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Abstract

Recent Active Learning (AL) approaches in
Natural Language Processing (NLP) proposed
using off-the-shelf pretrained language mod-
els (LMs). In this paper, we argue that these
LMs are not adapted effectively to the down-
stream task during AL and we explore ways
to address this issue. We suggest to first adapt
the pretrained LM to the target task by contin-
uing training with all the available unlabeled
data and then use it for AL. We also propose a
simple yet effective fine-tuning method to en-
sure that the adapted LM is properly trained
in both low and high resource scenarios dur-
ing AL. Our experiments demonstrate that our
approach provides substantial data efficiency
improvements compared to the standard fine-
tuning approach, suggesting that a poor training
strategy can be catastrophic for AL.1

1 Introduction

Active Learning (AL) is a method for training su-
pervised models in a data-efficient way (Cohn et al.,
1996; Settles, 2009). It is especially useful in sce-
narios where a large pool of unlabeled data is avail-
able but only a limited annotation budget can be af-
forded; or where expert annotation is prohibitively
expensive and time consuming. AL methods iter-
atively alternate between (i) model training with
the labeled data available; and (ii) data selection
for annotation using a stopping criterion, e.g. until
exhausting a fixed annotation budget or reaching a
pre-defined performance on a held-out dataset.

Data selection is performed by an acquisition
function that ranks unlabeled data points by some
informativeness metric aiming to improve over ran-
dom selection, using either uncertainty (Lewis and
Gale, 1994; Cohn et al., 1996; Gal et al., 2017;
Kirsch et al., 2019; Zhang and Plank, 2021), di-
versity (Brinker, 2003; Bodó et al., 2011; Sener

1For all experiments in this paper, we have used the code
provided by Margatina et al. (2021): https://github.
com/mourga/contrastive-active-learning

and Savarese, 2018), or both (Ducoffe and Pre-
cioso, 2018; Ash et al., 2020; Yuan et al., 2020;
Margatina et al., 2021).

Previous AL approaches in NLP use task-
specific neural models that are trained from scratch
at each iteration (Shen et al., 2017; Siddhant and
Lipton, 2018; Prabhu et al., 2019; Ikhwantri et al.,
2018; Kasai et al., 2019). However, these models
are usually outperformed by pretrained language
models (LMs) adapted to end-tasks (Howard and
Ruder, 2018), making them suboptimal for AL.
Only recently, pretrained LMs such as BERT (De-
vlin et al., 2019) have been introduced in AL set-
tings (Yuan et al., 2020; Ein-Dor et al., 2020; Shel-
manov et al., 2021; Karamcheti et al., 2021; Mar-
gatina et al., 2021). Still, they are trained at each
AL iteration with a standard fine-tuning approach
that mainly includes a pre-defined number of train-
ing epochs, which has been demonstrated to be
unstable, especially in small datasets (Zhang et al.,
2020; Dodge et al., 2020; Mosbach et al., 2021).
Since AL includes both low and high data resource
settings, the AL model training scheme should be
robust in both scenarios.2

To address these limitations, we introduce a suite
of effective training strategies for AL (§2). Con-
trary to previous work (Yuan et al., 2020; Ein-Dor
et al., 2020; Margatina et al., 2021) that also use
BERT (Devlin et al., 2019), our proposed method
accounts for various data availability settings and
the instability of fine-tuning. First, we continue
pretraining the LM with the available unlabeled
data to adapt it to the task-specific domain. This
way, we leverage not only the available labeled data
at each AL iteration, but the entire unlabeled pool.
Second, we further propose a simple yet effective
fine-tuning method that is robust in both low and
high resource data settings for AL.

2During the first few AL iterations the available labeled
data is limited (low-resource), while it could become very
large towards the last iterations (high-resource).

825

https://github.com/mourga/contrastive-active-learning
https://github.com/mourga/contrastive-active-learning


We explore the effectiveness of our approach on
five standard natural language understandings tasks
with various acquisition functions, showing that it
outperforms all baselines (§3). We also conduct an
analysis to demonstrate the importance of effective
adaptation of pretrained models for AL (§4). Our
findings highlight that the LM adaptation strategy
can be more critical than the actual data acquisition
strategy.

2 Adapting & Fine-tuning Pretrained
Models for Active Learning

Given a downstream classification task with C
classes, a typical AL setup consists of a pool of
unlabeled data Dpool, a modelM, an annotation
budget b of data points and an acquisition function
a(.) for selecting k unlabeled data points for anno-
tation (i.e. acquisition size) until b runs out. The
AL performance is assessed by training a model on
the actively acquired dataset and evaluating on a
held-out test set Dtest.

Adaptation (TAPT) Inspired by recent work on
transfer learning that shows improvements in down-
stream classification performance by continuing the
pretraining of the LM with the task data (Howard
and Ruder, 2018) we add an extra step to the
AL process by continuing pretraining the LM (i.e.
Task-Adaptive Pretraining TAPT), as in Gururan-
gan et al. (2020). Formally, we use an LM, such as
BERT (Devlin et al., 2019), P(x;W0) with weights
W0, that has been already pretrained on a large
corpus. We fine-tune P(x;W0) with the available
unlabeled data of the downstream task Dpool, re-
sulting in the task-adapted LM PTAPT(x;W

′
0) with

new weights W ′
0 (cf. line 2 of algorithm 1).

Fine-tuning (FT+) We now use the adapted
LM PTAPT(x;W

′
0) for AL. At each iteration i,

we initialize our model Mi with the pretrained
weights W ′

0 and we add a task-specific feedfor-
ward layer for classification with weights Wc on
top of the [CLS] token representation of BERT-
based PTAPT. We fine-tune the classification model
Mi(x; [W

′
0,Wc]) with all x ∈ Dlab. (cf. line 6 to

8 of algorithm 1).
Recent work in AL (Ein-Dor et al., 2020; Yuan

et al., 2020) uses the standard fine-tuning method
proposed in Devlin et al. (2019) which includes
a fixed number of 3 training epochs, learning rate
warmup over the first 10% of the steps and AdamW
optimizer (Loshchilov and Hutter, 2019) without

Algorithm 1: AL with Pretrained LMs
Input: unlabeled data Dpool, pretrained LM

P(x;W0), acquisition size k, AL
iterations T , acquisition function a

1 Dlab ← ∅
2 PTAPT(x;W

′
0)← Train P(x;W0) on Dpool

3 Q0 ← RANDOM(.), |Q0| = k
4 Dlab = Dlab ∪Q0

5 Dpool = Dpool \ Q0

6 for i← 1 to T do
7 Mi(x; [W

′
0,Wc])← Initialize from

PTAPT(x;W
′
0)

8 Mi(x;Wi)← Train model on Dlab
9 Qi ← a(Mi,Dpool, k)

10 Dlab = Dlab ∪Qi

11 Dpool = Dpool \ Qi

12 end
Output: Dlab

bias correction, among other hyperparameters.
We follow a different approach by taking into

account insights from few-shot fine-tuning liter-
ature (Mosbach et al., 2021; Zhang et al., 2020;
Dodge et al., 2020) that proposes longer fine-tuning
and more evaluation steps during training. 3 We
combine these guidelines to our fine-tuning ap-
proach by using early stopping with 20 epochs
based on the validation loss, learning rate 2e− 5,
bias correction and 5 evaluation steps per epoch.
However, increasing the number of epochs from
3 to 20, also increases the warmup steps (10% of
total steps4) almost 7 times. This may be problem-
atic in scenarios where the dataset is large but the
optimal number of epochs may be small (e.g. 2 or
3). To account for this limitation in our AL setting
where the size of training set changes at each it-
eration, we propose to select the warmup steps as
min(10% of total steps, 100). We denote standard
fine-tuning as SFT and our approach as FT+.

3 Experiments & Results

Data We experiment with five diverse natural lan-
guage understanding tasks: question classification

3In this paper we use few-shot to describe the setting where
there are few labeled data available and therefore few-shot fine-
tuning corresponds to fine-tuning a model on limited labeled
training data. This is different than the few-shot setting pre-
sented in recent literature (Brown et al., 2020), where no
model weights are updated.

4Some guidelines propose an even smaller number of
warmup steps, such as 6% in RoBERTa (Liu et al., 2020).
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Figure 1: Test accuracy during AL iterations. We plot the median and standard deviation across five runs.

DATASETS TRAIN VAL TEST k C

TREC-6 4.9K 546 500 1% 6

DBPEDIA 20K 2K 70K 1% 14

IMDB 22.5K 2.5K 25K 1% 2

SST-2 60.6K 6.7K 871 1% 2

AGNEWS 114K 6K 7.6K 0.5% 4

Table 1: Datasets statistics for Dpool, Dval and Dtest
respectively. k stands for the acquisition size (% of
Dpool) and C the number of classes.

(TREC-6; Voorhees and Tice (2000)), sentiment
analysis (IMDB; Maas et al. (2011), SST-2 Socher
et al. (2013)) and topic classification (DBPEDIA,
AGNEWS; Zhang et al. (2015)), including binary
and multi-class labels and varying dataset sizes (Ta-
ble 1). More details can be found in Appendix A.1.

Experimental Setup We perform all AL experi-
ments using BERT-base (Devlin et al., 2019) and
ENTROPY, BERTKM, ALPS (Yuan et al., 2020),

BADGE (Ash et al., 2020) and RANDOM (baseline)
as the acquisition functions. We pair our proposed
training approach TAPT-FT+ with ENTROPY ac-
quisition. We refer the reader to Appendix A for
an extended description of our experimental setup,
including the datasets used (§A.1), the training
and AL details (§A.2), the model hyperparameters
(§A.3) and the baselines (§A.4).

Results Figure 1 shows the test accuracy during
AL iterations. We first observe that our proposed
approach (TAPT-FT+) achieves large data efficiency
reaching the full-dataset performance within the
15% budget for all datasets, in contrast to the stan-
dard AL approach (BERT-SFT). The effectiveness
of our approach is mostly notable in the smaller
datasets. In TREC-6, it achieves the goal accuracy
with almost 10% annotated data, while in DBPE-
DIA only in the first iteration with 2% of the data.
After the first AL iteration in IMDB, TAPT-FT+, it
achieves only 2.5 points of accuracy lower than the
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performance when using 100% of the data. In the
larger SST-2 and AGNEWS datasets, it is closer to
the baselines but still outperforms them, achieving
the full-dataset performance with 8% and 12% of
the data respectively. We also observe that in all
five datasets, the addition of our proposed pretrain-
ing step (TAPT) and fine-tuning technique (FT+)
leads to large performance gains, especially in the
first AL iterations. This is particularly evident in
TREC-6, DBPEDIA and IMDB datasets, where after
the first AL iteration (i.e. equivalent to 2% of train-
ing data) TAPT+FT+ with ENTROPY is 45, 30 and
12 points in accuracy higher than the ENTROPY

baseline with BERT and SFT.

Training vs. Acquisition Strategy We finally
observe that the performance curves of the vari-
ous acquisition functions considered (i.e. dotted
lines) are generally close to each other, suggesting
that the choice of the acquisition strategy may not
affect substantially the AL performance in certain
cases. In other words, we conclude that the training
strategy can be more important than the acquisi-
tion strategy. We find that uncertainty sampling
with ENTROPY is generally the best performing
acquisition function, followed by BADGE.5 Still,
finding a universally well-performing acquisition
function, independent of the training strategy, is an
open research question.

4 Analysis & Discussion

4.1 Task-Adaptive Pretraining

We first present details of our implementation of
TAPT (§2) and reflect on its effectiveness in the
AL pipeline. Following Gururangan et al. (2020),
we continue pretraining BERT for the MLM task
using all the unlabeled data Dpool for all datasets
separately. We plot the learning curves of BERT-
TAPT for all datasets in Figure 2. We first observe
that the masked LM loss is steadily decreasing for
DBPEDIA, IMDB and AGNEWS across optimization
steps, which correlates with the high early AL per-
formance gains of TAPT in these datasets (Fig. 1).
We also observe that the LM overfits in TREC-6
and SST-2 datasets. We attribute this to the very
small training dataset of TREC-6 and the informal
textual style of SST-2. Despite the fact that the
SST-2 dataset includes approximately 67K of train-
ing data, the sentences are very short (i.e. average

5We provide results with additional acquisition functions
in the Appendix B.2 and B.3.
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Figure 2: Validation MLM loss during TAPT.
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Figure 3: Few-shot standard BERT fine-tuning.

length of 9.4 words per sentence). We hypothesize
the LM overfits because of the lack of long and
more diverse sentences. We provide more details
on TAPT at the Appendix B.1.

4.2 Few-shot Fine-tuning

In this set of experiments, we aim to highlight that it
is crucial to consider the few-shot learning problem
in the early AL stages, which is often neglected
in literature. This is more important when using
pretrained LMs, since they are overparameterized
models that require adapting their training scheme
in low data settings to ensure robustness.

To illustrate the potential ineffectiveness of stan-
dard fine-tuning (SFT), we randomly undersam-
ple the AGNEWS and IMDB datasets to form low,
medium and high resource data settings (i.e. 100,
1, 000 and 10, 000 training samples), and train
BERT for a fixed number of 3, 10, and 20 epochs.
We repeat this process with 10 different random
seeds to account for stochasticity in sampling and
we plot the test accuracy in Figure 3. Figure 3
shows that SFT is suboptimal for low data settings
(e.g. 100 samples), indicating that more optimiza-
tion steps (i.e. epochs) are needed for the model
to adapt to the few training samples (Zhang et al.,
2020; Mosbach et al., 2021). As the training sam-
ples increase (e.g. 1, 000), fewer epochs are of-
ten better. It is thus evident that there is not a
clearly optimal way to choose a predefined number
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of epochs to train the model given the number of
training examples. This motivates the need to find
a fine-tuning policy for AL that effectively adapts
to the data resource setting of each iteration (inde-
pendently of the number of training examples or
dataset), which is mainly tackled by our proposed
fine-tuning approach FT+ (§2).

4.3 Ablation Study

We finally conduct an ablation study to evaluate
the contribution of our two proposed steps to the
AL pipeline; the pretraining step (TAPT) and fine-
tuning method (FT+). We show that the addition
of both methods provides large gains compared
to standard fine-tuning (SFT) in terms of accu-
racy, data efficiency and uncertainty calibration.
We compare BERT with SFT, BERT with FT+ and
BERT-TAPT with FT+. Along with test accuracy,
we also evaluate each model using uncertainty esti-
mation metrics (Ovadia et al., 2019): Brier score,
negative log likelihood (NLL), expected calibration
error (ECE) and entropy. A well-calibrated model
should have high accuracy and low uncertainty.

Figure 4 shows the results for the smallest and
largest datasets, TREC-6 and AGNEWS respectively.
For TREC-6, training BERT with our fine-tuning
approach FT+ provides large gains both in accu-
racy and uncertainty calibration, showing the im-
portance of fine-tuning the LM for a larger number
of epochs in low resource settings. For the larger
dataset, AGNEWS, we see that BERT with SFT per-
forms equally to FT+ which is the ideal scenario.
We see that our fine-tuning approach does not de-
teriorate the performance of BERT given the large
increase in warmup steps, showing that our sim-
ple strategy provides robust results in both high
and low resource settings. After demonstrating
that FT+ yields better results than SFT, we next
compare BERT-TAPT-FT+ against BERT-FT+. We
observe that in both datasets BERT-TAPT outper-
forms BERT, with this being particularly evident in
the early iterations. This confirms our hypothesis
that by implicitly using the entire pool of unlabeled
data for extra pretraining (TAPT), we boost the per-
formance of the AL model using less data.

5 Conclusion

We have presented a simple yet effective training
scheme for AL with pretrained LMs that accounts
for varying data availability and instability of fine-
tuning. Specifically, we propose to first continue
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Figure 4: Ablation study for TAPT and FT+.

pretraining the LM with the available unlabeled
data to adapt it to the task-specific domain. This
way, we leverage not only the available labeled data
at each AL iteration, but the entire unlabeled pool.
We further propose a method to fine-tune the model
during AL iterations so that training is robust in
both low and high resource data settings.

Our experiments show that our approach yields
substantially better results than standard fine-tuning
in five standard NLP datasets. Furthermore, we find
that the training strategy can be more important
than the acquisition strategy. In other words, a
poor training strategy can be a crucial impediment
to the effectiveness of a good acquisition function,
and thus limit its effectiveness (even over random
sampling). Hence, our work highlights how critical
it is to properly adapt a pretrained LM to the low
data resource AL setting.

As state-of-the-art models in NLP advance
rapidly, in the future we would be interested in
exploring the use of larger LMs, such as GPT-
3 (Brown et al., 2020) and FLAN (Wei et al.,
2022). These models have achieved impressive
performance in very low data resource settings (e.g.
zero-shot and few-shot), so we would imagine they
would be good candidates for the challenging set-
ting of active learning.
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A Appendix: Experimental Setup

A.1 Datasets
We experiment with five diverse natural language
understanding tasks including binary and multi-
class labels and varying dataset sizes (Table 1).
The first task is question classification using the six-
class version of the small TREC-6 dataset of open-
domain, fact-based questions divided into broad
semantic categories (Voorhees and Tice, 2000). We
also evaluate our approach on sentiment analysis
using the binary movie review IMDB dataset (Maas
et al., 2011) and the binary version of the SST-2
dataset (Socher et al., 2013). We finally use the
large-scale AGNEWS and DBPEDIA datasets from
Zhang et al. (2015) for topic classification. We
undersample the latter and form a Dpool of 20K ex-
amples and Dval 2K as in Margatina et al. (2021).
For TREC-6, IMDB and SST-2 we randomly sample
10% from the training set to serve as the valida-
tion set, while for AGNEWS we sample 5%. For
the DBPEDIA dataset we undersample both training
and validation datasets (from the standard splits)
to facilitate our AL simulation (i.e. the original
dataset consists of 560K training and 28K valida-
tion data examples). For all datasets we use the
standard test set, apart from the SST-2 dataset that
is taken from the GLUE benchmark (Wang et al.,
2019) we use the development set as the held-out
test set (and subsample a development set from the
original training set).

A.2 Training & AL Details
We use BERT-BASE (Devlin et al., 2019) and fine-
tune it (TAPT §2) for 100K steps, with learning
rate 2e− 05 and the rest of hyperparameters as in
Gururangan et al. (2020) using the HuggingFace
library (Wolf et al., 2020). We evaluate the model
5 times per epoch on Dval and keep the one with
the lowest validation loss as in Dodge et al. (2020).
We use the code provided by Kirsch et al. (2019)
for the uncertainty-based acquisition functions and
Yuan et al. (2020) for ALPS, BADGE and BERTKM.
We use the standard splits provided for all datasets,
if available, otherwise we randomly sample a val-
idation set. We test all models on a held-out test
set. We repeat all experiments with five different
random seeds resulting into different initializations
of Dlab and the weights of the extra task-specific
output feedforward layer. For all datasets we use as
budget the 15% of Dpool. Each experiment is run
on a single Nvidia Tesla V100 GPU.

A.3 Hyperparameters

For all datasets we train BERT-BASE (Devlin et al.,
2019) from the HuggingFace library (Wolf et al.,
2020) in Pytorch (Paszke et al., 2019). We train
all models with batch size 16, learning rate 2e− 5,
no weight decay, AdamW optimizer with epsilon
1e− 8. For all datasets we use maximum sequence
length of 128, except for IMDB and AGNEWS that
contain longer input texts, where we use 256. To
ensure reproducibility and fair comparison between
the various methods under evaluation, we run all
experiments with the same five seeds that we ran-
domly selected from the range [1, 9999].

A.4 Baselines

Acquisition functions We compare EN-
TROPYwith four baseline acquisition functions.
The first is the standard AL baseline, RANDOM,
which applies uniform sampling and selects k data
points from Dpool at each iteration. The second is
BADGE (Ash et al., 2020), an acquisition function
that aims to combine diversity and uncertainty
sampling. The algorithm computes gradient
embeddings gx for every candidate data point
x in Dpool and then uses clustering to select a
batch. Each gx is computed as the gradient of the
cross-entropy loss with respect to the parameters of
the model’s last layer. We also compare against a
recently introduced cold-start acquisition function
called ALPS (Yuan et al., 2020). ALPS acquisition
uses the masked language model (MLM) loss
of BERT as a proxy for model uncertainty in
the downstream classification task. Specifically,
aiming to leverage both uncertainty and diversity,
ALPS forms a surprisal embedding sx for each x,
by passing the unmasked input x through the BERT

MLM head to compute the cross-entropy loss for
a random 15% subsample of tokens against the
target labels. ALPS clusters these embeddings to
sample k sentences for each AL iteration. Last,
following Yuan et al. (2020), we use BERTKM as
a diversity baseline, where the l2 normalized BERT

output embeddings are used for clustering.

Models & Fine-tuning Methods We evaluate
two variants of the pretrained language model; the
original BERT model, used in Yuan et al. (2020)
and Ein-Dor et al. (2020)6, and our adapted model
BERT-TAPT (§2), and two fine-tuning methods;

6Ein-Dor et al. (2020) evaluate various acquisition func-
tions, including entropy with MC dropout, and use BERT with
the standard fine-tuning approach (SFT).
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our proposed fine-tuning approach FT+ (§2) and
standard BERT fine-tuning SFT.

MODEL TREC-6 DBPEDIA IMDB SST-2 AGNEWS

VALIDATION SET

BERT 94.4 99.1 90.7 93.7 94.4
BERT-TAPT 95.2 99.2 91.9 94.3 94.5

TEST SET

BERT 80.6 99.2 91.0 90.6 94.0
BERT-TAPT 77.2 99.2 91.9 90.8 94.2

Table 2: Accuracy with 100% of data over five runs
(different random seeds).

B Appendix: Analysis

B.1 Task-Adaptive Pretraining (TAPT) &
Full-Dataset Performance

As discussed in §2 and §4, we continue training
the BERT-BASE (Devlin et al., 2019) pretrained
masked language model using the available data
Dpool. We explored various learning rates between
1e− 4 and 1e− 5 and found the latter to produce
the lowest validation loss. We trained each model
(one for each dataset) for up to 100K optimization
steps, we evaluated on Dval every 500 steps and
saved the checkpoint with the lowest validation
loss. We used the resulting model in our (BERT-
TAPT) experiments. We plot the learning curves of
masked language modeling task (TAPT) for three
datasets and all considered learning rates in Figure
5. We notice that a smaller learning rate facilitates
the training of the MLM.

In Table 2 we provide the validation and test
accuracy of BERT and BERT-TAPT for all datasets.
We present the mean across runs with three random
seeds. For fine-tuning the models, we used the
proposed approach FT+ (§2).

B.2 Performance of Acquisition Functions
In our BERT-TAPT-FT+ experiments so far, we
showed results with ENTROPY. We have also exper-
imented with various uncertainty-based acquisition
functions. Specifically, four uncertainty-based ac-
quisition functions are used in our work: LEAST

CONFIDENCE, ENTROPY, BALD and BATCH-
BALD. LEAST CONFIDENCE (Lewis and Gale,
1994) sorts Dpool by the probability of not pre-
dicting the most confident class, in descending
order, ENTROPY (Shannon, 1948) selects sam-
ples that maximize the predictive entropy, and
BALD (Houlsby et al., 2011), short for Bayesian
Active Learning by Disagreement, chooses data
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Figure 5: Learning curves of TAPT for various learning
rates.

5 10 15

Acquired dataset size (%)

90

91

92

93

94

95
AGNEWS

114K training data (100%)

5 10 15

Acquired dataset size (%)

86

87

88

89

90

91

92
IMDB

22.5K training data (100%)

Figure 6: Comparison of acquisition functions using
TAPT and FT+ in training BERT.

points that maximize the mutual information be-
tween predictions and model’s posterior probabil-
ities. BATCHBALD (Kirsch et al., 2019) is a re-
cently introduced extension of BALD that jointly
scores points by estimating the mutual informa-
tion between multiple data points and the model
parameters. This iterative algorithm aims to find
batches of informative data points, in contrast to
BALD that chooses points that are informative
individually. Note that LEAST CONFIDENCE, EN-
TROPY and BALD have been used in AL for NLP
by Siddhant and Lipton (2018). To the best of our

834



TREC-6 SST-2 IMDB DBPEDIA AGNEWS

RANDOM 0/0 0/0 0/0 0/0 0/0
ALPS 0/57 0/478 0/206 0/134 0/634
BADGE 0/63 0/23110 0/1059 0/192 -
BERTKM 0/47 0/2297 0/324 0/137 0/3651
ENTROPY 81/0 989/0 557/0 264/0 2911/0
LEAST CONFIDENCE 69/0 865/0 522/0 256/0 2607/0
BALD 69/0 797/0 524/0 256/0 2589/0
BATCHBALD 69/21 841/1141 450/104 256/482 2844/5611

Table 3: Runtimes (in seconds) for all datasets. In each cell of the table we present a tuple i/s where i is the
inference time and s the selection time. Inference time is the time for the model to perform a forward pass for all the
unlabeled data in Dpool and selection time is the time that each acquisition function requires to rank all candidate
data points and select k for annotation (for a single iteration). Since we cannot report the runtimes for every model
in the AL pipeline (at each iteration the size of Dpool changes), we provide the median.

knowledge, BATCHBALD is evaluated for the first
time in the NLP domain.

Instead of using the output softmax probabilities
for each class, we use a probabilistic formulation of
deep neural networks in order to acquire better cali-
brated scores. Monte Carlo (MC) dropout (Gal and
Ghahramani, 2016) is a simple yet effective method
for performing approximate variational inference,
based on dropout (Srivastava et al., 2014). Gal
and Ghahramani (2016) prove that by simply per-
forming dropout during the forward pass in making
predictions, the output is equivalent to the predic-
tion when the parameters are sampled from a varia-
tional distribution of the true posterior. Therefore,
dropout during inference results into obtaining pre-
dictions from different parts of the network. Our
BERT-basedMi model uses dropout layers during
training for regularization. We apply MC dropout
by simply activating them during test time and we
perform multiple stochastic forward passes. For-
mally, we do N passes of every x ∈ Dpool through
Mi(x;Wi) to acquire N different output proba-
bility distributions for each x. MC dropout for
AL has been previously used in the literature (Gal
et al., 2017; Shen et al., 2017; Siddhant and Lip-
ton, 2018; Lowell and Lipton, 2019; Ein-Dor et al.,
2020; Shelmanov et al., 2021).

Our findings show that all functions provide sim-
ilar performance, except for BALD that slightly
underperforms. This makes our approach agnos-
tic to the selected uncertainty-based acquisition
method. We also evaluate our proposed methods
with our baseline acquisition functions, i.e. RAN-
DOM, ALPS, BERTKM and BADGE, since our
training strategy is orthogonal to the acquisition

strategy. We compare all acquisition functions with
BERT-TAPT-FT+ for AGNEWS and IMDB in Fig-
ure 6. We observe that in general uncertainty-based
acquisition performs better compared to diversity,
while all acquisition strategies have benefited from
our training strategy (TAPT and FT+).

B.3 Efficiency of Acquisition Functions

In this section we discuss the efficiency of the
eight acquisition functions considered in this work;
RANDOM, ALPS, BADGE, BERTKM, ENTROPY,
LEAST CONFIDENCE, BALD and BATCHBALD.

In Table 3 we provide the runtimes for all ac-
quisition functions and datasets. Each AL experi-
ments consists of multiple iterations and (therefore
multiple models), each with a different training
dataset Dlab and pool of unlabeled data Dpool. In
order to evaluate how computationally heavy is
each method, we provide the median of all the
models in one AL experiment. We calculate the
runtime of two types of functionalities. The first is
the inference time and stands for the forward pass
of each x ∈ Dpool to acquire confidence scores for
uncertainty sampling. RANDOM, ALPS, BADGE

and BERTKM do not require this step so it is only
applied of uncertainty-based acquisition where ac-
quiring uncertainty estimates with MC dropout is
needed. The second functionality is selection time
and measures how much time each acquisition func-
tion requires to rank and select the k data points
from Dpool to be labeled in the next step of the AL
pipeline. RANDOM, ENTROPY, LEAST CONFI-
DENCE and BALD perform simple equations to
rank the data points and therefore so do not require
selection time. On the other hand, ALPS, BADGE,
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BERTKM and BATCHBALD perform iterative al-
gorithms that increase selection time. From all ac-
quisition functions ALPS and BERTKM are faster
because they do not require the inference step of
all the unlabeled data to the model. ENTROPY,
LEAST CONFIDENCE and BALD require the same
time for selecting data, which is equivalent for the
time needed to perform one forward pass of the en-
tire Dpool. Finally BADGE and BATCHBALD are
the most computationally heavy approaches, since
both algorithms require multiple computations for
the selection time. RANDOM has a total runtime of
zero seconds, as expected.
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