
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 283 - 289

May 22-27, 2022 c©2022 Association for Computational Linguistics

Leveraging Explicit Lexico-logical Alignments in Text-to-SQL Parsing
Runxin Sun1,2, Shizhu He1,2, Chong Zhu1,2, Yaohan He3, Jinlong Li3,

Jun Zhao1,2 and Kang Liu1,2,4

1 National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China
2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

3 AI Lab, China Merchant Bank, ShenZhen, 518057, China
4 Beijing Academy of Artificial Intelligence, Beijing, 100084, China

sunrunxin2020@ia.ac.cn, {shizhu.he, chong.zhu}@nlpr.ia.ac.cn,
{heyh18, lucida}@cmbchina.com, {jzhao, kliu}@nlpr.ia.ac.cn

Abstract

Text-to-SQL aims to parse natural language
questions into SQL queries, which is valuable
in providing an easy interface to access large
databases. Previous work has observed that
leveraging lexico-logical alignments is very
helpful to improve parsing performance. How-
ever, current attention-based approaches can
only model such alignments at the token level
and have unsatisfactory generalization capabil-
ity. In this paper, we propose a new approach to
leveraging explicit lexico-logical alignments. It
first identifies possible phrase-level alignments
and injects them as additional contexts to guide
the parsing procedure. Experimental results
on SQUALL show that our approach can make
better use of such alignments and obtains an
absolute improvement of 3.4% compared with
the current state-of-the-art.

1 Introduction

Text-to-SQL parsing is the task of mapping natu-
ral language questions to executable SQL queries
on relational databases (Zhong et al., 2017). It
provides an easy way for common users unfamil-
iar with query languages to access large databases
and has attracted great attention. Recently, lexico-
logical alignments, which align question phrases
to their corresponding SQL query fragments, have
been proved to be very helpful in improving pars-
ing performance (Shi et al., 2020). As shown in
Figure 1, the token "competitor" should be aligned
to "c1" in the SQL query. To capture such align-
ments, several attention-based models were pro-
posed (Shi et al., 2020; Lei et al., 2020; Liu et al.,
2021), which employ the attention weights among
tokens to indicate the alignments. Specifically, they
use an attention module to perform schema linking
at the encoding stage (Lei et al., 2020; Liu et al.,
2021), and may use another attention to align each
output token to its corresponding input tokens at
the decoding stage (Shi et al., 2020).

Table: Athletics at the 1932 Summer Olympics – Men's 50 kilometres walk

Name (c1) Nationality (c2) Time (c3) …

paul sievert germany 5:16:41 …

ernie crosbie united states 5:28:02 …

bill chisholm united states 5:51:00 …

… … … …

Question:

SQL query:

?

select

which the longesthad timecompetitor from united states

c1 from w where c2 = “united states” c3order by desc limit 1

Keyword Column Value

Figure 1: An example from SQUALL. Alignments be-
longing to the same type are marked with the same color.

However, we argue that the attention mechanism
is not an appropriate way to capture and lever-
age lexico-logical alignments. It mainly has the
following two problems. First, the standard at-
tention can only model alignments at the token
level rather than the phrase level, while there are
many multi-granular, non-continuous alignments
in the text-to-SQL task. For the example in Fig-
ure 1, "order by . . . limit 1" is a SQL key-
word pattern representing a superlative operation.
However, the standard attention module can only
align "order", "by", "limit", and "1" to "the
longest" token by token, rather than regarding them
as a whole. It may confuse the decoder and lead to
the failure to generate this pattern correctly (Herzig
and Berant, 2021). Second, traditional attention-
based approaches are prone to overfitting the train-
ing data, which is harmful to the model’s general-
ization capability. It is not only the domain gener-
alization (Dong et al., 2019) but also the compo-
sitional generalization (Herzig and Berant, 2021).
Specifically, the former refers to the generalization
across different databases, while the latter refers to
the ability to generate new structures composed of
seen components.

To solve the aforementioned problems, we pro-
pose a neural parsing framework to leverage ex-
plicit lexico-logical alignments. Dong et al. (2019)
have pointed out that if we align question tokens

283

to columns or values in databases before parsing,
it will help to improve the model’s generalization
among different domains (databases). Motivated by
this, our framework consists of two steps. Specifi-
cally, we first implement a simple model to obtain
possible lexico-logical alignments before parsing.
While in the second step, we inject such alignments
into a standard seq2seq parser by treating them as
additional contexts, similar to "prompt informa-
tion" or "evidence" in machine reading comprehen-
sion (Mihaylov and Frank, 2018; Tu et al., 2020;
Niu et al., 2020). Moreover, to alleviate the neg-
ative effects on the parser caused by noise align-
ments, we propose a data augmentation method
that adds noisy alignments during the training pro-
cedure. Experimental results on an open-released
dataset, SQUALL (Shi et al., 2020), show that our
framework achieves state-of-the-art performance
and obtains an absolute improvement of 3.4% com-
pared with existing attention-based models.

2 Preliminaries

2.1 Problem Definition
Here we consider the problem setting adopted by
Shi et al. (2020). Formally, given a natural lan-
guage question Q about a table T , our goal is to
generate the corresponding SQL query Y , where
the table consists of columns {c1, . . . , c|T |}.

2.2 Base Parser
Our base parser is a standard seq2seq model. It gen-
erally follows the architecture proposed by Lin et al.
(2020), which combines a BERT-based encoder
with a sequential pointer-generator to perform an
end-to-end parsing procedure.

Input Serialization and Encoder According to
the definition above, an input X contains a length-
n question Q = q1, . . . , qn and a table with m
columns T = {c1, . . . , cm}. We concatenate all
the columns into a sequence for the table, where a
unique token precedes each column to represent its
type (e.g., text). Then we add two [SEP] tokens at
both ends and append this sequence to the question.
After adding a [CLS] token at the beginning, we
get the input sequence in the following format:

X =[CLS], Q,[SEP],[TYPE#C1], c1,

. . . ,[TYPE#Cm], cm,[SEP]

X is encoded with BERT (Devlin et al., 2019),
followed by a bidirectional LSTM (bi-LSTM) to

get the hidden representations hX . Then for the
question part, we feed its representation to another
bi-LSTM to obtain the encoding result hQ. Each
column is represented by the vector of its corre-
sponding type token.

Decoder Like Lin et al. (2020), We use an
LSTM-based pointer-generator (See et al., 2017)
enhanced with the attention mechanism as the de-
coder. Specifically, we use the final hidden state of
the question encoder to initialize the decoder. At
each step t, the decoder chooses one of the follow-
ing three actions: generating a keyword from the
vocabulary V , copying a token from the question
Q, or copying a column from the table T .

3 Method

3.1 Framework Overview
As shown in Figure 2, our framework consists of
two stages: lexico-logical alignment prediction
(the upper left) and alignment-enhanced parsing
(the bottom). At the first stage (alignment pre-
diction), we identify possible lexico-logical align-
ments in the question before parsing. At the sec-
ond stage (alignment-enhanced parsing), we inject
these alignments into the parser so that it can make
further completions and refinements based on them.

3.2 Lexico-logical Alignment Prediction
In this step, we implement a simple model to pre-
dict lexico-logical alignments of the input question.
Specifically, we adopt a two-stage pipeline pro-
cess: 1) identify question phrases that may have
alignments; 2) predict their corresponding query
fragments according to the types.

For the first stage, we classify the alignments
into three types according to their corresponding
query fragments: keyword, column, value. Specif-
ically, keyword alignments map question phrases
to query fragments composed of SQL keywords,
while the other two types of alignments (column
and value) map them to columns in databases. The
only difference between column and value align-
ments is that the phrase part of a value alignment is
also a value in the SQL query. Analogous to Named
Entity Recognition (NER), we use sequence label-
ing to implement this process:

P (labeli | Q,T) = softmax(MLP([hi; ci])).
(1)

Here we apply the BIO labeling schema, classify-
ing each token as one of the four types: keyword,

284

which Question: competitor from united states had the longest time ?

Encoder
(BERT)

Decoder
(Pointer-

generator)
competitor: c1

Lexico-logical Alignments

from: c2

united states: c2 (value)

the longest: order by ...
limit 1

time: c3

SQL Query

Table: Athletics at the 1932 Summer

Olympics – Men's 50 kilometres walk

competitor the longestfrom

c1 order by … limit 1c2 (value)

united states time

Step1: Phrase Recognition

c2 c3

Step2: Query Fragment Prediction

Phrases:

Query

Fragments:

Name (c1) Nationality (c2) Time (c3) …

paul sievert germany 5:16:41 …

ernie crosbie united states 5:28:02 …

bill chisholm united states 5:51:00 …

… … … …

Stage 1: Lexico-logical Alignment Predication Stage 2: Alignment-enhanced Parsing

[CLS] which competitor … [SEP]

[TEXT] name … [TIME] time …

[SEP] [COL] competitor : c1 …

[VAL] united states : c2 … [SEP]

Input Sequence

select c1 from w where c2
= “united states” order by
c3 desc limit 1

Figure 2: An illustration of our framework. It consists of two stages: (i) lexico-logical alignment prediction; (ii)
alignment-enhanced parsing.

column, value, or none. We adopt the same struc-
ture as our base parser to encode the input sequence,
and hi is the hidden representation of the i-th token.
Moreover, an attention module is used to get the
column-aware question representation ci:

ci = Attention(hi,hC ,hC), (2)

where hC are the representations of all the columns.
Then we run a Multi-Layer Perceptron (MLP) by
concatenating these two vectors as inputs to predict
the i-th label.

For the second stage, we predict the query frag-
ment corresponding to the phrase. Specifically, we
can divide this process into the following two cases
according to the type of phrase:

1) Keyword: We use a generation model to
obtain keyword fragments corresponding to such
phrases. In detail, we perform self-attention on the
token representations of the phrase p to get the ini-
tial hidden state. Then we run an RNN model with
attention to generate its corresponding keyword
fragment:

y = argmax
∏
t

P (yt | y<t, p). (3)

2) Column & Value: In this case, we should link
the phrase to its corresponding column. Intuitively,
based on the attention matrix, we can directly get
the column c∗ that best matches the phrase p:

c∗ = argmax
c∈C

f(p, c) = argmax
c∈C

∑
w∈p

f(w, c).

(4)

3.3 Alignment-enhanced Parsing

After getting all the lexico-logical alignments in
a question, we then consider adding them to the

parsing process. Naturally, we design their usages
for both the encoding and decoding processes.

For the encoding stage, we treat alignments as
additional contexts and add them to the input se-
quence. Concretely, we represent each alignment
as a concatenation of the natural language phrase p
and its corresponding query fragment f , where the
two parts are separated by ":". Moreover, a unique
token before each of them represents its type (key-
word, column or value). Thus the format of the
modified input sequence is as follows:

X+ =[CLS], Q,[SEP],[TYPE#C1], c1, . . . ,

[TYPE#Cm], cm,[SEP],[TYPE#A1],

p1, :, f1, . . . ,[TYPE#An], pn, :, fn[SEP]

In this way, the encoder based on a pre-trained lan-
guage model can make good use of this information
to help it better perform schema linking.

For the decoding stage, we also add alignments
to the generation process. Specifically, we take its
type token’s hidden vector as the representation of
each alignment, denoting it as hA. So at each step
t, we compute the attention between the decoder
hidden state hD

t and the alignments:

at = Attention(hD
t ,hA,hA). (5)

Afterward, we use the concatenation of at and
the embedding of the previous token et as the de-
coder’s input, injecting this information into the
next step’s hidden state:

hD
t+1 = LSTMD([et;at],h

D
t). (6)

3.4 Noisy Alignment Augmentation
As mentioned before, it is impossible to obtain a
perfect model for alignment prediction. So if we
use the annotated alignments to train the parser, and

285

Model Dev Test
ACCLF ACCEXE ACCEXE

SEQ2SEQ+ + BERT 44.7 ± 2.1 63.8 ± 1.1 51.8 ± 0.4
ALIGN + BERT 47.2 ± 1.2 66.5 ± 1.2 54.1 ± 0.2
LAP (ours) 47.0 ± 1.3 65.0 ± 1.2 53.0 ± 0.5
+ noisy alignment 50.6 ± 1.0 68.3 ± 0.8 56.5 ± 0.3

Table 1: Overall parsing results. LAP refers to our
model. "+ noisy alignment" means our model training
under the noisy alignment augmentation.

use the predicted alignments to make predictions,
then there is an inconsistency between training and
testing. It is precisely because of this inconsistency
that the parser tends to trust the given alignments
completely. In that case, wrong alignments may
hurt the parsing performance.

To alleviate the negative effects on the parser
caused by noise alignments, we propose a method
based on data augmentation, that is, adding noisy
alignments during the training procedure. Specifi-
cally, we use the model proposed in section 3.2
to predict alignments for the training examples
through cross-validation. Obviously, these align-
ments are noisy. Then we integrate these predicted
examples with the annotated examples and use
them as the augmented training set of the parser.

4 Experiments

4.1 Dataset and Experimental Setup

We evaluate on SQUALL (Shi et al., 2020), a large-
scale dataset based on WIKITABLEQUESTIONS

(Pasupat and Liang, 2015). It contains 11,276 table-
question-answer triplets, enriched with human-
annotated logical forms and lexical-logical align-
ments.1 We use the default dataset split provided
by Shi et al. (2020), where they randomly shuffle
the tables and divide them into five splits so that
examples with the same table are in the same split.

For evaluation metrics, we employ the average
logical form accuracy ACCLF and execution accu-
racy ACCEXE,2 following Shi et al. (2020). For
model implementation, please refer to Appendix A
for more details. It is worth noting that, unless
otherwise stated, we only use the alignment anno-
tations of the training set to train the alignment
prediction model. While on the dev / test set, we
use the predicted alignments as the parser’s input.

1There are no such annotations for the test set.
2ACCLF checks whether the logical form output exactly

matches the target, while ACCEXE compares the execution
results.

Model DB split Query split IID split
SEQ2SEQ + BERT 43.5 1.2 48.1
+ attention sup. 46.7 (+ 3.2) 1.6 (+ 0.4) 51.1 (+ 3.0)
LAP (w/o alignment) 46.6 2.7 52.1
+ noisy alignment 50.0 (+ 3.4) 3.5 (+ 0.8) 53.0 (+ 0.9)

Table 2: Parsing results (ACCLF) over different splits
of SQUALL. "+ attention sup." refers to using alignment
annotations to supervise the attention module. LAP (w/o
alignment) refers to our model without alignments.3

Model ACCLF (Dev) ∆
SEQ2SEQ + BERT 43.5
+ oracle attention 66.3 + 22.8
LAP (w/o alignment) 46.6
+ keyword alignment 58.1 + 11.5
+ column alignment 55.1 + 8.5
+ value alignment 54.1 + 7.5
+ oracle alignment (token) 71.9 + 25.3
+ oracle alignment 73.1 + 26.5

Table 3: Parsing results on the 0-split under the oracle
setting. SEQ2SEQ + BERT refers to the base parser (Shi
et al., 2020) with BERT embeddings.

4.2 End-to-end Parsing Performance

To evaluate the effectiveness of our model, we com-
pare end-to-end parsing performance with existing
attention-based models. The results are shown in
Table 1. For the baselines, we select SEQ2SEQ+ and
ALIGN provided by Shi et al. (2020). The former
uses the automatically derived exact-match features
to supervise the attention modules, while the latter
uses the alignment annotations instead.

From the results, we can observe that after com-
bining the alignment prediction model proposed in
section 3.2, our parser (LAP) achieves state-of-the-
art performance on SQUALL. We believe the rea-
son is that our approach identifies possible lexico-
logical alignments before parsing so that the parser
can leverage such explicit alignments and model
them on the phrase level. Moreover, "LAP + noisy
alignment" further outperforms "LAP". It illustrates
that noise alignments do have negative effects on
the parser, while our noisy alignment augmentation
method can alleviate them effectively.

4.3 Our Model’s Generalization Capability

To evaluate the advantages of our model’s general-
ization capability, we further made different splits
of SQUALL (Shi et al., 2020) and conducted ex-
periments on them. Here we evaluate the model’s
generalization capability from two perspectives:
domain generalization and compositional general-
ization. Specifically, DB split refers to the default

3Please refer to Appendix B for more details.

286

cross-DB setting of SQUALL, where databases ap-
pearing in the test set were not seen during training,
and we use it to test the model’s domain generaliza-
tion. Query split is the setting proposed by Finegan-
Dollak et al. (2018) to test the model’s compo-
sitional generalization, where no query template
(query after anonymization of database-related vari-
ables) appears in more than one set. As for the IID
split, it means that the test case is not in the training
set while its corresponding database is seen during
training. We employ it as the control group.4

The experimental results are shown in Table 2.
From the results, we can observe that our approach
(+ noisy alignment) obtains more significant im-
provement on the DB split and the query split,
while it is not as effective as the attention-based ap-
proach on the IID split. In particular, our approach
achieves twice the improvement on the query split
(0.8 vs. 0.4), even on a stronger base parser. These
reveal that our approach is more effective when
parsing across different databases (domain gener-
alization) and different query templates (compo-
sitional generalization), which illustrates that our
approach has better generalization capability.

4.4 The Effectiveness of our Parser on
Leveraging Lexico-logical Alignments

To evaluate the effectiveness of our parser on the
lexico-logical alignments utilization, we conducted
experiments under the oracle setting, where we
used alignment annotations instead of predictions
for testing. Table 3 shows the results.5

From the results, we can observe that 1) our
parser obtains more improvements when injecting
alignments (+ oracle alignment) than the attention-
based approach (+ oracle attention). It proves that
our model could more effectively utilize the lexico-
logical alignment information. 2) We also show the
results when injecting different types of alignment
in our model. The results show that keyword align-
ment, which is excluded from traditional schema
linking, is a valuable type and is also helpful in
improving parsing performance. 3) Modeling such
alignments at the phrase-level is more effective
than the token-level ("+ oracle alignment" vs. "+
oracle alignment (token)").

4Please refer to Appendix B for more details.
5Because Shi et al. (2020) did not provide the oracle re-

sults with BERT, we re-ran the open-source code (https:
//github.com/tzshi/squall) and got the results. Be-
sides, due to the limitation of resources, we conducted them
only on the 0-split of SQUALL instead of all five splits.

5 Conclusion

In this paper, we propose a neural parsing frame-
work to leverage explicit lexico-logical alignments
by treating them as additional contexts. Moreover,
to alleviate the negative effects on the parser caused
by noise alignments, we add noisy alignments dur-
ing training inspired by data augmentation. Exper-
imental results on SQUALL show that our frame-
work achieves state-of-the-art performance com-
pared with existing attention-based models.

Acknowledgments

This work is supported by the Natural Key R&D
Program of China (No.2020AAA0106400), the
National Natural Science Foundation of China
(No.61922085, No.61976211) and the Key Re-
search Program of the Chinese Academy of Sci-
ences (Grant NO.ZDBS-SSW-JSC006). This re-
search work was supported by the independent
research project of National Laboratory of Pat-
tern Recognition, the Youth Innovation Promo-
tion Association CAS and Yunnan Provincial Ma-
jor Science and Technology Special Plan Projects
(No.202103AA080015).

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhen Dong, Shizhao Sun, Hongzhi Liu, Jian-Guang
Lou, and Dongmei Zhang. 2019. Data-anonymous
encoding for text-to-SQL generation. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5405–5414, Hong Kong,
China. Association for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-

287

https://github.com/tzshi/squall
https://github.com/tzshi/squall
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1543
https://doi.org/10.18653/v1/D19-1543
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74

ization. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), page
908–921, Online. Association for Computational Lin-
guistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-to-
SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6943–6954, Online. Association for
Computational Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Qian Liu, Dejian Yang, Jiahui Zhang, Jiaqi Guo, Bin
Zhou, and Jian-Guang Lou. 2021. Awakening la-
tent grounding from pretrained language models for
semantic parsing. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1174–1189, Online. Association for Computa-
tional Linguistics.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 821–832, Melbourne, Australia.
Association for Computational Linguistics.

Yilin Niu, Fangkai Jiao, Mantong Zhou, Ting Yao, Jing-
fang Xu, and Minlie Huang. 2020. A self-training
method for machine reading comprehension with soft
evidence extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3916–3927, Online. Association
for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
an imperative style, high-performance deep learning
library. In Proceedings of the 33rd International
Conference on Neural Information Processing Sys-
tems, pages 8026–8037, Red Hook, NY, USA. Curran
Associates Inc.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic pars-
ing to SQL queries. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1849–1864, Online. Association for Computational
Linguistics.

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2020. Select, an-
swer and explain: Interpretable multi-hop reading
comprehension over multiple documents. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 9073–9080.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

288

https://doi.org/10.18653/v1/2021.acl-long.74
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/2020.acl-main.361
https://doi.org/10.18653/v1/2020.acl-main.361
https://doi.org/10.18653/v1/2020.acl-main.361
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://dl.acm.org/doi/abs/10.5555/3454287.3455008
https://dl.acm.org/doi/abs/10.5555/3454287.3455008
https://dl.acm.org/doi/abs/10.5555/3454287.3455008
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://ojs.aaai.org/index.php/AAAI/article/view/6441
https://ojs.aaai.org/index.php/AAAI/article/view/6441
https://ojs.aaai.org/index.php/AAAI/article/view/6441
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/https://doi.org/10.48550/arXiv.1709.00103
https://doi.org/https://doi.org/10.48550/arXiv.1709.00103

A Model Implementation Details

Our model is implemented in PyTorch (Paszke
et al., 2019). For the BERT model, we fine-tune a
bert-base-uncasedmodel from the Hugging
Face’s Transformers library (Wolf et al., 2020).
For the attention module, we use the standard dot-
product attention function. We set all LSTMs to
1-layer and hidden size to 256. We use the Adam
optimizer (Kingma and Ba, 2015) and clip gra-
dients to 2.0. For the loss function, we choose
cross-entropy for the classification task and label-
smoothing for the generation task. We train our
alignment prediction model for up to 10 epochs
and SQL parser for 20 epochs. Both of them have
an epoch for warm-up, and then the learning rate
will decay linearly.

In terms of hyperparameter search, we turned
the batch size (8, 16, 32), max learning rate (1e-3,
1e-4), max BERT learning rate (5e-5, 2e-5, 1e-5,
5e-6), and dropout (0.1, 0.2, 0.3, 0.5). Due to the
limitation of resources, we turned these parameters
one by one instead of using grid search. The bolded
values are a set of optimal parameters we found.

B Details of Different Splits of the
SQUALL Dataset

We made three different splits of the SQUALL

dataset: IID split, DB split, and query split, to
explore the corresponding generalization capabil-
ities of the model. It is worth noting that because
this dataset is a single-table dataset (that is, each
DB contains only one table), the cross-DB setting
is essentially equal to the cross-table setting. The
specific methods for obtaining these splits are as
follows:

• IID split: In order to ensure that tables in the
test set are also in the training set, and the
only difference between the two sets is that
the included samples are different, we classify
the samples according to their corresponding
tables. For each category (i.e., table), we ran-
domly select k (in this case, k = 1) samples,
put them into the test set, and put the rest into
the training set.

• DB split: This is the default setting of the
SQUALL dataset. Here we use the 0-split pro-
vided by Shi et al. (2020).

• query split: Inspired by Finegan-Dollak et al.
(2018), we substitute variables for table-

related entities (i.e., columns and values) in
each query in the dataset to obtain its corre-
sponding query template, just like Shi et al.
(2020) did. Similarly, we classify the sam-
ples according to their corresponding query
templates. For each category (i.e., query tem-
plate), all its samples can only be put into ei-
ther the training set or the test set. It is worth
noting that to examine the compositional gen-
eralization better, we sort the templates ac-
cording to their frequency. Then we put the
templates with higher frequency into the train-
ing set and the templates with lower frequency
into the test set.

For the above three splits, we make the ratio of
the training set and the test set approximately equal
to 4:1, consistent with Shi et al. (2020).

C Details on Obtaining Token-level
Alignments

To verify whether our approach can model align-
ments at the phrase level, we constructed token-
level alignments to contrast with the original align-
ment annotations. Specifically, we imitated the
attention mechanism and decomposed the align-
ments according to their types.

For keyword alignments, inspired by Shi et al.
(2020), we align each keyword in the SQL query
to all its corresponding tokens in the question. For
the example in Figure 1, we align "order", "by",
"limit", and "1" to "the longest" respectively.
Then we obtain the following four alignments: "the
longest: order", "the longest: by", "the longest:
limit", and "the longest: 1".

For the other two types of alignments: column
and value, as mentioned in section 3.2, they both
align question phrases to columns in databases.
Analogous to schema linking through an attention
module, we align each token in the question phrase
to the corresponding column separately. For the
example in Figure 1, we align "united" and "states"
to column c2 respectively instead of treating these
two tokens as a whole.

289

