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Abstract

Deep learning sequence models have been suc-
cessful with morphological inflection genera-
tion. The SIGMORPHON shared task results
in the past several years indicate that such mod-
els can perform well, but only if the training
data covers a good amount of different lem-
mata, or if the lemmata to be inflected at test
time have also been seen in training, as has in-
deed been largely the case in these tasks. Sur-
prisingly, we find that standard models such as
the Transformer almost completely fail at gen-
eralizing inflection patterns when trained on a
limited number of lemmata and asked to inflect
previously unseen lemmata—i.e. under “wug
test”-like circumstances. This is true even
though the actual number of training examples
is very large. While established data augmen-
tation techniques can be employed to allevi-
ate this shortcoming by introducing a copying
bias through hallucinating synthetic new word
forms using the alphabet in the language at
hand, our experiment results show that, to be
more effective, the hallucination process needs
to pay attention to substrings of syllable-like
length rather than individual characters.1

1 Introduction

The Transformer model has delivered convincing
results in many different tasks related to word-
formation and analysis (Vylomova et al., 2020;
Moeller et al., 2020, 2021; Liu, 2021). Especially
on inflection tasks, where an input lemma such
as dog, and input inflectional features such as
{N,PL}, are expected to produce an output such as
dogs, the model has shown to be particularly adept
at generalizing patterns (Vylomova et al., 2020; Liu
and Hulden, 2020a,b; Wu et al., 2021). However,
we have discovered that this is only true if the train-
ing data covers a diversity of lemmata or some
variant of the input lemma to be inflected has been

1The code and data are available at https://github.
com/LINGuistLIU/transformer-wug-test.
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Figure 1: Transformer performance in the common-
practice setting (left), “wug test”-like setting (middle),
and ‘‘wug test”-like setting with our best data hallu-
cination method (right)

witnessed during training. In a “wug test” (Berko,
1958) setting where the witnessed lemmata are usu-
ally limited and a previously unseen lemma—like
wug—is to be inflected in some way, we find that
the Transformer almost completely fails to general-
ize inflection patterns, despite abundant inflected
forms for training. It has been noted earlier that
neural sequence-to-sequence models are apt to per-
form poorly for morphological inflection if they
have been exposed to little training data and data
augmentation can be leveraged to alleviate the prob-
lem (Cotterell et al., 2017, 2018; Kann and Schütze,
2017; Liu and Hulden, 2021). Our starting point
is our observation that the poor “wug test” perfor-
mance is maintained even with abundant training
inflected forms.

In our study, we show three main results. (1)
We demonstrate that, even if trained with relatively
large amounts of inflected forms, a Transformer
model of the kind that has been very successful at
recent shared tasks largely fails to generalize in-
flection patterns if it has not been exposed during
training to a variety of lemmata or any lemmata in
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the test set. This is true even for datasets where all
words inflect in the same way—i.e. there are no in-
flectional classes or allomorphs of morphemes, as
is found in the low-resource Niger-Congo language
datasets used in SIGMORPHON 2020 shared task
(Vylomova et al., 2020). (2) We show that simply
exposing the model to uninflected lemmata in the
test set—without providing a single inflected form—
allows the model to dramatically improve its perfor-
mance when inflecting such lemmata. (3) Further,
we investigate several strategies that avoid leverag-
ing test set lemmata. We show that when inducing
a copy bias in the model by hallucinating new lem-
mata, or by hallucinating new inflected forms, the
method of hallucination is much more effective if
it is sensitive to substrings of syllable-like length
rather than individual characters or stems. Our
best models achieve substantial improvement upon
earlier state-of-the-art data hallucination methods
(Silfverberg et al., 2017; Anastasopoulos and Neu-
big, 2019).

2 Data

2018-languages We use six languages from
the CoNLL-SIGMORPHON 2018 shared task 1
medium setting, where each language has 1,000
(LEMMA, TARGET TAGS, TARGET FORM) triples
for training (Cotterell et al., 2018). The six
languages, Czech, Finnish, German, Russian,
Spanish and Turkish, are selected to represent the
diversity of language typology and morphological
inflection challenges. Though there are only
1,000 training triples, they cover a fair number
of lemmata as each lemma appears only once or
twice, an amount very hard to obtain for really
low-resource languages. In the original shared
task, between 2% and 27% of the lemmata in the
dev and test sets are also found in the training set.

To prepare training data for the “wug test”-like
circumstance, we select the UniMorph (Kirov et al.,
2018) paradigms for the first 100 most frequent
lexemes found in Wikipedia text,2 which are not
included in the 2018 shared task 1 dev and test
sets. The shared task dev and test sets are used for
validation and evaluation without any change. The
100 full inflection tables give us over 1,000 (for
Czech, German and Russian) or over 7,000 (for
Finnish, Spanish and Turkish) training triples.

2We also experimented with using 100 random UniMorph
lexemes, and did not find substantial difference between using
random ones and the most frequent ones.

Niger-Congo languages In addition, we use
six Niger-Congo languages from SIGMORPHON
2020 shared task 0 (Vylomova et al., 2020): Akan,
Ga, Lingala, Nyanja, Southern Sotho and Swahili.
These languages are low-resource, but the dataset
only contains very regular inflections. In the orig-
inal shared task data split, The overlap between
the lemmata in the dev and test sets and those in
the training set is 100%. The number of paradigms
which we can obtain by combining the training, dev
and test sets of this dataset is around 100 for Akan,
Ga and Swahili, 227 for Nyanja, 57 for Lingala and
only 26 for Southern Sotho.

For the “wug test”, we divide the inflection tables
reconstructed from this dataset into a 7:1:2 train-
dev-test split, i.e. we use the same ratio as the
shared task, but the division is by inflection tables
rather than lemma-tag-form triples, to ensure that
the lemmata used for validation and test are disjoint
from those for training. We provide details on the
data statistics in Appendix A for reference.

3 Experiments

Inflection model The Transformer (Vaswani
et al., 2017) is the seq2seq architecture which pro-
duces the current state-of-the-art result on the mor-
phological inflection task (Vylomova et al., 2020;
Liu and Hulden, 2020a,b; Wu et al., 2021). It takes
the lemma and target tag(s) as input and predicts
the target form character by character. Our experi-
ments use the Transformer implemented in fairseq
(Ott et al., 2019) and adopt the same hyperparame-
ters as Liu and Hulden (2020a). 3

Evaluation metric The evaluation metric is ac-
curacy. For the original shared task data and exper-
iments on 2018 languages, we train five inflection
models each with a different random initialization
and report the average accuracy with standard de-
viation. Due to data scarcity, for Niger-Congo lan-
guages at the “wug test”-like setting, we perform
a 5-fold cross-validation and report the average
accuracy and the standard deviation.

Common-practice test and “wug test” We first
compare the performance of the Transformer in the
common-practice setting and the “wug test”-like
setting. The “common practice” is represented by

3We also conducted experiments with the encoder-decoder
with hard monotonic attention model (Wu and Cotterell, 2019),
but found the same conclusion as for the Transformer model.
Experiments on the hard monotonic model is provided in
Appendix C for reference.
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Figure 2: (a) Dummy lemma generation with a German example. +copy-2k-char generates random strings by
uniformly sampling from the alphabet, while +copy-2k-substr samples from the set of 2-, 3- and 4-grams; (b) Data
hallucination with a German example. +hall-2k-substr is different from +hall-2k-char in how the dummy-stem is
generated.

previous years’ shared tasks and related work (Cot-
terell et al., 2016, 2017, 2018; McCarthy et al.,
2019; Vylomova et al., 2020); here the training
data usually covers a fair number of lemmata and
there is overlap between lemmata in the training
and test sets. We use the shared task data to rep-
resent the common-practice setting. In the “wug
test” setting, we control the number of lemmata
for training but not inflected forms (as explained
in Section 2) and the lemmata to be inflected are
always previously unseen. To our surprise, the per-
formance of the Transformer at the “wug test”-like
setting is very poor despite the large amount of
training triples for 2018-languages or the very reg-
ular and straightforward inflection for Niger-Congo
languages. The performance is dramatically infe-
rior to the common-practice setting, even when the
number of training triples is seven times larger for
Finnish, Spanish and Turkish (see Figure 1).

We hypothesize four reasons for the poor per-
formance of the model under the “wug test”-like
circumstance: (1) missing copy bias regarding the
entire stem, i.e. the model can’t copy a stem abcde
if that exact stem has never been seen during train-
ing, (2) missing copy bias on individual letters, i.e.
the model can’t copy letter a if the letter is under-
represented in training, (3) missing copy bias on
subsequences of letters, i.e. the model can’t copy
sequence ab if the sequence is underrepresented in
training, (4) some combination of all the factors

above. To test these hypotheses, we conduct five
experiments designed to help the model learn to
copy with different biases by adding to the training
set for each language 2,0004 dummy data points
generated in five different ways, explained below.

+copy-dev-test-lemmas In order to test the first
hypothesis that the model does not learn to copy
parts of a stem it has not seen at the training stage,
we augment the training data for each language by
adding to it the lemmata in its development and
test sets with a special tag COPY. In other words,
2,000 (LEMMA, COPY, LEMMA) triples are added to
the initial “wug test” training set for each language.

+copy-2k-char and +copy-2k-substr Previous
work found that adding random strings can help
seq2seq models learn a copy bias and thus improve
the performance when the training data is limited
(Kann and Schütze, 2017). We adopt a similar
method to augment the training data with dummy
lemmata generated by the process shown in Figure
2 (a). The +copy-2k-char method takes as input
the alphabet created by collecting characters in the
language’s training set.

Considering that a natural linguistic sub-unit
of a word is a syllable, we propose to use sub-

4The choice of 2,000 is in order to match the augmentation
size of +copy-dev-test-lemmas method for 2018-languages.
We did not try to tune for the best data augmentation size. Ap-
pendix B provides plots of data augmentation size comparison,
where we found no consistent difference in all the languages.
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Figure 3: “Wug test” results. +copy-2k-char adds random strings generated with the alphabet. +copy-2k-substr
adds random strings generated with the n-gram set. +hall-2k-char adds data hallucinated with the method by
Anastasopoulos and Neubig (2019). +hall-2k-substr adds data hallucinated with our method.

strings of syllable-like length for the +copy-2k-
substr method. The input of this method is the
set of bigrams, trigrams and four-grams from the
language’s training data. For both methods, we
generate the dummy lemma by uniformly sampling
from the input and concatenating the sampled items
to a random length between the minimum and max-
imum word length we see in the training data. The
output of the dummy lemma generation process is
a triple of a dummy lemma, a special symbol COPY
and the dummy lemma, which is added to the initial
“wug test” training set for data augmentation.

+hall-2k-char and +hall-2k-substr The dummy
lemma generation methods do not leverage knowl-
edge about word structure which can be inferred
from the training data. Silfverberg et al. (2017)
found that it is very effective to augment training
data in low-resource situations with a data halluci-
nation approach by replacing a hypothesized stem
of the training triples with a random string. Anas-
tasopoulos and Neubig (2019) improves this data
hallucination method by taking into discontinuous
stems into consideration as well; this is the best
data hallucination method so far. We conduct the

+hall-2k-char experiment by augmenting the initial
“wug test” training set with dummy data generated
with Anastasopoulos and Neubig (2019)’s method.
The implementation from SIGMORPHON 2020
shared task 0 baseline is used.

In addition, we propose to generate the dummy
stem by uniformly sampling from substrings of
syllable-like length, i.e. the bigram, trigram and
four-gram set. This experiment is referred to as
+hall-2k-substr. Specifically, both data hallucina-
tion methods (illustrated in Figure 2 (b)) take as
input a triple from the training set, aligns the lemma
and the target form with the alignment method from
SIGMORPHON 2016 shared task baseline (Cot-
terell et al., 2016), finds the common substrings
between the lemma and the target form as the stem,
replaces the stem with a dummy stem, and out-
puts a dummy triple which is adopted for data
augmentation. Our proposed method is different
from Anastasopoulos and Neubig (2019)’s method
at the dummy stem generation step in two main
aspects: (1) Instead of sampling from the alpha-
bet, we sample from the set of bigrams, trigrams
and four-grams. (2) Instead of forcing the dummy
stem to be of the same length as the stem to be
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replaced, we only constrain the minimum and max-
imum length of the stem based on the training data.
In addition, for discontinuous stems, we only re-
place the first part of the stem.5

4 Results and discussion

“Wug test” with data augmentation Figure 3
shows results for the “wug test”-like setting and
results after augmenting the initial training set with
different methods. Every language sees a substan-
tial improvement with data augmentation, indicat-
ing that the Transformer model in the vanilla “wug
test” circumstance will not learn a copy bias well.

The substring-based data hallucination we pro-
pose, +hall-2k-substr, achieves accuracies which
are substantially higher than other methods for
most languages. For Turkish and Nyanja, +hall-2k-
substr is lower than the best performance, but the
difference is not obvious. For Lingala, +hall-2k-
substr has the same best performance as +hall-2k-
char. The consistent advantage of +hall-2k-substr
implies that substrings of syllable-like length is
more helpful than individual characters for data
hallucination. It also provides support to the fourth
hypothesis we made in section 3 that the poor per-
formance of the Transformer in the vanilla “wug
test”-like setting is due to a combination of factors
including missing copying bias for letters, subse-
quences of letters and even entire stems.

Common practice vs “wug test” Figure 1 plots
the Transformer accuracies with standard devia-
tions in the common-practice setting, vanilla “wug
test”-like setting, and “wug test”-like setting with
data augmentation by the substring-based data hal-
lucination methods (+hall-2k-substr). Though
data augmentation can improve the model’s per-
formance for a “wug test”, results are still infe-
rior to the common practice setting without any
data augmentation for most languages, especially
the morphologically challenging 2018 CoNLL-
SIGMORPHON languages.

5 Conclusion

In this work, we examine limiting the number of
training lemmata and keeping training lemmata
disjoint from the evaluation sets in morphologi-
cal inflection. By comparing the performance of

5Using the first part only is for implementation simplicity
in the current work. It should be adjusted for languages with a
large number of discontinuous stems.

the Transformer under the “wug test”-like circum-
stance with the common practice, we find that the
common-practice setting where the training data
covers a fair amount of lemmata and there is over-
lap of lemmata in training and evaluation, has ob-
scured the difficulty of the task. We propose to aug-
ment the training data with substring-based data
hallucination, and achieve substantial improvement
over previous data hallucination methods.

Considering the findings in this paper, we sug-
gest that future experiments include evaluations on
model performance using lemmata not found in the
training set and use unique lemma counts rather
than triple counts to document data set sizes.
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A Data information

triple-counts lemma-counts lemma-overlap (%)
Language train dev test train dev test dev-train test-train

czech 1000 1000 1000 848 848 849 24.53 20.38
finnish 1000 1000 1000 985 983 987 2.34 3.04
german 1000 1000 1000 961 945 962 9.42 9.46
russian 1000 1000 1000 973 985 977 3.65 3.79
spanish 1000 1000 1000 906 902 922 15.74 16.49
turkish 906 928 912 764 802 779 26.06 26.57

Table 1: CoNLL-SIGMORPHON 2018 shared task 1 medium-size data information.

triple-counts lemma-counts lemma-overlap (%)
Language train train dev-train test-train

czech 1582 100 0 0
finnish 7136 100 0 0
german 1290 100 0 0
russian 1311 100 0 0
spanish 7132 100 0 0
turkish 7632 100 0 0

Table 2: Data information of the training set we create for 2018-languages. We use the same dev and test sets as
CoNLL-SIGMORPHON 2018 shared task 1.

triple-counts lemma-counts lemma-overlap (%)
Language train dev test train dev test dev-train test-train
akan 2793 380 763 96 94 95 100.0 100.0
ga 607 79 169 95 59 80 100.0 100.0
lingala 159 23 46 57 23 34 100.0 100.0
nyanja 3031 429 853 227 199 226 100.0 100.0
southern sotho 345 50 99 26 24 25 100.0 100.0
swahili 3374 469 910 97 97 96 100.0 100.0

Table 3: Data information of Niger-Congo languages from SIGMORPHON 2020 shared task 0.
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B Data augmentation size comparison
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Figure 4: Performance on the dev set in “wug test” after adding different amounts of dummy data generated
with our substring-based hallucination method.
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C Performance of the encoder-decoder with hard monotonic attention model

Considering that the encoder-decoder with hard monotonic attention model (Aharoni et al., 2016; Aharoni
and Goldberg, 2017; Makarov et al., 2017; Makarov and Clematide, 2018c,a,b; Wu et al., 2018; Wu and
Cotterell, 2019) is designed for the morphological generation task and bias towards copying symbols in
the input by leveraging edit actions, we evaluate the performance of the encoder-decoder with exact hard
monotonic attention in the “wug test”-like circumstance as well in order to evaluate whether this deep
learning model architecture catered to morphological generation is able to learn the generalization ability.
We use the encoder-decoder with exact hard monotonic attention model proposed and implemented by
Wu and Cotterell (2019).6

The performance of the encoder-decoder with exact hard monotonic attention model for the original
shared task setup, the “wug test”-like setup with or without our best data hallucination augmentation
is presented in Figure 5. Figure 6 provides detailed comparison between different data augmentation
methods in the “wug test”-like experimental setup by the encoder-decoder with exact hard monotonic
attention model. We observe that the encoder-decoder with exact hard monotonic attention model has the
same limitation as the Transformer model pointed out in the previous section.

czech finnish german russian spanish turkish

66.84
54.96

71.06 68.42 76.12 73.0

17.62 17.76 12.88 17.38

53.22 47.2848.44
63.86 62.5 62.68

90.5
73.77

akan ga lingala nyanja southern
sotho

swahili

99.97 95.62 97.83 100.0 91.92 100.0

60.9
44.8

28.75

89.29

0.63

30.31

95.74 99.06 93.33 100.0
88.0

98.0

Figure 5: Performance of the encoder-decoder with exact hard monotonic attention model (Wu and Cotterell, 2019)
in the common-practice setting (left), “wug test”-like setting (middle), and ‘‘wug test”-like setting with our best
data hallucination method (right)

6https://github.com/shijie-wu/neural-transducer
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Figure 6: “Wug test” results by the encoder-decoder with exact hard monotonic attention model (Wu and Cotterell,
2019), with or without different data augmentation methods.
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