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Abstract
There are limitations in learning language
from text alone. Therefore, recent focus has
been on developing multimodal models. How-
ever, few benchmarks exist that can measure
what language models learn about language
from multimodal training. We hypothesize
that training on a visual modality should im-
prove on the visual commonsense knowledge
in language models. Therefore, we intro-
duce two evaluation tasks for measuring visual
commonsense knowledge in language models1

and use them to evaluate different multimodal
models and unimodal baselines. Primarily, we
find that the visual commonsense knowledge
is not significantly different between the mul-
timodal models and unimodal baseline models
trained on visual text data.

1 Introduction

Language models (LMs) trained on large amounts
of textual data have shown great performance on
several textual tasks (Devlin et al., 2019; Brown
et al., 2020). However, recent work has illumi-
nated limitations with text-only training of LMs.
These limitations arise from a lack of meaning
(Bender and Koller, 2020) and experience (Bisk
et al., 2020), together with the problem of report-
ing bias (Gordon and Van Durme, 2013). Multi-
modal training has been identified as one way to
create models that do not suffer from the aforemen-
tioned limitations (Paik et al., 2021; Huang et al.,
2021). While several multimodal models have been
developed (Tan and Bansal, 2019; Li et al., 2019,
2020), few evaluation methods exist that can tell
us whether multimodal training mitigates text-only
training limits.

If we wish to successfully create multimodal
LMs that learn from more than text, we need a way
to evaluate them for what we expect them to have
learned from their multimodal training.

1Code publicly available at: github.com/lovhag/
measure-visual-commonsense-knowledge

Figure 1: We introduce the two evaluation tasks Mem-
ory Colors and Visual Property Norms for measuring
visual commonsense knowledge in a LM.

One hypothesis is that multimodal training
should aid LMs in learning commonsense knowl-
edge (Zhang et al., 2021). There are several text-
only evaluation tasks that aim to measure the com-
monsense knowledge in LMs (Zellers et al., 2019b;
Zhou et al., 2020), but none of them focus explicitly
on the commonsense knowledge learned through
training on more than text.

In this work, we focus on models trained on im-
ages and text, denoted vision-and-language models.
We reason that if there is any additional information
to be learnt from a visual modality it should firstly
be basic visual commonsense knowledge. That is,
visual conceptual knowledge that is viewed as com-
monsense by humans, and thus not attainable from
text alone due to reporting bias.

We propose a simple method for measuring the
visual commonsense knowledge of a model using
two zero-shot masked language text-only tasks, de-
picted in Figure 1. The first task is the Memory Col-
ors evaluation task (Norlund et al., 2021) and the
second we create based on the visual features in the
Centre for Speech, Language and the Brain (CSLB)
concept property norms dataset (Devereux et al.,
2014). We refer to the latter task as the Visual Prop-
erty Norms evaluation task. We complement our
work with the results of four vision-and-language
models and four baselines on these two tasks.
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2 Evaluation Tasks

Our aim is to evaluate models for visual common-
sense knowledge. To do this we make use of the
existing Memory Colors evaluation task described
in section 2.1, and introduce a new evaluation task,
Visual Property Norms in section 2.2. Memory
Colors is smaller than Visual Property Norms and
specifically focuses on visual information related
to the color of different concepts, so it is potentially
easier. We include both tasks to get a performance
curve over increasing difficulty.

Common for both tasks is that they contain
queries in English relating to visual properties of
tangible concepts and that these queries are based
on the knowledge of multiple human participants.
Therefore, the tasks can be considered to evaluate
a basic aspect of visual commonsense knowledge.

Also common for both tasks is that they use tex-
tual templates containing a [MASK] token to be
predicted by a model in a cloze-style fashion, simi-
larly to the method used by Kassner and Schütze
(2020) and Petroni et al. (2019). The advantages
with querying the models in this fashion is that
most LMs2 already have been exposed to this type
of query format, including most multimodal mod-
els. We can then evaluate any model in a masked
language modelling fashion on these tasks with-
out additional training or having to make model-
specific adaptations, enabling easy evaluation for
researchers who wish to use these evaluation tasks.

This form of cloze-style evaluation is also re-
ferred to as prompt-based retrieval. The reliability
of this method has recently been questioned by
Jiang et al. (2020) and Cao et al. (2021) due to
the query format sensitivity of LMs. To alleviate
this issue, we evaluate the models using several
different prompts for each of the two tasks.

2.1 Memory Colors
The Memory Colors evaluation task is a text-only
zero-shot cloze test in English that evaluates a
model for its knowledge of memory colors. It
queries a model for the color of 109 typical ob-
jects using 13 different query templates. The task
has been created with the help of 11 human partici-
pants, so to some extent it encodes human visual
commonsense knowledge limited to colors. Some
examples of queries can be seen in Figure 1.

We use the same evaluation metric as specified
by Norlund et al. (2021), i.e. the accuracy score

2Excluding autoregressive LMs.

after masking the model output for the 11 possible
colors black, blue, brown, green, grey, orange, pink,
purple, red, white and yellow.

2.2 Visual Property Norms

We also introduce a new cloze task in English
to evaluate for visual commonsense knowledge,
denoted Visual Property Norms. It is the largest
query-based pure-language evaluation task capable
of evaluating LMs for visual commonsense knowl-
edge, containing 6,541 visual conceptual features
produced by human participants.

We base it on the CSLB concept property norms
dataset (Devereux et al., 2014) that contains the
conceptual knowledge of 30 human participants for
each of 541 concrete objects, with 123 participants
in total. This knowledge is represented as a set of
features per object, for which each feature is speci-
fied with a production frequency (PF). The PF de-
scribes how many of 30 participants produced that
feature, so a feature with a high PF can be consid-
ered to be more apparent to the participants, since
more came to think of it. All features are also cate-
gorized as either encyclopaedic, functional, other
perceptual, taxonomic or visual perceptual. Ta-
ble 1 contains some examples of visual perceptual
features in the dataset.

Concept Relation Feature PF
Cherry has a stalk 17
Fern is green 29
Hair is thin 22
Plum has flesh 9

Table 1: Some concepts and their visual perceptual fea-
tures in the concept property norms dataset.

We create our evaluation task from the concept
property norms dataset in a set of steps. Firstly,
since our goal is to measure visual commonsense
knowledge, we only make use of the visual percep-
tual features. Since we wish to perform cloze tests
through masked language modelling, only feature
alternatives describable by one wordpiece from the
BERT base uncased tokenizer are included.

Furthermore, we only include the four most com-
mon feature relations in the task. These are has,
has a, made of and is. We then part the data into
five different segments based on production fre-
quency. This is done by thresholding the features
for each concept such that only features with a PF
above the set threshold for a certain data segment
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are included as gold labels in that segment. The
segments and their PF thresholds are listed in the
appendix.

Lastly, we create queries from the concepts in
each data segment using 8 different query tem-
plates, seen in the appendix. Some examples of
Visual Property Norms queries can be seen in Fig-
ure 1.

Similarly to Weir et al. (2020) we use the mean
average precision (mAP) as our evaluation metric,
since there may be multiple correct answers for
each query in our evaluation data. We calculate
this score for each concept and relation, per query
template and production frequency segment. We
then get a final score for each production frequency
segment by taking the average score over all query
templates and concepts per segment. This metric is
measured over a vocabulary that has been masked
to only contain the 614 possible answer alternatives
in the Visual Property Norms evaluation data.

3 Models

We evaluate four multimodal pre-trained models
for their visual commonsense knowledge. These
are CLIP-BERT both with and without imagina-
tion3(Norlund et al., 2021), a LXMERT base un-
cased (Tan and Bansal, 2019) and VisualBERT (Li
et al., 2019). We also evaluate four unimodal base-
line models. These are a BERT base uncased pre-
trained on English Wikipedia and BookCorpus, a
BERT base uncased further trained on the pure-text
part of the CLIP-BERT training data (BERT-CLIP-
BERT-train) and two BERT base uncased models
trained on the pure-text part of the LXMERT train-
ing data, one from scratch and one initialized from
pre-trained BERT weights (BERT-LXMERT-train-
scratch and BERT-LXMERT-train).

All models are to some extent based on the
BERT base architecture and consequently share
the same vocabulary and tokenizer. They are also
of similar sizes with ∼ 110M trainable weights, the
exception being LXMERT with ∼ 230M trainable
weights. Additional information about the models
can be found in the appendix.
Adapting the models for pure-text queries
The majority of current multimodal models have
not been developed to be queried only with text.
In this case, both CLIP-BERT and VisualBERT
should work well with only removing their visual

3The explicit version has the ability to “imagine” visual
features when queried with text.

features input, since they are single-stream mod-
els. However, LXMERT is a dual-stream model
that requires a visual feature input. We handle the
removal of visual information by simply removing
the visual processing chain in LXMERT, making
the language input the only input given to the Cross-
Modality Encoder in the model. This would not
work if we still wanted to use the model in a multi-
modal fashion, but we can make this adaption since
we are only interested in querying the model for
visual commonsense knowledge via language.

4 Results

The results of the models on our two evaluation
tasks can be seen in Figure 2. We format the analy-
sis of the results around a set of questions.

Do the multimodal models display more
memory colors knowledge? The multimodal
CLIP-BERT-explicit model has the best perfor-
mance on this task. So to some extent, yes. But
it is worth noting that the unimodal BERT model
trained on LXMERT training data is second best on
the task, outperforming both LXMERT and Visual-
BERT, indicating a small multimodal advantage.

Is performance on Memory Colors indica-
tive of performance on Visual Property Norms?
The ranking visible in Figure 2a does not entirely
differ from that in Figure 2b. The main exception
being CLIP-BERT-explicit, which has the best per-
formance on Memory Colors, but is outperformed
by most other models on Visual Property Norms.
We perform a closer analysis of how these results
compare by extracting Visual Property Norm re-
sults for colors in the appendix.

Do the models perform better when evalu-
ated on more apparent concept features? We
can observe how the model performance unani-
mously increases with increased production fre-
quency threshold in Figure 2b. Thus, it appears as
though the models agree more with concept fea-
tures that can be regarded as more apparent.

Do the multimodal models contain more vi-
sual commonsense knowledge? The results in
Figure 2b do not really indicate clear advantage of
either unimodal or multimodal models. The multi-
modal model CLIP-BERT-implicit may generally
have the best performance on the task, but the uni-
modal models trained on visual text data do not
differ much in performance. For example, the uni-
modal BERT-LXMERT-train performs almost on
par with CLIP-BERT-implicit.
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Figure 2: The model accuracy on Memory Colors and model scores on Visual Property Norms per production
frequency segment. The multimodal model results are depicted with warmer colors, and the unimodal model
results are depicted in cooler colors. The error bars indicate the standard deviation of the model performance over
the different query templates. The score has been calculated by masking the vocabulary of the models to only
contain the possible answers of the task.

This conclusion is similar to that of Yun et al.
(2021), who also compared vision-and-language
models to text-only models trained on captions.
They found that the models have similar perfor-
mance with respect to their internal linguistic rep-
resentations for general tasks.

These results do not mean that the idea of having
models learn language from more than text has
failed. They do however indicate that there is more
work to be done on developing models that use
multimodal pretraining to improve on their natural
language understanding.

However, we cannot exclude the possibility in
our work that the multimodal models suffer in per-
formance due to a lack of visual feature input. Fu-
ture work investigating this would be valuable.

Are the models sensitive to how they are
queried? Prevalent for all models is that their per-
formance varies greatly with how they are queried.
BERT-LXMERT-train may have the best perfor-

mance on Visual Property Norms if queried dif-
ferently. We evaluate the model performances de-
pending on query template in the appendix. This
highlights the importance of querying the models
with different prompts, since the models may per-
form dissimilarily depending on prompt due to the
degree of prompt-dataset fitness, as reported by
Cao et al. (2021).

Does fine-tuning on visual language develop
visual commonsense knowledge? In both Fig-
ures 2a and 2b it is visible that unimodal model
performance greatly improves with fine-tuning on
visual text corpora. Potential explanations for this
are that the models become more attuned to the
task with fine-tuning, or that corpora from VQA
and image captioning do not suffer as much from
reporting bias compared to more common corpora.
Thus, text that has been curated to explicitly contain
visual information may suffice as a replacement for
images.
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5 Related Work

Weir et al. (2020) also use the CSLB concept prop-
erty norms to probe LMs for commonsense knowl-
edge. Our work differs from theirs in that we focus
on visual commonsense knowledge and evaluate
several multimodal models for whether their multi-
modal training grants them additional visual com-
monsense knowledge.

Norlund et al. (2021) also query a multimodal
model for visual commonsense knowledge but with
a focus on memory colors. Paik et al. (2021)
present similar work but with more focus on prob-
ing and reporting bias. In our work, we include
general visual commonsense knowledge concepts
and evaluate several multimodal models.

Additionally, Iki and Aizawa (2021) evaluate
several vision-and-language models on GLUE, to
investigate the effect of an additional visual modal-
ity on the general linguistic capabilities of a model.
Our work differs in that we evaluate the models
specifically for visual commonsense knowledge.

Other tasks that have been developed to evaluate
the performance of vision-and-language models are
Visual Question Answering (VQA) tasks and Vi-
sual Commonsense Reasning (VCR) tasks (Goyal
et al., 2017; Hudson and Manning, 2019; Zellers
et al., 2019a). Our work differs from these in that
we evaluate for visual knowledge in models without
conditioning on an image, to investigate whether
the linguistic capabilities of a model improve from
training on more than text. In the aforementioned
tasks, the text prompts are always conditioned on
an image provided with the prompt, obstructing
equal comparisons with text-only models.

6 Limitations

Our work is limited to a subset of vision-and-
language models, so the results found may not
translate to all such model types. Also, since
our evaluation utilizes prompt-based retrieval, its
measurement accuracy depends on how well this
method works for LMs. Additionally, as previ-
ously mentioned, we do not investigate how well
the multimodal models adapt to a unimodal input.
Thus, our results depend on whether the models
were functioning adequately with our method of
adapting them to a unimodal input.

7 Ethical Considerations

Our work should not have any direct ethical im-
plications, since we mainly introduce evaluation

tasks and evaluate different models on them. We
do however investigate visual conceptual percep-
tions based on data from a potentially small group
of people whose world-view may be culturally dif-
ferent from that of other individuals. This means
that we may encourage knowledge that benefits
some people more than others. Similar issues are
discussed by Liu et al. (2021). Our investigation is
limited to English-language models and datasets,
limiting the generality of our conclusions.

8 Conclusions

We introduce new evaluation methods for measur-
ing the visual commonsense knowledge in LMs
and evaluate a number of multimodal LMs on these
benchmarks. We find that there are no significant
differences in performance between models trained
on pure text and models trained on images and
text. Most prominently, we find that a unimodal
LM trained on image captions and VQA queries
can attain a visual commonsense knowledge on par
with that of a multimodal model.

We also confirm the results by Jiang et al. (2020)
and Cao et al. (2021), that LMs are sensitive to
query format even when querying for common-
sense knowledge. This casts some doubts on what
is really measured in a model for a cloze task and
whether we can reason about LMs as having knowl-
edge. An interesting future step would be to inves-
tigate this further and see if it would be more appli-
cable to use e.g. probing or some other evaluation
method.

Nonetheless, this is a first step towards measur-
ing the visual commonsense knowledge in multi-
modal as well as unimodal LMs. We hope that
the evaluation tasks introduced here may aid other
researchers in their aim to create models that learn
language from more than text.
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A Additional model information

Additional information about the models used in
our work and their training datasets can be found in
Tables 2 and 3. We can observe that VisualBERT
has been trained on a data amount that is quite small
compared to those of CLIP-BERT and LXMERT.

It is also worth noting on the different backbones
of the models. CLIP-BERT is a single-stream
multimodal model with a CLIP backbone for vi-
sual processing. LXMERT is a dual-stream multi-
modal model with a Faster R-CNN detector back-
bone. While VisualBERT is a single-stream model
that also utilizes Faster R-CNN detector backbone.
Since CLIP has been trained on the immense WIT
dataset, the backbone data sizes differ greatly be-
tween CLIP-BERT and the other multimodal mod-
els.

B Additional information on Visual
Property Norms

Information about the different segments and num-
ber of entries per segment in the Visual Property
Norms can be seen in Table 4.

C Additional results on Visual Property
Norms

Additional model results on the Visual Property
Norms can be found here.

Figure 3 indicates model performance per fea-
ture relation across the production frequency seg-
ments. We can observe how the models show the
best performance for the is made of relation, which
arguably can be associated more with visual per-
ceptual properties.

Figure 4 shows model score per query template
across all production frequency segments, indicat-
ing that CLIP-BERT-implicit benefits from being
more robust to different query templates. Addition-
ally, these results indicate that BERT-LXMERT-
train would have the best overall score on Visual
Property Norms if the queries containing “q: a”
were to be removed.

Lastly, Figure 5 contains the results of the mod-
els on the color part of Visual Property Norms
which has been filtered to only contain queries with
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Model Text Visual text Images+Text Backbone Training objectives
BERT 80M MLM, NSP
CLIP-BERT-implicit 80M 4.7M 400M MLM
CLIP-BERT-explicit 80M 4.7M 400M MLM
BERT-CLIP-BERT-train 80M 4.7M MLM
LXMERT 9.2M 0.1M MLM, RFR, DLC,

ITM, IQA
BERT-LXMERT-train 80M 9.0M MLM
BERT-LXMERT-train-scratch 9.0M MLM
VisualBERT 80M 1.7M 0.1M MLM, ITM

Table 2: An overview of the pre-trained models, the sizes of their training datasets and their pre-training objectives.
The sizes are measured in number of training samples. The backbone column indicates the training data sizes for
the image processing backbones of the models. For the training objectives, ITM refers to Image-Text Matching,
RFR to RoI-Feature Regression, DLC to Detected Label Classification, MVM to Masked Visual Modeling and
IQA to image QA.

Dataset Data sources # of text # of images
CLIP-BERT V+L MS COCO, SBU Captions, VG-QA, CC 4.72M 2.91M
LXMERT V+L MS COCO, VG, VQA, GQA, VG-QA 9.18M 0.18M
VisualBERT V+L MS COCO, VQA 1.27M 0.12M

Table 3: The vision-language datasets on which the multimodal models originally were trained. More information
about the datasets can be found in the articles that introduced the models.

PF entries has has a made of is
2 6,541 1,675 1,190 1,176 2,500
5 3641 1,016 642 760 1,223

10 2001 583 347 509 562
20 613 169 88 209 147
30 27 5 2 10 10

Table 4: The data segments segmented based on pro-
duction frequencies together with their number of en-
tries. The entries are calculated as the number of
feature-concept-label entries, where there can be sev-
eral features belonging to the same feature and con-
cept. The PF column indicates the production fre-
quency threshold for each segment, all features with a
production frequency higher or equal to this threshold
are included in the segment. We also list the number of
labels per feature relation type.

gold labels describing colors. Here, we see some
indications of a better performance of CLIP-BERT-
explicit for colors. Potentially, the imagination
capacity of this model is more helpful for queries
with answers relating to more basic visual proper-
ties, such as color.

259



has has a is is made of
Feature relation

0.0

0.2

0.4

0.6

0.8

Sc
or

e

CLIP-BERT-implicit
CLIP-BERT-explicit
LXMERT-base
VisualBERT
BERT-base
BERT-CLIP-BERT-train
BERT-LXMERT-train
BERT-LXMERT-train-scratch
Random

Figure 3: The model scores on Visual Property Norms per feature relation. The error bars indicate the standard
deviation of the model performance over the different query templates. The score has been calculated by masking
the vocabulary of the models to only contain the possible answers of the task.
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describe the properties of [DESCRIPTOR] [CONCEPT]
[DESCRIPTOR] [CONCEPT] usually [FEATURE_STARTER] [MASK].

describe the properties of [DESCRIPTOR] [CONCEPT]
[DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

q: [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER]? a: [MASK].

q: [DESCRIPTOR] [CONCEPT] usually [FEATURE_STARTER]? a: [MASK].

[DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

[DESCRIPTOR] [CONCEPT] usually [FEATURE_STARTER] [MASK].

generally, [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

[DESCRIPTOR] [CONCEPT] generally [FEATURE_STARTER] [MASK].

everybody knows that [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].
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Figure 4: The score for each model on Visual Property Norms per query template. The score has been calculated
by masking the vocabulary of the models to only contain the possible answers of the task.
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Figure 5: The score for each model per production frequency segment on Visual Property Norms that has been
filtered to only contain samples for which the correct answer is one or more out of 11 possible colors. The score
has been calculated by masking the vocabulary of the models to only contain the possible answers of the task.
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