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Abstract

Recent studies have shown that social me-
dia has increasingly become a platform for
users to express suicidal thoughts outside tra-
ditional clinical settings. With advances in
Natural Language Processing strategies, it is
now possible to design automated systems to
assess suicide risk. However, such systems
may generate uncertain predictions, leading to
severe consequences. We hence reformulate
suicide risk assessment as a selective priori-
tized prediction problem over the Columbia
Suicide Severity Risk Scale (C-SSRS). We
propose SASI, a risk-averse and self-aware
transformer-based hierarchical attention classi-
fier, augmented to refrain from making uncer-
tain predictions. We show that SASI is able to
refrain from 83% of incorrect predictions on
real-world Reddit data. Furthermore, we dis-
cuss the qualitative, practical, and ethical as-
pects of SASI for suicide risk assessment as a
human-in-the-loop framework.

1 Introduction

Suicide is a global phenomenon responsible for
1.3% of deaths worldwide (WHO, 2019). While
it is the leading cause of death among 14-35 year
olds in the US (Hedegaard et al., 2021), suicide
rates have increased by 13% in Japan between July
to September 2020 (Tanaka and Okamoto, 2021).
It hence becomes critical to extend clinical and
psychiatric care, which relies heavily on identifying
those at risk. While 80% of patients do not undergo
clinical treatment, 60% of those who succumbed to
suicide denied having suicidal thoughts to mental
health experts (McHugh et al., 2019). However,
studies show eight out of ten people shared suicidal
thoughts on social media (Golden et al., 2009).

The advent of Natural Language Processing
(NLP) shows promise for suicide risk assessment
based on online user behavior (Ji et al., 2021b;
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Figure 1: End-to-end pipeline for suicide risk assess-
ment. When SASI assesses the posts, it returns the pre-
dicted risk level along with a certainty score. With a
human-in-the-loop framework, these predictions can be
sorted into various risk levels. SASI assigns high prior-
ity to uncertain predictions, for an immediate review by
mental health experts.

Choudhury et al., 2016), with automatic risk as-
sessment algorithms outperforming traditional clin-
ical methods (Coppersmith et al., 2018; Linthicum
et al., 2019). Numerous deep learning methods
already exist, which include leveraging suicide-
related word-embeddings (Cao et al., 2019), social
graphs (Mishra et al., 2019; Sinha et al., 2019; Cao
et al., 2022; Sawhney et al., 2021b) and historical
context (Matero et al., 2019; Gaur et al., 2019).

However, mental health is a safety-critical realm,
where technological failure could lead to severe
harm to users on social media (Sittig and Singh,
2015). One such case was covered by Register
(2020), wherein a medical bot suggested a mock
patient kill themselves, demonstrating that unin-
tended harmful behavior can emerge from AI sys-
tems (Amodei et al., 2016; Chandler et al., 2020).
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Despite the significant power of traditional NLP
methods, such models are inherently designed to
make a prediction even when not confident. This
poses a challenge when working with critical tasks
like suicide risk assessment, for which it may be
hard to make a prediction due to various reasons
such as task hardness or contained ambiguity. Such
a system may associate a lower risk level to a user
who needs urgent help. A resulting delayed re-
sponse from mental health experts may lead to
adverse consequences. We hence need systems that
assign high priority to uncertain predictions, for
immediate review and response.
Contributions: We reformulate suicide risk assess-
ment as a prioritized prediction task which factors
in uncertainty, and propose SASI: A Risk-Averse
Mechanism for Suicidality Assessment on Social
MedIa. SASI is risk-averse in the sense that it
is self-aware, as it incorporates a selection func-
tion to measure uncertainty. Based on a set thresh-
old value, SASI refrains from making a prediction
when it is uncertain. We show that SASI can act
as a tool to efficiently prioritize users who need
immediate attention. Through a human-in-the-loop
framework that involves a domain expert, SASI
assigns high priority to uncertain predictions to
avoid critical failure (Figure 1). We demonstrate
the effectiveness of SASI using a real-world gold
standard Reddit dataset. Through a series of exper-
iments, we show SASI refrains from making 83%
of incorrect predictions. We further demonstrate
its effectiveness through a qualitative study and
discuss the ethical implications.

2 Methodology

2.1 Columbia Suicide Severity Risk Scale

The Columbia Suicide Severity Rating Scale (C-
SSRS) is an authoritative questionnaire employed
by psychiatrists to measure suicide risk severity
(Posner et al., 2011). There are 3 items in the scale:
Suicide Ideation, Suicide Behavior, and Suicide
Attempt. Each C-SSRS severity class is composed
of a conceptually organized set of questions that
characterize the respective category. Responses to
the questions across the C-SSRS classes eventually
determine the risk of suicidality of an individual
(Interian et al., 2018; McCall et al., 2021). One of
the challenges researchers face when it comes to
dealing with social media content is the disparity in
the level of emotions expressed (Gaur et al., 2019).
Since the C-SSRS was originally designed for use
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Figure 2: An overview of SASI: SASI incorporates a
risk-averse, self-aware mechanism to any given suicide
ideation model (SIM) by training using Gambler’s Loss.
It refrains from predicting when uncertain.

in clinical settings, adapting the same metric to a
social media platform would require changes to
address the varying nature of emotions expressed.
For instance, while in a clinical setting, it is typ-
ically suicidal candidates that see a clinician; on
social media, non-suicidal users may participate
to offer support to others deemed suicidal (Gaur
et al., 2021). To address these factors, two addi-
tional classes were defined (Gaur et al., 2019) to the
existing C-SSRS scale with three classes: Suicide
Indicator and Supportive (Negative class).

2.2 Problem Formulation

Following existing work (Gaur et al., 2019; Sawh-
ney et al., 2021a), we formulate the problem as
a classification task to predict the suicidal risk
of the user ui ∈ {u1, u2, · · · , uN}, whose posts
Pi = {pi1, pi2, · · · , piT } are authored over time in a
chronological order, with the latest post being piT .
We denote the label set Y = {Support (SU), Indica-
tor (IN), Ideation (ID), Behaviour (BR), Attempt
(AT)} in increasing order of severity risk, defined
based on the C-SSRS. For a given Suicide Ideation
Model, our goal is to expand the cardinality of the
label space to |Y|+ 1 so as to enable an option to
refrain when the model is uncertain.
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2.3 Suicide Ideation Model (SIM)
Each post made by a user could provide detailed
context of suicidal thought manifestation over time
(Oliffe et al., 2012). To capture this property,
we draw inspiration from existing state-of-the-art
(SOTA) models (Gaur et al., 2019; Matero et al.,
2019; Sawhney et al., 2021a; Ji et al., 2021a) which
use LSTM based backbones. To encode each
post pik, we use the 768-dimensional representa-
tion of the [CLS] token obtained from BERT (De-
vlin et al., 2019) as eik=BERT(pik). As shown in
Figure 2, we then pass each post embedding se-
quentially through a bi-directional LSTM, given
as hik = Bi-LSTM(eik). We thus obtain the se-
quence of hidden states, x = [hi1, h

i
2, · · · , hiT ],

where hik ∈ RH , and H is the hidden dimension.
To filter out relevant signals from the potentially
vast user history (Shing et al., 2020), we pass the
hidden state sequence through an attention layer.
The final layer is a multilayer perceptron (MLP) to
obtain the prediction vector ŷ, given as:

ŷ = f(x), where

f(x) = Softmax(MLP(Attention(x)))
(1)

2.4 Self-Aware Mechanism
To make the model self-aware, we transform the
model such that it makes a prediction only when
certain (Liu et al., 2019). As shown in Figure 2,
the model f : RT×H → Y is augmented with a
selection function g : RT×H → (0, 1), which is an
extra logit. The augmented model is described as a
piece-wise function, given by:

(f, g)(x) :=

{
Refrain, if g ≥ τ
argmax(ŷ), otherwise

(2)

Where the threshold τ ∈ (0, 1), argmax(ŷ) ∈ Y.
Let p = (f, g)(x), where p ∈ Y ∪ {Refrain} de-
note the final prediction by the model for a user
ui. Human moderators can then define the level
of granularity of these predictions, and sort them
into priority levels as desired. As an example, mod-
erators may choose to have only three levels of
priority, where the user is high priority if p ∈ {AT,
BR, Refrain}, moderate if p ∈ {ID, IN} and low if
p ∈ {SU}. With the addition of the Refrain option,
uncertain predictions will have highest priority, al-
leviating the possibility of high-risk users being
neglected.

It is essential to note that the confidence thresh-
old τ is not utilized during training, rather as a

threshold variable to calibrate data coverage (cov)
during evaluation. The cov fraction of total sam-
ples is what SASI predicts on, leaving out (1−cov)
samples for which SASI is most uncertain. Specifi-
cally, we can choose some value τ such that there
will be (1 − cov) samples for which g ≥ τ . The
idea behind this approach is to trade-off (1− cov)
samples for immediate review by mental health ex-
perts in exchange for higher model performance on
the cov samples about which it is confident.

2.5 Network Optimization

In any m-class classification problem, if the model
assigns a high probability score to the wrong class,
then learning becomes difficult due to vanishing
gradients (Ziyin et al., 2020). To account for the
additional refrain option in the augmented label
space, we train SASI using Gambler’s Loss (Liu
et al., 2019). Gambler’s loss allows the gradients
to propagate through g instead, by abstaining from
assigning weights to any of the m classes. Thus,
the model learns a distribution of noisy/uncertain
data points characterized by the selection function
g. The loss function is given as:

L = −
|Y|∑
j

yj · log(ŷj · r + g) (3)

where yj is the true label, and the reward r is a
hyperparameter. A higher value of r discourages
restraint. Since the loss function directly learns
g, it does not depend on the coverage (Liu et al.,
2019), and can be manually set to any value during
evaluation.

3 Experimental Setup

3.1 Dataset

We use the dataset released by Gaur et al.
(2019), which contains Reddit posts of 500
users filtered from an initial set of 270,000
users across several mental health and suicide-
related subreddits, such as r/StopSelfHarm (SSH),
r/selfharm (SLF), r/bipolar (BPL), r/BipolarReddit
(BPR), r/BipolarSOs, r/opiates (OPT), r/Anxiety
(ANX), r/addiction (ADD), r/BPD, r/SuicideWatch
(SW), r/schizophrenia (SCZ), r/autism (AUT),
r/depression (DPR), r/cripplingalcoholism (CRP),
and r/aspergers (ASP). The posts were annotated
by practicing psychiatrists into five increasing risk
levels based on the Columbia Suicide Severity Risk
Scale (Posner et al., 2011), leading to an acceptable
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average pairwise agreement of 0.79 and a group-
wise agreement of 0.73. The class distribution of
each category with increasing risk level is: Sup-
portive (20%), Indicator (20%), Ideation (34%),
Behaviour (15%), Attempt (9%). On average, the
number of posts made by a user is 18.25±27.45
with a maximum of 292 posts. The average number
of tokens in each post is 73.4±97.7.

3.2 Evaluation Metrics
We first describe the evaluation metrics that mea-
sure how well the model performs on the cov sam-
ples. Following Gaur et al. (2019), we use graded
variants of F1 score, Precision, and Recall, where
we alter the formulation of False Negatives (FN)
and False Positives (FP). FN is modified as the ratio
of the number of times predicted severity of suicide
risk level (kp) is less than the actual risk level (ka)
over N number of samples. FP is the ratio of the
number of times the predicted risk (kp) is greater
than the actual risk (ka), given as:

FN =

∑N
i=1 I(k

a
i > kpi )

N

FP =

∑N
i=1 I(k

p
i > kai )

N

(4)

Let PT denote the total number of test samples,
Pcorr+refrain the sum of samples that have either
been correctly predicted or have been refrained,
Prefrain the total number of refrained samples, and
Pin the number of incorrect predictions among the
refrained samples. We additionally introduce two
metrics, Robustness and Fail-Safe Rejects, as:

Robustness =
Pcorr+refrain

PT

Fail-Safe Rejects =
Pin

Prefrain

(5)

Robustness captures the fraction of samples which
are correctly classified or instead sent for immedi-
ate review. Fail-Safe Rejects captures the fraction
of refrained samples which were indeed erroneous.
A higher Fail-Safe Rejects score hence implies that
human moderators will be subjected to a lesser
amounts of redundant work.

4 Results

4.1 Performance Comparison
We compare the performance of SASI with vari-
ous state-of-the-art baselines in Table 1. Sequen-
tial models like Suicide Detection Model (SDM)

Model Gr. Prec. Gr. Recall FScore Robustness Fail-Safe
Rejects

Contextual CNN 0.65 0.52 0.59 - -
SDM 0.61 0.54 0.57 - -
ContextBERT 0.63 0.57 0.60 - -
SISMO 0.66 0.61 0.64 - -
SASI (Cov 100%) 0.67* 0.62 0.66* 0.48 -
SASI (Cov 85%) 0.69* 0.65* 0.67* 0.61 0.83
SASI (Cov 50%) 0.71* 0.69* 0.70* 0.73 0.65

Table 1: We report the median of results over 10 ran-
dom seeds. * indicates the result is statistically sig-
nificant with respect to SISMO (p < 0.005) under
Wilcoxon’s signed-rank test. Bold denotes best perfor-
mance while Italics denotes second best.

(Cao et al., 2019) and ContextBERT (Matero et al.,
2019) generally outperform ContextualCNN (Gaur
et al., 2019), which uses a bag-of-posts approach.
SISMO (Sawhney et al., 2021a) shows further im-
provements by modeling the ordinal nature of risk
labels. SASI significantly outperforms (p < 0.005)
these methods for various values of coverage (cov),
demonstrating its ability to avoid committing to
erroneous predictions by characterizing its confi-
dence (Liu et al., 2019).
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Figure 3: Changes in performance metrics with increas-
ing coverage, averaged over 10 random seeds.

4.2 Coverage and Performance Trade-off

We further evaluate SASI for various values of tar-
get coverage (cov) by calibrating the threshold τ .
As shown in Figure 3, lower coverage leads to an
increase in Graded Recall, Precision, and FScore
(Table 1), as the model only keeps cov predictions
which it is highly certain about. However, we ob-
serve a decrease in Fail-Safe Rejects due to an
increasingly cautious approach employed by the
model, which implies an increased fraction of orig-
inally correct predictions that need to be manually
reviewed. We hence observe a trade-off, wherein
we must seek to achieve competitive performance
on the cov samples, while at the same time not over-
burden moderators with the (1− cov) samples. For
lower coverage values (say 50%), human modera-
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suffering f*** anxiety...
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c**e with...
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but af***d ...

Figure 4: We show SASI can be used for efficient prioritization of users during suicide risk assessment. For each
user, we show the real labels next to predicted labels, while also indicating whether SASI refrained from making
that prediction. We further demonstrate how SASI sorts the users into priority levels. All examples in this paper
have been paraphrased as per the moderate disguise scheme (Bruckman, 2002) to protect user privacy.

tors may be overburdened by having to review a lot
of redundant samples. On the other hand, we note
that SASI (85%) provides more utility, as it sta-
tistically outperforms SOTA models like SISMO,
while maintaining a fail-safe rejection score of 83%
and a competitive robustness score of 61%.

4.3 Qualitative Analysis

The essence of SASI lies behind its ability to refrain
from making misleading predictions over high-risk
samples. We study five users with snippets of their
posts, as shown in Figure 4. We observe the model
makes erroneous predictions on high-risk users A
and D. However, SASI refrains from committing
to these predictions, assigning these users a high
priority for immediate review and response. SASI
chooses to refrain despite predicting the risk level
of user B correctly, possibly because it employs a
cautious approach due to phrases such as ‘take my
life’ scattered in the user’s timeline. This user, who
is already of relatively high risk, is hence assigned
a high priority. User E shows a very low sign of
risk, which is confidently captured by SASI with-
out needing to refrain. User C is an erroneous case
wherein SASI is confident, yet makes a wrong pre-
diction. However, the user is not high risk and gets
assigned to the same priority level as the true risk
label. While this example is not a cause for con-
cern, certain situations may arise where SASI also
confidently assigns a low-risk score to a high-risk
user, opening avenues for future work that involves
integrating and reformulating ordinal regression

over the principles of Gambler’s loss.

5 Conclusion

With a motivation to provide a robust solution to
fine-grained suicide risk assessment on social me-
dia, we present SASI, a framework that integrates
the concept of selective prioritization to existing
deep learning based risk-assessment techniques.
SASI is self-aware, wherein it refrains from making
a prediction when uncertain, and instead assigns
high priority to such data samples for immediate
review by mental health experts. We demonstrated
the effectiveness of SASI through quantitative eval-
uations on real-world data, wherein SASI avoided
high-risk situations by refraining from making 83%
of incorrect predictions. Through a qualitative anal-
ysis, we described how SASI can be used as a part
of a human-in-the-loop framework, facilitating effi-
cient responses from mental health experts.
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feres (2018) to avoid coercion and intrusive treat-
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ment. The primary source of the dataset used in
this study is Reddit. Although Reddit is intended
for anonymous posting, we take further precau-
tions by performing automatic de-identification of
the dataset using named entity recognition (Zirikly
et al., 2019). All examples used in this paper are
further been anonymized, obfuscated, and para-
phrased for user privacy (Benton et al., 2017) and
to prevent misuse as per the moderate disguise
scheme suggested by Bruckman (2002). Taking
inspiration from Benton et al. (2017), we also
keep the annotation of user data separate from raw
user data on protected servers linked only through
anonymous IDs. Our work focuses on building
an assistive tool for screening suicidal users and
providing judgments purely based on observational
capacity. We acknowledge that it is almost impos-
sible to prevent abuse of released technology even
when developed with good intentions (Hovy and
Spruit, 2016). Hence, we ensure that this analysis
is shared only selectively to avoid misuse such as
Samaritan’s Radar (Hsin et al., 2016).

We further acknowledge that the studied data
may be susceptible to demographic, expert annota-
tor, and medium-specific biases (Hovy and Spruit,
2016). While the essence of our work is to aid in the
early detection of at-risk users and early interven-
tion, any interventions must be well-thought, fail-
ing which may lead to counter-helpful outcomes,
such as users moving to fringe platforms, making
it harder to provide assistance (Kumar et al., 2015).
Care should be taken to not to create stigma, and
interventions must hence be carefully planned by
consulting relevant stakeholders, such as clinicians,
designers, and researchers (Chancellor et al., 2016),
to maintain social media as a safe space for indi-
viduals looking to express themselves (Chancellor
et al., 2019). It is also essential that clinicians and
human moderators are not overburdened (Chancel-
lor et al., 2019). For instance, “Alarm fatigue” is
when alarms are so excessive, many of which are
false positives, that healthcare providers become
desensitized from alarms (Drew et al., 2014).

We also agree that suicidality is subjective (Keilp
et al., 2012), wherein the interpretation may vary
across individuals on social media (Puschman,
2017). We do not make any diagnostic claims,
rather help prioritize the users that should be evalu-
ated by the medical professionals first, as part of a
distributed human-in-the-loop framework (de An-
drade et al., 2018).
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