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Abstract

Cognitively plausible visual dialogue models
should keep a mental scoreboard of shared es-
tablished facts in the dialogue context. We pro-
pose a theory-based evaluation method for in-
vestigating to what degree models pretrained
on the VisDial dataset incrementally build rep-
resentations that appropriately do scorekeeping.
Our conclusion is that the ability to make the
distinction between shared and privately known
statements along the dialogue is moderately
present in the analysed models, but not always
incrementally consistent, which may partially
be due to the limited need for grounding inter-
actions in the original task.

1 Introduction

“There’s a cute dog outside!” you say on the phone
to your friend. “Sweet. What colour is the dog?”,
they say. “What dog?” you reply – and your friend
is rightfully confused. With your first utterance,
you have committed yourself to there being a dog;
a commitment you can’t just simply ignore later on.
Models of dialogue from linguistics and psycholin-
guistics take this process of grounding or scorekeep-
ing—making propositions mutual knowledge—to
be an elementary fact about dialogue (Lewis, 1979;
Clark and Brennan, 1991).

In this short paper, we investigate whether recent
NLP models of visual dialogue capture this pro-
cess. Specifically, we use the VisDial dataset (Das
et al., 2017a), which consists of dialogues in En-
glish about an image in an asymmetric setting simi-
lar to that from the first paragraph, and derive from
it diagnostic propositions that should be considered
mutual knowledge at a given point in the dialogue,
and others whose truth value is only known to one
participant at the given time. We then probe dia-
logue representations built by models pretrained on
the VisDial task for whether they correctly track
the participants’ knowledge and commitments.

2 Related Literature

Representing dialogue context implicitly as the con-
tinuous hidden states of neural networks trained in
an end-to-end fashion has been a prevailing prac-
tice since the works of Vinyals and Le (2015), Sor-
doni et al. (2015) and Serban et al. (2016). This
paradigm also enables multimodal input like im-
ages to be easily integrated (Shekhar et al., 2019b).
However, there is evidence that the human ability
of collaborative grounding still lacks in such mod-
els, in part due to the limitations of training regimes
and datasets (Benotti and Blackburn, 2021).

We witness extensive efforts to look into how
these models encode and make use of dialogue
history, capture salient information and produce
visually grounded representations (Sankar et al.,
2019; Agarwal et al., 2020; Greco et al., 2020a,b).
The analysis and evaluation of current dialogue
models (as Hupkes et al. (2018a), Shekhar et al.
(2019a), Parthasarathi et al. (2020), Saleh et al.
(2020), Wu and Xiong (2020), inter alia) often rely
on diagnostic classifiers (Hupkes et al., 2018b) and
probing tasks (Belinkov and Glass, 2019), common
tools to examine whether representations built by
neural networks encode linguistic information.

Another purposeful area of research on dialogue
revolves around inference. Zhang and Chai (2009,
2010) discuss conversation entailment, i.e. deter-
mining whether a conversation discourse entails a
hypothesis. Annotating or generating entailments,
contradictions and neutral statements in dialogue
datasets is usual in recent works (Welleck et al.,
2019; Dziri et al., 2019; Galetzka et al., 2021).

With insights from these three pillars, we pro-
pose a probing task for scorekeeping (Lewis, 1979)
on visual dialogues, formalised in the next section.

3 Problem Statement

Based on the premise that humans keep a mental
scoreboard of presupposed propositions and per-
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Figure 1: A scoreboard representation with generated propositions for a dialogue and architecture of the classifier. It
represents the proposition it is sunny being correctly classified as (true to A, private) at turn 3. From VisDial training
set, ID 8778 (CC-BY 4.0), photo 176904 from MS COCO dataset, ↪→Tufted Titmouse by Matt Tillett (CC-BY 2.0).

missible courses of action as a function of what has
been stated in a conversation (Lewis, 1979) and on
the public/private dichotomy discussed in Ginzburg
(2012), we propose a formalisation for the “kine-
matics of scorekeeping” (Lewis, 1979) on VisDial.

Each dialogue in the VisDial dataset is a tuple
D = (I,Q,A, T, P ) representing an interaction
between a questioner Q and an answerer A. They
exchange turns T , which establish propositions P ,
about a scene depicted in an image I . A sees I , but
Q does not. Both are provided with a caption K,
which for simplicity we take to be the first turn of
A, t0 = K; other turns comprise a question and
an answer, ti = (qi, ai), so that T = (ti)

10
i=0 (as

dialogues have 10 turns).1

We assume that: i) A does not lie about their in-
terpretation of the image; ii) Q does not ask redun-
dant questions; and iii) a fact disclosed by A imme-
diately becomes a shared commitment, even though
in reality this is not always the case (e.g. when a
misunderstanding happens). Under these assump-
tions, each ti discloses a new fact pi (and its im-
plications) about A’s judgement of the image that
was unknown to Q until ti−1. P is then defined
as a set of N propositions {pi1, pi2, · · · , piN}. Each
pij is either the direct entailment of ti (that is, the
expressed proposition), which is established by A
to be true, or its negation, which is established by
A to be false. The truth value of pij is known to A
throughout the dialogue, but only privately so for
all k < i. It becomes shared between A and Q at
k = i and remains so until the end of the dialogue.2

With this in place, A’s scoreboard of a dialogue
1Except on VisDial test set, where T < 10.
2Although the set of statements about an image can be

infinitely large, we limit P to a finite set here by only consid-
ering explicitly disclosed facts (and their negation).

can be represented by a matrix SD with dimensions
|T | × |P |. Each element sm,n is a tuple c ∈ C =
{(true to A, private), (true to A, shared), (false
to A, private), (false to A, shared)} representing
the ‘score’ of proposition pn at turn tm as a class,
like the example in Figure 1. Hence, the negation
of a fact that A considers true but has not been
mentioned yet is labelled as (false to A, private).3

That way, the scoreboard at a given turn t is given
by the t-th row in S and the whole matrix helps
visualising how the scoreboard is incrementally
updated throughout D.

Probing Task and Model. We design a classifi-
cation task to examine whether the continuous rep-
resentations of pretrained visual dialogue models
incrementally encode information about the score-
board represented by S. The probing classifier
is a function f : PD × RD,t → C, where PD

is the set of propositions in a dialogue D, R is
the space of hidden representations of a visual di-
alogue encoder and C are the scoreboard classes.
Based on the probing classifier architecture in He-
witt and Liang (2019), we approximate f as a neu-
ral network which maps a dialogue representation r
concatenated to a continuous representation z of a
proposition to a vector v with a probability distribu-
tion over classes, v = softmax(W2σ(W1[r; z]))
(bias term omitted), as illustrated in Figure 1. The
class is then predicted with the argmax function.

4 Data

Visual Dialogues and Encoders. We use the Vis-
Dial dataset v.1.0 (Das et al., 2017a) and the three
Q and A encoders (RL_DIV, SL and ICCV_RL)

3The scoreboard for Q is analogous, except that it cannot
differentiate the true/false dimension of private propositions.
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from Das et al. (2017b) and Murahari et al. (2019).
The first work implemented an end-to-end model
to train A and Q using reinforcement learning. The
latter is a follow-up study that adds an auxiliary ob-
jective function to encourage Q to ask more diverse
questions.4 The VisDial training set contains im-
ages from the MS COCO dataset (Lin et al., 2014).
Proposition embeddings z are built with Sentence-
Transformers (Reimers and Gurevych, 2019).

Generating Probes. The sets PD are program-
matically generated by manipulating QA pairs us-
ing rules that identify common lexical and syntactic
patterns in VisDial, in a similar fashion as Demszky
et al. (2018) and Ribeiro et al. (2019). Whenever
the pattern of a QA pair matches a rule, a direct
entailment and a direct contradiction are generated,
as those shown in Figure 1.5

Dataset Construction. We retrieve the pre-
trained dialogue context representations RD =
{rl|0 ≤ l ≤ 10}, where rl is the hidden state
of the encoder after it processed the dialogue up to
turn l in T (and the image and next question for A).
We then pair elements in RD with the embeddings
of the generated propositions pij in PD, forming
tuples {(rl, pij)|0 ≤ l ≤ 10, 1 ≤ j ≤ N} which
are mapped to the corresponding class c ∈ C. The
true to A or false to A status of a proposition pij re-
mains fixed for all turns in D, since it refers to a fact
(according to A’s beliefs) about the image, while
the private status holds for (r0, pij), . . . , (ri−1, p

i
j)

and shifts to shared for (ri, pij), . . . , (r10, p
i
j). The

probing dataset is thus composed of datapoints
(r, p, c)D for all D, for all turns’ representations
r ∈ RD, for all p ∈ PD. Propositions gener-
ated from captions are downsampled because they
outnumber the other turns, resulting in too many
propositions that are always shared. In order to
avoid bias with respect to the true/false dimension,
we sample the training set of propositions enforc-
ing that each type appears as true to A exactly the
same number of times as it does as false to A in
different dialogues. Table 1 presents a summary
(see Appendix for details).

5 Experiments

We train and test the classifier varying three as-
pects: i) A or Q, ii) main task with all classes in C

4Code and model checkpoints available under a BSD li-
cense at https://github.com/vmurahari3/visdial-diversity.

5The rule-based approach can only generate subsets of the
theoretical PD , but in enough number for the probing task.
See Appendix for details and examples.

train valid test

dialogues 95,369 1,979 6,880
propositions 344,988 23,060 44,954
proposition types 27,011 12,048 19,183
datapoints 3,794,868 253,660 312,102
vocab size 2,709 2,168 2,922
avg. |PD| 3.61 11.65 6.53

true to A and private 26.12 22.94 21.42
true to A and shared 23.87 27.05 28.57
false to A and private 26.08 22.94 21.42
false to A and shared 23.91 27.05 28.57

Table 1: Summary of the constructed datasets (after
balancing the training set) and proportion of each class.

(TFxPS), plus three variations with reduced dimen-
sions: Only true/false (TF), only private/shared
(PS) and merging true/false on the private cases
only (PxTSFS) and iii) control tasks (Hewitt and
Liang, 2019) (a) replacing r by a random vector (b)
replacing r by a null vector, both only on the train-
ing set, to quantify how much information can be
extracted from propositions alone during training.

Evaluation. Results are evaluated with accu-
racy on class predictions. To avoid any influence
that knowing the position in the dialogue could
have (early in the dialogue, propositions have a
greater chance of being private, and vice versa),
we evaluate the results at turn 5 (at which there
is a more balanced chance of a fact having been
mentioned or not). For the error analysis, we recon-
struct complete predicted scoreboards and evaluate
incremental aspects: In each column, only one shift
from private to shared should occur at the right turn
(except for caption propositions, which are always
shared) and the true/false status should not change.

Implementation. The classifier is implemented
with PyTorch (Paszke et al., 2019) and trained with
gradient descent using Adam optimizer (Kingma
and Ba, 2014) to minimize cross entropy.6

6 Results

Table 2 presents the accuracy of all models and
tasks at turn 5. The performance on the main task
is very similar across encoders, with differences
lower than 1.5%. Q outperforms A in all models
in the main task. While this is expected, since
Q’s representations must only keep track of the
dialogue whereas A must interpret the image, the
difference is only marginal.

6See Appendix for hyperparameters, model configurations
and details on reproducibility. Our code and documentation
are available at https://github.com/briemadu/scorekeeping.
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task TFxPS TF PS PxTSFS

model (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

A
main 61.80 62.37 61.31 73.05 72.50 72.41 77.29 77.31 77.13 65.57 65.49 65.83
random r 35.25 37.52 36.60 52.25 52.01 53.17 64.59 68.52 64.07 35.46 39.22 37.48
null r 37.43 37.19 37.42 50.65 50.65 50.67 62.79 62.85 62.66 37.36 37.51 37.35

Q
main - - - - - - 78.36 79.31 79.21 66.87 65.65 66.38
random r - - - - - - 60.44 60.53 61.43 35.49 34.58 34.86
null r - - - - - - 62.42 62.38 62.50 37.28 37.15 37.11

Table 2: Accuracy on test set at turn 5 (32,360 datapoints) for models (a) RL_DIV, (b) SL, (c) ICCV_RL. TFxPS
and TF are not applicable to Q because it has no information to distinguish between what A considers true or false
on the private dimension. The hypothesis that results of control tasks do not differ from their corresponding main
task is rejected for all cases using paired approximate permutation tests with 1,000 shuffles (p-value< 0.01).

For the TF task, the performance on the con-
trol tasks is close to random, as expected, but it
is higher than random for other tasks. We notice
that, while the training dataset is constructed to be
balanced in the true/false dimension, information
on the private/shared dimension has an inherent
bias that is more complex to counterbalance on the
training set. Despite the fact that datapoints in the
private class do not substantially outnumber the
shared class, we observe that each proposition type
can have a tendency to occur either early or late in
the dialogue (examples in Figure 2), causing them
to have an individual skewed distribution towards
shared or private at turn 5. This information leak
can be used as a shortcut by the classifier.7 Still,
A and Q’s representations lead to performances
between 8% and 32% higher than the control tasks
in all cases.
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Figure 2: Examples of skewed distributions over di-
alogue turns which can introduce bias on the pri-
vate/shared dimension.

Human Performance. Table 3 shows the human
performance, estimated as the average accuracy of
3 annotators (0.86 Fleiss’ κ on TFxPS) on a sample
of 94 datapoints, each from a different dialogue in
the test set (not only at turn 5). We observe that hu-
mans agree most of the times on their judgements

7As pointed by one of the reviewers, this may not be a
shortcoming, since it is how dialogue works and humans are
probably also exploiting this.

task TFxPS TF PS PxTSFS

human 91.84 94.32 97.51 96.09

A
RL_DIV 52.12 65.95 74.46 65.95
SL 50.00 72.34 73.40 68.08
ICCV_RL 52.12 71.27 77.65 67.02

Q
RL_DIV - - 75.53 62.76
SL - - 79.78 70.21
ICCV_RL - - 75.53 68.08

Table 3: Accuracy of human judgement compared to
the models on a sample (n=94, not only at turn 5).

and all models perform well below human level.
Error Analysis. We conduct an error analysis

on A, main task, TFxPS. The confusion matrix
in Figure 3 shows that it is easier to distinguish
between true/false to A in the shared dimension,
which can be a sign that dialogue information is
more salient in the representations than the image.
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Figure 3: Confusion matrix of predictions at turn 5.

The accuracy on all datapoints with proposition
types that occur on the training set is 67.69, higher
than for those that do not, which is 53.11.

When we reconstruct full predicted scoreboards,
some qualitative shortcomings become evident. A
shift from private to shared is predicted at the cor-
rect turn for 60.32% of the propositions but only
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38.24% shifts only at the correct turn. Besides, only
44.50% of the propositions have stable predictions
regarding the true/false to A dimension.

Figure 4 shows types of errors in the predictions
(the Appendix has more examples). We see the
same truth value assigned to opposite propositions,
the same proposition classified both as true and
false at different turns, as well as an occasional
oscillation between private/shared throughout the
dialogue. These are indications that, although accu-
racy per label is generally high, the representations
do not seem to always allow incrementally stable
and consistent predictions throughout the dialogue.

true to A / private
false to A / private

false to A / shared
true to A / shared

1

2

3

Figure 4: A portion of a predicted scoreboard with some
highlighted errors: 1) the same truth value on opposite
propositions, 2) oscillation between private and shared,
3) opposite truth values on the same proposition.

7 Scope and Limitations

The results on this paper comprise three visual di-
alogue models trained using a similar setting on
the same dataset. The preprocessing steps used by
these models replace some tokens by a UNK token
and truncate long captions, which prevents some
information to become shared as assumed. Further
investigation with other models and data is neces-
sary in future research in order to support more
general conclusions. The results also rely on the ca-
pabilities of the classifier. Although we performed
hyperparameter search, the probing classifier does
not completely overfit the full training dataset, thus
other architectures and hyperparatemeters can be
further investigated.

The rule-based generation of propositions has
limitations. It cannot generate propositions for all
QA pairs and some rules end up not always yield-
ing grammatically valid sentences, for instance be-
cause of countable/uncountable nouns, detection of
singular/plural forms and mistakes and typos deriv-
ing from the dialogues themselves. Besides, spuri-

ous patterns deriving from the implemented rules
or other confounds and inherent biases (e.g. Fig-
ure 2) may exist and be predictive of the classes,
which could be captured by the probing classifier
and influence (likely overestimating) the results.
Enforcing a balance on the training set in terms of
true/false to A solves one source of bias but causes
its distribution to differ from the validation and test
set. The test set also has a different distribution
because of its varying number of turns.

Finally, while the assumptions proposed in Sec-
tion 3 are necessary idealizations for using VisDial
for this task, they simplify essential aspects of di-
alogues, e.g. the uncertainty about a fact actually
being shared, memory limitations and the many
kinds of inference that are used in the accommoda-
tion of shared knowledge, such as presuppositions,
implicatures, entailments and implicit information.
Our method cannot capture background knowledge
not explicitly stated in dialogue turns.8

8 Conclusion

We have proposed a novel way to do theory-based
evaluation of visual dialogue models. Using diag-
nostic propositions, we investigated to what degree
neural network visual dialogue models incremen-
tally build up representations that are appropriate to
do scorekeeping of shared commitments through-
out a dialogue. The evaluated models trained on
VisDial capture part of this process, but not always
consistently, possibly because this ability is not
an elementary component of the training regime.
The relatively impoverished nature of the original
task in terms of coordination phenomena can also
limit the capability of models to build good dia-
logue representations (Schlangen, 2019). Future
work should extend the evaluation to other models
and reflect on how better and ecologically valid
diagnostic datasets for visual dialogues can be con-
structed.

9 Ethical Considerations

Propositions are direct manipulations of QA pairs
and thus reflect the subjective judgments of Vis-
Dial crowdworkers. Therefore, they are not per se
necessarily true or false with respect to the image,
but with respect to A’s interpretation expressed as
answers. Inappropriate content on images, captions
and dialogues can be replicated by the rule-based

8We thank the reviewers for pointing out some of the limi-
tations discussed in this section.

655



proposition generation. To try to remedy this, we
filtered out dialogues containing words that could
be used for sensitive content. Despite our efforts,
we cannot guarantee that we could remove every-
thing, given the size of the dataset and the inherent
bias of how humans interpret images. As a result,
the only purpose of the propositions is performing
the evaluation as proposed here.
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Appendix

A Generating Propositions and
Constructing the Datasets

This section presents details about the procedure
to turn QA pairs from the VisDial dataset9 into
propositions.

Solving Pronouns. Coreference resolution is
specially challenging on visual dialogues, as dis-
cussed in Loáiciga et al. (2021). Despite the limi-
tations, we used the model proposed in Lee et al.
(2018) to replace pronouns (those that were de-
tected and solved) by their corresponding entity as
follows:

1. Merged caption and QA pairs into a single
string.

2. Passed string to coreference resolution model
to get coreference clusters.10

3. Assumed that the first element in the cluster
was the entity (its first mention).

4. For each dialogue, checked which questions
and answers contained pronouns of interest
(he, she, it, they, his, her, its, their, him, them,
hers, theirs, this, that, these, those) and re-
placed them with their corresponding cluster
entity, if detected. Assumed the pronoun her
was always possessive.

5. If the entity comprised more than N=5 to-
kens, we did not replace it (because entities
spanning over many tokens are very likely to
be long portions of the caption that result in
wrong propositions).

6. With postprocessing steps, put string back into
VisDial format.

On average, 2.24 pronouns were replaced per
dialogue on the training set, 2.43 on the validation
set and 1.15 on the test set.

Generating Propositions. Automatic genera-
tion of diagnostic datasets or adversarial examples
via programmatic manipulation rules or templates
is a usual step in probing studies, e.g. Johnson et al.
(2017), Shekhar et al. (2017), Ribeiro et al. (2018)
and Bitton et al. (2021). The main steps to turn
QA pairs into propositions were to some extent
based on Ribeiro et al. (2019) and Demszky et al.
(2018). We analysed common patterns of questions

9Available at https://visualdialog.org/
10Implementation by AllenNLP, version 2.1.0, at

https://demo.allennlp.org/coreference-resolution with their
pretrained model coref-spanbert-large-2021.03.10.
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and answers on VisDial and implemented 34 rules
that create entailments and contradictions. Some
rules are lexical (e.g. questions starting with ‘what
color is’ and whose answer has a color name) and
others depend on POS tag patterns extracted using
SpaCy v.3.0.5.11 Most rules work for polar ques-
tions, some work for other types of questions. We
noticed that some images and dialogues on VisDial
contain inappropriate content. To avoid replicating
this on the propositions, we filtered out dialogues
that contain words that may be sensitive (see code
documentation for details). Propositions were then
generated as follows:

1. Parsed the caption to extract nouns and adjec-
tives and generated caption propositions.

2. For each turn, checked whether it matched a
manipulation rule.

3. Every rule, when they were applied, generated
a direct entailment and a direct contradiction
(negation of the entailment).

4. Propositions that contained pronouns (for
cases in which coreference resolution did not
work), except for it, or that were too long
(more then 15 tokens) were excluded.

The code documentation has a more detailed
description of the rules. The next sections present
details of the resulting proposition sets. Note that
the number of dialogues in each set is smaller than
in the VisDial original splits, because some were
filtered out and others had no propositions.

Propositions have four attributes: i) kind of ma-
nipulation rule; ii) dialogue and turn from which
it derives; iii) a true/false status with respect to
what A thinks about the image; iv) the polarity
(positive/negative) of the answer, if applicable.

Downsampling and de-biasing. We noticed
that the proportion of caption propositions was
much larger than propositions deriving from other
turns, which would cause a considerable imbalance
towards facts that are always shared in the score-
board. Therefore, we sampled 15% of the caption
pairs (entailment and contradiction) on all datasets
to make the distribution over manipulated turns be
closer to uniform.

Furthermore, in preliminary experiments we ob-
served that propositions could give away informa-
tion on the true/false to A status. For instance,
‘there is a zebra.’ can appear very often as an en-
tailment (on the many photos showing zebras) but

11https://spacy.io/

rarely as a contradiction (dialogues where Q spon-
taneously asks ‘is there a zebra?’ and the answer is
‘no’). Besides, on rules that manipulate questions
that are not polar (what color is the dog? black.),
negation is always a contradiction. So the classi-
fier could make predictions based on the lexical
form alone. To counter this bias, we constructed
a balanced training dataset by sampling from the
original set while making sure that, for each p
that A established to be true with respect to an
image/dialogue, we also included an equal p paired
with an image/dialogue in which it is established
to be false. While this procedure reduced the size
of the training set, we ensured that predictions on
the true/false dimension would need to use the dia-
logue representations. We also limited the number
of p of the same kind to 2,000 (1,000 as entailment,
1,000 as contradiction), to avoid having very com-
mon propositions like ‘the photo is in color’ or ‘it
is sunny’ occurring too often.

Datasets used in the experiments. The fol-
lowing paragraphs discuss the final datasets used
in the experiments (i.e. after downsampling cap-
tions and balancing the training set). The frequency
over which turn was manipulated is shown in Fig-
ure 5. Although there is an imbalance towards
later turns on the training set, the proportion of pri-
vate/shared classes at turn 5 is relatively balanced
(around 44.5/55.5), partially due to the fact that, at
the last turn, no proposition is assigned a private
class. Figure 6 shows the frequency of the number
of turns that have been turned into propositions in
a dialogue. Table 4 show the proportion of each
type of proposition on the datasets. The training set
has less propositions that do not derive from polar
questions due to the balancing.

The propositions, paired to dialogue representa-
tions on each dialogue turn, with the class assigned
to each tuple can be seen as a layer of annotation
which is not predicted but constructed.
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Figure 5: Distribution over manipulated turns. The test
set has a different distribution because it has incomplete
dialogues with varying length.

37.20% of the validation proposition types and
31.58% of the test proposition types appear among
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Figure 6: Number of manipulated turns per dialogue.

train valid test

true to A 50.00 50.00 50.00
false to A 50.00 50.00 50.00

polar q, positive a 43.17 32.73 31.35
polar q, negative a 49.97 39.09 31.44
other q 6.84 28.16 37.19

Table 4: Proportion (%) of each type of proposition.

the training propositions. 82.68% of the validation
propositions and 79.63% of the test propositions
occur in only one dialogue. On average, a propo-
sition appears in 12.77 dialogues in the training
set, 1.91 dialogues in the validation set and 2.34
dialogues in the test set. 72.73% of the word types
in the validation set and 63.00% of the word types
in the test set occur in the training set.

Examples. Figure 10 shows dialogues from the
training set and the propositions generated for each
turn, after downsampling the caption propositions
(but before balancing). Propositions can inherit
grammatical or spelling problems from the dia-
logues themselves. Figure 1 in the main section
contains all propositions, before downsampling.

Collecting dialogue representations. To collect
the dialogue state representations, we adapted the
original train.py and evaluate.py scripts.12 To get
the representation at turn 10 for A, we needed to
feed a dummy next question made of the start and
the end symbols with a question mark token in
between.

Human Judgement. We randomly sampled 100
dialogues and one proposition on each of them.13

Then we sampled a random turn up to which the
corresponding dialogue would be shown. The an-
notators were non-native English speakers who
worked as student assistants at the Computational
Linguistics Lab of the University of Potsdam. The
task was explained to the annotators verbally and
then again in written form at the beginning of the
annotation. All participants saw the same data-

12https://github.com/vmurahari3/visdial-diversity
136 datapoints were later excluded due to a technical mis-

match after refactoring.

train valid test

manipulation rule
types

34 34 34

avr. manipulated
turns per dialogue

2.28 5.72 3.13

min. propositions
per dialogue

1 2 2

max. propositions
per dialogue

16 26 22

Table 5: Details of the proposition sets (after downsam-
pling and balancing).

points at a different random order, presented in a
setting as shown in Figure 7, and had to select one
of the four alternatives (which correspond to the
main task TFxPS).

<image>

<caption>

question 1

question 2

answer 1

answer 2

Proposition

Figure 7: How the task was presented for the annotators.

B Reproducibility

In this section, we present further details of the
implementation and additional results to support re-
producibility. More information can also be found
in the code documentation.

Hyperparameters. We used comet.ml’s14 im-
plementation of the Bayes algorithm for hyperpa-

14www.comet.ml
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rameter search on A, main task, TFxPS, RL_DIV,
aiming at maximizing accuracy on the validation
set, as well as some manual selections. The (non-
exhaustive) search space is shown in Table 6. The
optimal configuration was then used in all experi-
ments, with a maximum of 30 epochs and no early-
stopping. A preliminary test with an even larger
hidden dimension showed a very minor improve-
ment. For each experiment, we used the config-
uration that led to the best performance on the
validation set to get results on the test set. Each
experiment took between 50 and 60 minutes.

The sentence encoder models listed on Table 6
are available at HuggingFace’s Model Hub.15

Classifier architecture. The neural network was
implemented using Pytorch 1.7.1. The proposition
embeddings have 768 dimensions and the dialogue
context embeddings have 512 dimensions. We used
a sequential model from PyTorch with the follow-
ing layers and dimensions:16

1. linear layer (in features=768+512, out fea-
tures=1024, bias=True)

2. sigmoid function
3. dropout layer (p=0.1)
4. linear layer (in features=1024, out features=n

labels in {2,3,4}, bias=True)
5. softmax function + cross entropy loss

The models have 1,315,844, 1,314,819 and
1,313,794 trainable parameters for the classification
tasks with 4, 3 and 2 labels, respectively.

Infrastructure. The operating system used to
run experiments was Linux, release 5.4.0-99-
generic, processor x86_64. We had two GPUs
available (NVIDIA GeForce GTX 1080 Ti), but
each individual experiment used only one of them.

C Detailed Results

Table 7 shows the overall accuracy on all datapoints
(comprising all turns in the test set). Table 8 and
Table 9 show all results on the validation set.

On Figure 8 we split the accuracy per type of
proposition. Propositions that derive from negative
facts about the image (‘is there a dog? no.’) seem
to be harder than positive ones when they derive
from earlier turns, but they are easier to correctly

15https://huggingface.co/sentence-transformers
16During development, we also experimented with a shal-

low version, which did not perform very well, and a version
with more layers, whose performance gain was not substantial.
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Figure 8: Accuracy per type of proposition (A, main,
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Figure 9: Mean accuracy on dialogue level over turns
(A, main, TFxPS, RL_DIV).

classify when they derive from later turns. Propo-
sitions deriving from questions that are not polar
are harder (which may be a consequence of the
balanced dataset selection that results in few propo-
sitions of this type for training). We also see that
propositions derived from manipulating later turns
are, in general, harder to classify.

When we consider each row of the scoreboard
(representing the scoreboard at a given turn), we
can inspect how accuracy evolves over turns, illus-
trated in Figure 9.

For the error analysis on captions, a right shift
from private to shared means that the class at turn 0
is shared. Shifting only at the right turn means that
it starts as shared and does not shift at any turn.
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Hyperparameter Values Selected

batch size 64, 128, 256, 512 512
clipping 0.0, 0.25, 0.5, 1, 5 1
dropout 0.0, 0.1, 0.3, 0.5 0.1

hidden dimension 64, 128, 256, 512, 1024 1024
learning rate 1e-5, 1e-3, 3e-5, 3e-3, 1e-2 0.001
random seed 2204, 10, 142, 54321 54321

sentence encoder stsb-bert-base, paraphrase-mpnet-base-v2, nli-roberta-
base-v2, stsb-roberta-base-v2

paraphrase-mpnet-base-v2

Table 6: Hyperparameters tried in the (non-exhaustive) search and selected hyperparameters used in all final
experiments.

task TFxPS TF PS PxTSFS

model (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

A
main 62.04 62.33 61.78 71.02 70.92 70.79 80.94 81.24 80.79 73.06 73.36 73.47
random r 35.10 35.56 35.12 52.48 51.82 53.17 60.35 60.65 60.46 47.95 48.65 48.62
null r 37.66 37.52 37.71 50.61 50.60 50.61 60.25 60.24 60.21 50.64 50.86 50.62

Q
main - - - - - - 82.02 83.15 83.06 74.35 73.90 74.42
random r - - - - - - 59.00 59.75 60.06 48.80 48.32 48.49
null r - - - - - - 60.18 60.13 60.15 50.64 50.56 50.53

Table 7: Accuracy on the test set (all turns) for models (a) RL_DIV, (b) SL, (c) ICCV_RL.

task TFxPS TF PS PxTSFS

model (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

A
main 57.97 58.03 57.31 70.32 70.45 70.35 76.31 77.17 75.97 68.13 69.15 68.41
random r 33.48 35.76 35.53 52.45 52.93 53.69 62.09 61.85 58.51 51.14 50.72 49.90
null r 37.44 37.39 37.55 50.75 50.75 50.75 63.94 63.91 63.92 53.05 52.95 53.10

Q
main - - - - - - 78.49 79.74 79.22 71.62 71.37 71.28
random r - - - - - - 62.30 60.80 61.16 52.12 51.58 51.69
null r - - - - - - 63.89 63.82 63.86 53.17 52.98 52.99

Table 8: Accuracy on the validation set (turn 5) for models (a) RL_DIV, (b) SL, (c) ICCV_RL.

task TFxPS TF PS PxTSFS

model (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

A
main 62.46 62.55 62.30 69.59 69.83 69.52 85.00 85.34 84.82 74.74 75.13 74.97
random r 33.52 33.86 33.54 52.42 52.85 53.55 59.54 59.64 59.88 49.53 49.55 50.02
null r 34.84 34.75 34.88 50.74 50.74 50.74 59.75 59.73 59.71 51.14 51.01 51.13

Q
main - - - - - - 85.33 86.23 86.37 76.23 75.79 76.15
random r - - - - - - 58.70 60.43 60.45 50.01 49.88 50.02
null r - - - - - - 59.68 59.63 59.63 51.25 51.16 51.16

Table 9: Accuracy on the validation set (all turns) for models (a) RL_DIV, (b) SL, (c) ICCV_RL.
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a dog that is looking at a herd of sheep.
    none
are there any people? no.
    there are no people.
    there are people.
what color is the dog? whitish tan.
    the dog is tan.
    the dog is not tan.
is this in color? yes.
    the image is in color.
    the image is not in color.
is this a large field? very large.
    none
is there tall grass? no.
    there is no tall grass.
    there is tall grass.
is it sunny? a little.
    none
can you see a fence? no fences.
    one cannot see any fence.
    one can see a fence.
are there trees? 0.
    there are no trees.
    there are trees.
can you see mountains? i see a hillside.
    none
any buildings? no buildings at all.
    there are no buildings.
    there are buildings.

this is a white kitchen with a window.
    none
do you see a stove? yes.
    one can see a stove.
    one cannot see any stove.
what color is the stove? white and black.
    the stove is white and black.
    the stove is not white and black.
do you see a sink? yes.
    one can see a sink.
    one cannot see any sink.
can you see the fridge? no.
    one cannot see any fridge.
    one can see a fridge.
do the window have any curtains? no curtains.
    the window do not have any curtains.
    the window have any curtains.
do you see a dishwasher? no.
    one cannot see any dishwasher.
    one can see a dishwasher.
do you see any blinds? no blinds.
    one cannot see any blinds.
    one can see blinds.
any pictures on the wall? 0.
    there are no pictures on the wall.
    there are pictures on the wall.
do you see any people? no people are in the room.
    one cannot see any people.
    one can see people.
what color is the floors? grey.
    the floors is grey.
    the floors is not grey.

a serving of dessert that includes various berries.
    none
does this food look appetizing? no.
    none
is veggies on dish? nope just fruit.
    none
do you see apples? no apples.
    one cannot see any apples.
    one can see apples.
do you see grapes? no gapes at all.
    one cannot see any grapes.
    one can see grapes.
what is main fruit on dish? strawberries and blueberries.
    none
do strawberries still have green on them? yes it does.
    none
are blueberries large? no small and smashed.
    the blueberries are not large.
    the blueberries are large.
can you tell what color plate is? it is white bowl.
    none
can you tell color of table? no,.
    none
do you see people? no.
    one cannot see any people.
    one can see people.

a black cat laying in the sun on a green bench.
    one can see a black cat.
    one cannot see a black cat.
is the bench chipped? no it's not.
    the bench is not chipped.
    the bench is chipped.
is it wood or metal? it looks metal to me.
    none
is the cat sleep? no i see the eye to be open.
    the cat is not sleep.
    the cat is sleep.
any other cats? i can see only 1 cat.
    none
any people? no.
    there are no people.
    there are people.
is it day? yes it is.
    none
any sunshine? yes nice sunshine.
    there is a sunshine.
    there is no sunshine.
is this in a yard or park? it's a park.
    none
is the field big? no in the picture.
    the field is not big.
    the field is big.
angry birds? i don't see any birds.
    none

Figure 10: Example of generated propositions for VisDial dialogues (CC-BY 4.0) from the training set, after
downsampling captions and before balancing.

663

https://creativecommons.org/licenses/by/4.0/


one can see a red toothbrush.

one cannot se
e a red toothbrush.

the person is m
ale.

the person is n
ot male.

the dog is t
an.

the dog is n
ot ta

n.

one can see dog's te
eth.

one cannot se
e any dog's te

eth.

one can see walls.

one cannot se
e any walls.

there is a
 light on.

there is n
o light on.

a person brushing their dogs teeth with a red toothbrush.
are they in the bathroom? no, i don't think so.

are they inside? yes.
is the person male? i think so, but i can't see the person's face.

is the person blonde? not sure, can't see the hair.
is the dog big or small? medium to large size.

what color is the dog? tan color.
can you see the dog's teeth? yes.

is there anyone else there? no.
can you see walls? yes.
is there a light on? yes.

answerer scoreboard predictions

the man's h
air is

 black.

the man's h
air is

 not black.

the jacket is 
brown.

the jacket is 
not brown.

one can see a sky.

one cannot se
e any sky.

there is a
n evening.

there is n
o evening.

there is n
o logos or writin

g.

there is l
ogos or writin

g.

there is n
o tre

es.

there is t
rees.

there is n
o cars.

there is c
ars.

one cannot se
e any sun.

one can see a sun.

a man sits on a bench while facing a lighted cityscape at night.
what color is the man? don t know.

what color is the man wearing? a leather jacket.
what color is the man's hair? black.

what color is the jacket? brown.
can you see the sky? yes.

is it night or day? evening.
is there any logos or writing? no.

is there any trees? no.
is there any cars? no.

can you see the sun? no.
answerer scoreboard predictions

one can see a soda cle
arly.

one cannot se
e any soda cle

arly.

the pictu
re is a

n amateur.

the pictu
re is n

ot an amateur.

a person standing at a table holding a cell phone and a can of soda over the table.
can you see the soda clearly? yes i can.

can you tell the brand? coca cola.
is the picture a pro pic or amateur? amateur.

can you tell the person's gender? he is a male.
is the younger or older than 20? i can't see a face.

can you see his shirt? yes i can.
what color is it? white dress shirt.
can you see his pants? yes i can.

what kind of material are they? looks like cotton.
can you tell the color? all black.

answerer scoreboard predictions

there is a
 top.

there is n
o top.

the cat is 
small.

the cat is 
not sm

all.

the kitten is w
hite and gray.

the kitten is n
ot white and gray.

the cat is 
not playing.

the cat is 
playing.

a kitten laying on top of the laptop keyboard.
is the cat small? yes, it is a small kitten.

what color is the kitten? the kitten is gray and white.
is this at a house? it seems to be a house.

what part of the house? it appears to be a bedroom.
do you see any windows? there are no windows visible.

do you see a bed? i see part of a bed.
is the cat playing? the cat is just laying on its side.

is the anything near the laptop? there are books and a water bottle next to the laptop.
is the lid on the water bottle? yes, it appears to be capped.

is the cat playing? no, the cat is laying on its side.
answerer scoreboard predictions

there are no people.

there are people.

there is a
 color.

there is n
o color.

the sun is s
hining.

the sun is n
ot sh

ining.

the tra
in is g

rey and yellow.

the tra
in is n

ot grey and yellow.

there are no tre
es.

there are tre
es.

a train carrying a line of water tanks on a train track at an empty terminal surrounded by brick buildings.
is they train long? no.

how many water tanks? about 8.
how many buildings? 3.

any people? no.
color or black&white? color.

is it raining? no.
is the sun shining? yes.

what color is the train? yellow and grey.
are there trees? no.

are the buildings run down? no.
answerer scoreboard predictions

there are no other animals a
round.

there are other animals a
round.

it lo
oks lik

e summertim
e.

it does not look like summertim
e.

there is n
o grass o

n the ground.

there is g
rass o

n the ground.

there are no people around.

there are people around.

the elephants a
re cle

an.

the elephants a
re not cle

an.

the elephants a
re not all fu

ll siz
e.

the elephants a
re all fu

ll siz
e.

a few elephants at the watering hole on a hot day.
how many elephants are there? 3.

are there any other animals around? no others.
are they at a large body of water? it doesn't appear to be but i can only see the shoreline.

does it look like summertime? yes, it does.
is the sun out? yes, it is.

is there any grass on the ground? no grass but there are bushes behind the elephants.
are they in the zoo or the wild? i think it would be in the wild.

are there any people around? no people.
are the elephants clean or dirty? they are mostly clean but have some dirt on their backs.

are the elephants all full size? no there is a baby with them.
answerer scoreboard predictions

true to A / shared

false to A / shared

true to A / private

false to A / private

Figure 11: Examples of complete predicted scoreboards by A, main task, RL_DIV on TFxPS. All dialogues are
from the VisDial validation set (CC-BY 4.0).
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