in
a dataset, and M is the number of region proposals
for an image.

4.2 Pseudo Region
To make our visual grounding model deal with
unanswerable queries, we propose to incorporate a
pseudo region corresponding to an unanswerable

query into the region proposals. An example is
shown in Figure 3. In Figure 3, the input query
“man is playing baseball" is not related to the input
image, where the image is about feet and clocks;
thus, the query cannot be grounded to the image.
For this query, we add a pseudo region to the re-
gions proposed by Faster RCNN (Ren et al., 2015).
The position of the pseudo region is set to the top-
left of the input image, and all the x and y coordi-
nate values of its spatial vector are set to 0 in Eq.
(2). All components of the feature vector fv ∈ Rdv

for the pseudo region are set to +1.
Our visual grounding model calculates the simi-

larity score between the pseudo region incorporated
region vectors and the query same as Section 4.1.
The model is then trained to give the highest simi-
larity score for the pseudo region when the query
cannot be grounded. During inference, the model
will output the region with the highest score as the
prediction. For instance, in the example of Figure
3, the pseudo region will be chosen for the input
query because the input query is not corresponding
to the input image.

5 Experimental Settings

In our experiments, we verify the effectiveness of
the proposed model on both the RefCOCO+ pseudo
and SMD4FVG datasets. Here, we first describe
the statistics of each dataset and settings, followed
by training details.

5.1 Settings on the RefCOCO+ Pseudo
Dataset

For the pseudo dataset, based on the RefCOCO+
dataset, we generated unanswerable data and com-
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Dataset Split Answerable Unanswerable

Pseudo
Train 42,278 21,139
Validation 3,805 1,905
Test 3,773 1,886

SMD4FVG
Train 1,270 4,775
Validation 330 1,097
Test 286 1,069

Table 1: Statistics of our datasets (i.e., number of query
and image pairs).

bined them with the original dataset with the ratio
of 1:2. The upper part of Table 1 shows the statis-
tics of the pseudo dataset.

For the pseudo dataset, we investigated the per-
formance of our model with the following settings:

• RefCOCO+: A baseline that trained our vi-
sual grounding model in Section 4 on the orig-
inal RefCOCO+ dataset to evaluate answer-
able visual grounding only, and compared the
performance with (Lu et al., 2020).

• RefCOCO+Thres: A baseline based on the
RefCOCO+ setting but sets a threshold accord-
ing to the similarity score (Eq. (4)) distribu-
tion for all queries during inference. Queries
with the highest similarity scores below the
threshold were treated as unanswerable oth-
erwise answerable. The threshold was tuned
on the validation split of the pseudo dataset to
achieve the highest accuracy for all queries.

• Pseudo: We directly trained and evaluated our
model on the pseudo dataset.

• SM→Pseudo: We first trained our model on
the training data of the SMD4FVG dataset and
then further fine-tuned it on the pseudo dataset.
We hope that the annotated SMD4FVG
dataset could boost the performance on the
pseudo dataset.

5.2 Settings on the SMD4FVG Dataset

The lower part of Table 1 shows the statis-
tics of the SMD4FVG dataset, where we split
the annotated 8, 827 query and image pairs into
train/validation/test with a 69%:16%:15% distri-
bution. We evaluated the performance on the
SMD4FVG dataset with the following settings:

• RefCOCO+Thres: A baseline similar to
the RefCOCO+Thres setting on the pseudo

dataset, but the threshold was tuned on the
validation split of the SMD4FVG dataset.

• Pseudo: Aiming to investigate the difference
between the pseudo and SMD4FVG datasets,
we trained our model on the training data of
the pseudo dataset and evaluated it on the
SMD4FVG dataset.

• SM: This is a straightforward setting that di-
rectly trained and evaluated our visual ground-
ing model on the SMD4FVG dataset.

• Pseudo→SM: We first trained our model on
the training data of the pseudo dataset and
then further fine-tuned it on the SMD4FVG
dataset. We hope that the large scale of the
pseudo dataset could boost the performance
on the SMD4FVG dataset.

5.3 Training Details
Visual features and region proposals were extracted
from the ResNeXT-152 Faster-RCNN model (Ren
et al., 2015) trained on the Visual Genome dataset
(Krishna et al., 2016) with an attribute loss. It
was not fine-tuned during training. We used the
multi-task ViLBERT model (Lu et al., 2020) for
calculating the similarity score between region pro-
posals and the query, which contains a 6 / 12 layer
of transformer blocks for visual/linguistic streams
individually. The multi-task ViLBERT was trained
simultaneously with 4 vision-and-language tasks
on 12 datasets. We set the region feature dimen-
sion dv to 2, 048, the joint ViLBERT representation
dimension di to 1, 024, and the number of region
proposals N to 100. We trained our model on 8
TitanX GPUs with a batch size of 256, 20 epochs,
and the AdamW optimizer with a linear warmup
and linear decay learning rate scheduler following
(Lu et al., 2020) for all settings.

6 Results

6.1 Results on the Pseudo Dataset
The upper part of Table 2 shows the accuracy of our
model on the pseudo dataset. For the RefCOCO+
setting, our model achieves an accuracy of 73.3%,
which is almost the same as the result 73.2% when
we evaluated the original model of (Lu et al., 2020)
using their codes. This indicates that adding a
pseudo region has little effect on the performance
for answerable visual grounding. However, it can-
not deal with unanswerable queries due to the ab-
sence of such data in the RefCOCO+ dataset. The
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Dataset Setting Ans. Unans. All

Pseudo

RefCOCO+ 73.3 N/A 73.3
RefCOCO+Thres 90.3 46.9 75.9
Pseudo 69.7 91.2 76.8
SM→Pseudo 70.3 89.9 76.9

SMD4FVG

RefCOCO+Thres 0 100.0 78.9
Pseudo 49.7 65.6 62.2
SM 31.8 95.0 81.7
Pseudo→SM 41.3 91.3 80.7

Table 2: Visual grounding results on the pseudo and
SMD4FVG datasets. Ans., Unans., and All denote the
accuracy for answerable, unanswerable, and all queries,
respectively.

RefCOCO+Thres setting works well for answer-
able queries but fails for answerable ones. The
similarity score distribution is in Appendix B.

For the pseudo setting, our model achieves an
accuracy of 69.7% and 91.2% for answerable and
unanswerable queries, respectively. Our model
can ground unanswerable queries with high accu-
racy. However, it drops 2.6% point for answerable
queries compared to the RefCOCO+ setting. We
think the reason for this is due to the mixture of
unanswerable queries to the original RefCOCO+
dataset, leading the judgment to answerable visual
grounding be more complex. SM→Pseudo only
slightly boots the All accuracy due to the small-
scale of the SMD4FVG dataset. Some incorrect
predictions for unanswerable queries are due to the
randomness of the dataset, and qualitative exam-
ples can be found in Appendix C.

6.2 Results on the SMD4FVG Dataset

The lower part of Table 2 shows the accuracy of
our model on the SMD4FVG dataset. We can see
that the RefCOCO+Thres setting forces all queries
to be unanswerable ones. The similarity score dis-
tribution can be found in Appendix B.

Among the other three settings, the pseudo set-
ting achieves the highest accuracy of 49.7% for
answerable queries. We think the reason for this
is that there are only a few answerable queries in
the SMD4FVG dataset, while both the amount and
ratio for that are higher in the pseudo dataset, mak-
ing the model learn answerable grounding well.
However, the accuracy for unanswerable queries
is only 65.6%, which is significantly worse than
the other two settings that use the SMD4FVG
dataset for training. We think this is due to the
different characteristics of unanswerable queries in

the pseudo and SMD4FVG datasets, wherein the
pseudo dataset the unanswerable queries are unre-
lated to the images, but in the SMD4FVG dataset
they are more complex. The SM setting achieves
high accuracy of 95.0% for unanswerable queries
and the best accuracy of 81.7% for all queries. The
reason for this can be that our model is optimized
in the SMD4FVG dataset directly with the SM
setting. However, the accuracy for answerable
queries with the SM setting is the lowest due to
the small ratio of answerable queries and complex
answerable queries in the SMD4FVG dataset. The
Pseudo→SM setting achieves a trade-off between
the pseudo and SM settings, where there is an im-
provement for answerable queries compared to the
SM setting and a big improvement for unanswer-
able queries compared to the pseudo setting. We
think the reason for this is that Pseudo→SM can
take the balance between the pseudo and SM set-
tings via fine-tuning the model pre-trained on the
pseudo dataset to the SMD4FVG dataset. We also
observe a 1% accuracy drop of all queries from SM
to Pseudo→SM. We think it is caused by the big
ratio of unanswerable queries in the SMD4FVG
dataset. The SM model was more biased to unan-
swerable queries and thus performed better in ac-
curacy for all queries because of the big ratio of
unanswerable queries. Qualitative examples can be
found in Appendix C.

For both the pseudo and SMD4FVG datasets,
we observe better performance on unanswerable
queries than answerable queries besides Ref-
COCO+Thres on the pseudo dataset. We think
the reason could be that it is much easier to learn
that a query is unrelated to an image (i.e., unan-
swerable) instead of finding the exact region that a
query refers to (i.e., answerable) by our models.

7 Conclusion

Previous studies on visual grounding ignored the
case of unanswerable queries, which is common in
real-world such as social media data. In this paper,
we proposed flexible visual grounding to address
both answerable and unanswerable visual ground-
ing. To this end, we constructed a pseudo dataset
based on the RefCOCO+ dataset and a social media
dataset based on tweets consisting of both images
and text via crowdsourcing. In addition, we pro-
posed a flexible visual grounding model, which
can deal with both answerable and unanswerable
queries. Experiments on our datasets indicated that
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our model could achieve high accuracy, especially
for unanswerable queries, but there is still room for
further improvement.

To make our social media dataset balanced, we
constrained it to the RefCOCO+ classes, which
may also limit the ability of our model on real-
world data. In the future, we plan to construct a
dataset without such constraints.
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A Annotation Interfaces

Figure 4 shows the screenshot of the first step of
crowdsourcing. This step is the “bounding box re-
quirement" task. We instruct workers to check if
the given query is answerable or not. For unan-
swerable queries, we further ask workers to check
which unanswerable type the query is.

Figure 5 shows the screenshot of the second step
of crowdsourcing. This step is the “drawing bound-
ing box" task. For an answerable query, we instruct
workers to draw bounding boxes to which the query
refers.

B Similarity Score Distribution

Figure 6 shows the similarity score distribution
of the RefCOCO+Thres setting on the testsets of
the pseudo dataset and SMD4FVG dataset, respec-
tively. We can see that the similarity score and the
grounding possibility have a very low correlation.

C Qualitative Examples

Figure 7 shows examples of our model with the
RefCOCO+ setting on unanswerable queries in the
pseudo dataset. We can see that the RefCOCO+ set-
ting cannot identify unanswerable queries, which
gives wrong predictions for them. However, there
are also some ambiguous queries, such as the ones
in examples 1, 6, and 7, for which we cannot con-
fidently claim that the predictions are wrong due
to the random combination characteristics of unan-
swerable queries in the pseudo dataset.

Figure 8 shows example outputs of our model
with the pseudo setting. Examples 1 and 2 in Fig-
ure 8 are two successful examples for answerable
visual grounding; we can see that our model can
ground queries with and without modifiers. Exam-
ples 3 and 4 in Figure 8 are two successful exam-
ples for unanswerable visual grounding; we can
see that for the queries that are unrelated to the
images, our model can correctly identify that they
cannot be grounded. Examples 5 and 6 in Figure
8 are two unsuccessful examples for answerable
visual grounding; our model fails on example 5 in
Figure 8 where the ground-truth is the other person
with the number 160 on the vest; for example 6 in
Figure 8, the query “taller one” itself is actually
ambiguous, and our model makes the judgment
that it cannot be grounded, while the ground-truth
is annotated for the “taller refrigerator” in the Re-
fCOCO+ dataset. Although our model achieves

91.2% accuracy for unanswerable queries, it still
makes some mistakes. Examples 7 and 8 in Figure
8 show two unsuccessful examples for unanswer-
able visual grounding; we can see that for example
7 in Figure 8, the query “lady” actually can be
grounded, but it is annotated as unanswerable in
our pseudo dataset due to the fact that the query is
taken from another image randomly and it could
be grounded in coincidence; the query for example
8 in Figure 8 is again ambiguous, and thus it is
actually difficult to claim that our model is wrong
here.

Figure 9 shows example outputs of our model
with the SNS setting, which achieves the best over-
all accuracy among the three settings. Examples
1 and 2 in Figure 9 are two successful examples
for answerable visual grounding; we can see that
our model can do grounding for both a single ob-
ject (example 1) and multiple objects (example 2).
Examples 3 and 4 in Figure 9 are two successful
examples for unanswerable visual grounding; we
can see that our model correctly identifies that the
abstract noun query “sport” and the query “the east
coast” that cannot be inferred from the image di-
rectly, cannot be grounded. Examples 5 and 6 in
Figure 9 are two unsuccessful examples for answer-
able visual grounding; for example 5, the query
“airbus320ceo” is a proper noun, which is difficult
for grounding; while for example 6, “coach” is dif-
ficult to infer from the image though “bus” is clear.
Examples 7 and 8 in Figure 9 show two unsuccess-
ful examples for unanswerable visual grounding;
for example 7, due to the failure of our query ex-
traction model, an adjective query “automotive” is
generated, which should not be grounded; for ex-
ample 8, it is a human dressed up as a bear but not
a real bear, and thus should not be grounded.
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Figure 4: The bounding box requirement interface. This is the first step of crowdsourcing. In this step, we instruct
workers to check whether the given query is answerable or not. If the query is unanswerable, we ask workers to
further check which unanswerable type the query is.
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More Instruction

Figure 5: The drawing bounding box interface. This is the second step of crowdsourcing. In this step, we instruct
workers to draw bounding boxes to which the query refers. The annotation is done for query and image pairs that
are classified as answerable in the first step.
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Pseudo dataset SMD4FVG dataset

Figure 6: The similarity score distribution of the RefCOCO+Thres setting on the testsets of the pseudo dataset and
SMD4FVG dataset, respectively. X-axis and Y-axis denote the similarity/confidence score and density, respectively.
The solid blue and orange curves represent answerable and unanswerable queries, respectively. The vertical dotted
red lines denote the thresholds.

1 pizza furtherest
way 2 woman

5 red shirt 6 Person without
goggles

3 white shirt 4 green white bus 

7 closer one 8 girl smiling with
pink pants

Figure 7: Examples of visual grounding for unanswerable queries in the pseudo dataset. The blue bounding boxes
are the prediction of our model with the RefCOCO+ setting.
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1 taxi 2 kid sitting

5 160 6 taller one

3 white shirt man 
standing 4 person cutting 

the cake

7 lady 8 smallest one

Answerable Unanswerable

Figure 8: Examples of successful (top) and unsuccessful (bottom) visual grounding for answerable and unanswerable
queries in the pseudo dataset. The green and blue bounding boxes are ground-truth and the prediction of our model
with the pseudo setting, respectively.

1 a male cat 2 toys

5 airbus320ceo 6 coach buses

3 sport 4 the east coast 

7 automotive 8 bear

Answerable Unanswerable

Figure 9: Examples of successful (top) and unsuccessful (bottom) visual grounding for answerable and unanswerable
queries in the SMD4FVG dataset. The green and blue bounding boxes are ground-truth and the prediction of our
model with the SNS setting, respectively.
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