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Abstract

Item Response Theory (IRT) has been exten-
sively used to numerically characterize ques-
tion difficulty and discrimination for human
subjects in domains including cognitive psy-
chology and education (Primi et al., 2014;
Downing, 2003). More recently, IRT has been
used to similarly characterize item difficulty
and discrimination for natural language mod-
els across various datasets (Lalor et al., 2019;
Vania et al., 2021; Rodriguez et al., 2021). In
this work, we explore predictive models for
directly estimating and explaining these traits
for natural language questions in a question-
answering context. We use HotpotQA for il-
lustration. Our experiments show that it is pos-
sible to predict both difficulty and discrimina-
tion parameters for new questions, and these
traits are correlated with features of questions,
answers, and associated contexts. Our findings
can have significant implications for the cre-
ation of new datasets and tests on the one hand
and strategies such as active learning and cur-
riculum learning on the other.

1 Introduction

The use of question answering for testing learning
often relies on characterizing questions on aspects
such as difficulty and discrimination1. For exam-
ple, ordering questions by difficulty can enable
curriculum learning (Bengio et al., 2009). Simi-
larly, discrimination is used in standardized exams
such as the SAT to ensure that questions are varied
enough to discriminate between high-ability and
low-ability respondents. Item Response Theory
(IRT) (Wright and Stone, 1979; Lord, 1980) has
been a widely applied framework to jointly esti-
mate such parameters for questions (or items) and

1By difficulty, we refer to how likely a respondent is to an-
swer a question correctly, whereas by discrimination we refer
to the value of a question in identifying a given level of ability
in respondents. A question like ‘2 + 2 =?’ has low difficulty
but potentially high discrimination, since a respondent who
answers incorrectly is likely to have no arithmetic ability.

the abilities of respondents. While IRT has its in-
ception in psychometrics and has traditionally been
used with human respondents, recently, it has been
explored for analyzing predictions from an ‘artifi-
cial crowd’ of ML models (Prudêncio et al., 2015;
Plumed et al., 2016; Martínez-Plumed et al., 2019;
Lalor et al., 2019; Vania et al., 2021; Rodriguez
et al., 2021).

While it can be helpful to know which ques-
tions are difficult/discriminatory, it can be equally
important to be able to determine a question’s dif-
ficulty/discrimination parameters without having
to use it in a testing environment (as is required to
estimate IRT parameters). Some recent work, such
as Ha et al. (2019), has explored using features
derived from the text of a question to predict the
difficulty in the context of multiple-choice medi-
cal exams. While others (Benedetto et al., 2020)
have used tf-idf features to predict the difficulty
of questions as measured by IRT. We differ from
these works in two ways: Firstly, while Ha et al.
(2019); Benedetto et al. (2020) both predict the dif-
ficulty of items for humans, we are interested in pre-
dicting the difficulty (and discrimination) of items
for QA models. Secondly, we choose a question-
answering dataset, HotpotQA (Yang et al., 2018),
as our testbed. We utilize this dataset to generate a
rich and varied feature set across each item’s ques-
tion, answer, and associated contexts. We can then
employ these features to analyze our difficulty and
discrimination predictions, giving us insights into
both our underlying QA model and factors that can
increase the difficulty/discrimination of a question.

Our analysis shows significant variations among
questions and reveals some surprising patterns. We
show that it is possible to predict both difficulty
and discrimination of natural language questions,
which can have multiple applications in education
and pedagogy. Additionally, we see that different
surface-level features are associated with high dis-
crimination and high difficulty, which can inform
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new evaluation methods and the creation of new
datasets. Further, we identify attributes for predict-
ing difficulty and discrimination that are general
enough to be adapted to various QA datasets.2

2 IRT Analysis of HotpotQA

IRT background: We begin by summarizing the
1PL and 2PL models from IRT, which form the
basis of our later analysis. The 1PL (1 Parameter
Logistic) model describes the probability of respon-
dent i correctly answering the j’th item (question)
in terms of scalar-valued parameters for question
difficulty (dj) and respondent ability (θi). These
parameters are estimated from data yij ∈ {0, 1}
for a set of i, j pairs. Here, yij = 1 indicates a
correct answer. The 1PL model is described by:

p(yij = 1|θi, dj) =
1

1 + e−(θi−dj)

The 2PL model extends the 1PL by adding a scalar-
valued parameter αj , which represents the discrim-
ination of the j’th item. Intuitively, this parameter
denotes how sharply the probability of answering
a question correctly changes as the ability of the
respondent increases. The 2PL model is described
by:

p(yij = 1|θi, dj , αj) =
1

1 + e−αj(θi−dj)

Dataset description: We chose HotpotQA for our
analysis since it is significantly more complex than
other datasets such as SQuAD (Rajpurkar et al.,
2016) due to the questions requiring multi-hop rea-
soning and having more complex language. In
HotpotQA, each question is paired with two para-
graphs considered ‘gold’ contexts and several other
paragraphs considered ‘distractor’ contexts. The
answer to each question is a span in one of the
gold contexts, but correctly answering the question
requires combining information from both ‘gold’
contexts.

2.1 Estimating IRT Parameters
We estimate the IRT parameters for the questions
in HotpotQA’s dev set (7, 405 questions). How-
ever, collecting human responses for each question,
which is necessary to estimate IRT parameters, is
infeasible. Motivated by Lalor et al. (2019), we
create an artificial crowd of QA models in place

2Code, models, and data for all experiments are available
at https://github.com/ByrdOfAFeather/pred_irt

of a crowd of human respondents. For this, we
train 148 instances of DFGN (Qiu et al., 2019)
models on HotpotQA’s train set.3 To ensure diver-
sity, we uniformly sample the number of training
epochs from 1 to 15 and sample the fraction of the
training data used for model training from U(0, 1).
Otherwise, each model was trained with the hyper-
parameters described in Qiu et al. (2019). Next, we
generate an item-response matrix indicating which
questions from the HotpotQA dev set each model
answered correctly (i.e., the model’s answer ex-
actly matched the correct answer). We remove any
questions that received no correct answers or no
incorrect answers. This is done as during the esti-
mation process, these questions tend towards (+/-)
infinity in their difficulty parameters, as well, their
discrimination parameter estimate tends towards
zero (unable to distinguish between high and low
performing models). Our final dataset is a subset
of 4, 000 questions (2, 000 train, 1, 000 dev, and
1, 000 test). Finally, we fit the 1PL and 2PL mod-
els on the foresaid item-response matrix using the
variational IRT training procedure from Natesan
et al. (2016).

2.2 Analysis of Estimated Parameters

Figure 1: 2PL discrimination vs 1PL difficulty for questions.

Figure 1 shows a scatter-plot of estimated dif-
ficulty and discrimination values for individual
questions. We note that some discrimination val-
ues asymptotically approach 0. This occurs when
some questions receive very few or many correct
answers; these questions cannot discriminate high-
performing from low-performing models. We also
note that some questions have negative discrimina-
tion, i.e., as a model’s ability increases, its probabil-
ity of answering the question correctly decreases.
This is primarily a result of some of the highest per-

3We choose DFGN due to its competitive performance on
the HotpotQA leaderboard, the number of models we train is
primarily driven by computational limits.
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Figure 2: All 3000 questions from our train/dev set as UMAP-
reduced BERT embeddings, color-coded by difficulty (darker
is more difficult). We find that clusters produced by KMeans
(K=20) naturally cluster together questions that are similar
in how they are asked or topics that are asked about. We label
some clusters according to these types. We specially mark
C.1, C.2, and C.3. C.1 and C.2 have uniformity in the type
of question being asked, as well as lower variance than other
clusters. C.3 is uniform in topic but can vary in the type of
question.

forming models giving an answer which is either a
subspan of or contains the ground-truth answer of
questions that were otherwise answered correctly
by lower-performing models. Overall, there is a
weak positive correlation between discrimination
and difficulty (ρ=0.04).

To visualize any correlation between the seman-
tic and syntactic information of questions and their
respective difficulty levels, we clustered questions
based on their BERT embeddings using KMeans
(K=20) clustering (2D UMAP reduction shown in
Figure 2). Through manually examining and label-
ing the clusters, we found that many clusters could
be described with a specific style (e.g., yes/no ques-
tions) or general topic. Some clusters, such as C.3,
have a large variety in the phrasing of questions
being asked and the potential answers in both syn-
tactic and semantic features. For example, both Q:
Khushi Ek Roag is broadcast by a company based
out of where? A: Dubai and Q: To Catch a Preda-
tor was devoted to impersonating people below the
age of consent for which in North America varies
by what? A: jurisdiction are in C.3.

Other clusters, such as C.1 and C.2, (yes/no clus-
ters), only vary in topic rather than the type of
question. In particular, for these clusters, the es-
timated difficulty has significantly lower variance
than the other clusters (ρ=0.02, ρ=0.04 respec-
tively), indicating that these yes/no questions tend
to be consistent in their difficulty. The standard
deviation values for C.1 and C.2 are 1.08 and 1.19
respectively, the average standard deviation value

is 2.27. We further explore how these factors affect
predicting the difficulty values in section 4.

3 Predicting IRT Parameters

We next discuss predictive models for discrimina-
tion and difficulty using features from the question,
answer, and associated context. First, we describe
our feature set, then provide an ablation study, a
feature importance study, and finally qualitatively
analyze the predictions of our best model.

3.1 Feature Design

We experiment with two categories of fea-
tures: human-centric and machine-centric features.
For human-centric features, we considered (1)
counting-based Lexical & Syntactic features ex-
tracted for both questions and answers like Con-
tentWords, Type-token ratio, Avg. Word Length,
Complex Words (> 3 syllables); (2) Semantic-
Ambiguity features measuring a question’s or an-
swer’s ambiguity (Ha et al., 2019); and (3) Read-
ability features based on measures like Fleisch
Kincaid index. More feature details can be found
in Appendix C. For machine-centric features, we
considered (1) Contextual Embeddings for ques-
tions and answers from BERT (Devlin et al., 2019);
(2) n-gram Overlap Counts between the question
and answer, and between question/answer and the
gold/distractor paragraphs; and (3) POS Counts
from the Stanford Tagset (Toutanova et al., 2003)
for the question and answer.

3.2 Quantitative Analysis and Ablation

Table 1 and Table 2 show the regression perfor-
mance of our models for predicting the IRT diffi-
culty/discrimination parameters of the questions in
our dev/test sets using the feature sets described
before. The reported results are averaged over a 10-
fold cross-validation. We note that the best models
for both difficulty and discrimination show signif-
icant (ρ < 0.10) predictive performance (R2 of
0.17 and 0.13) against our baseline (Mean).

The best performance is achieved in both tasks
by considering all features. In both cases, there is
a significant difference (ρ < 0.1) in performance
between using any single set and using all features,
except the best-performing BERT feature set. We
also note that features derived from the answer
are typically better at capturing difficulty, while
features derived from the question better predict
the discrimination parameters. However, the per-
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Features Dev
MSE

Dev
R2

Test
MSE

Test
R2

All 5.14 0.11 4.72 0.17
All (Q) 5.43 0.07 5.10 0.10
All (A) 5.41 0.08 5.05 0.11
BERT (Q) 5.41 0.07 4.99 0.12
BERT (A) 5.25 0.10 5.05 0.11
H.C. (Q) 5.62 0.01 5.38 0.05
H.C. (A) 5.45 0.06 5.20 0.08
Lex. & Syn. (Q) 5.62 0.01 5.37 0.05
Lex. & Syn. (A) 5.47 0.03 5.36 0.06
Read. (Q) 5.80 0.00 5.71 0.00
Read. (A) 5.63 0.02 5.48 0.03
Sem. Ambiguity (Q) 5.76 0.01 5.55 0.02
Sem. Ambiguity (A) 5.81 0.01 5.68 0.00
P.O.S. (Q) 5.37 0.05 5.23 0.08
P.O.S. (A) 5.60 0.01 5.28 0.07
A/Q/C Overlap 5.39 0.05 4.92 0.13
Mean 5.82 0.00 5.69 0.00

Table 1: Results for predicting the 1PL difficulty parameters.
BERT (Q) and BERT (A) use the BERT embeddings for the
question/answer respectively. H.C. (Q)/(A) are the human-
centric features for the question/answer respectively. A/Q/C
Overlap is using only the overlap counts between question,
answer, and contexts.

formance of All (Q) and All (A) for both the dis-
crimination and difficulty is weaker than using all
features. Since the difference is not statistically sig-
nificant, it is unclear how much predictive power is
added when considering both answer and question
features in these predictions.

The features that focus on human difficulty are
among the less effective feature sets, indicating that
the human difficulty features of a question do not
fully capture difficulty for QA models. We provide
details of models and their training and the exper-
iment setup in Appendix A; as well, significance
tests can be found in Appendix D.

3.3 Feature Importance Study

We estimated feature importance by permuting
each feature individually and measuring the change
in MSE on the dev set. We list features that caused
a change in MSE of at least .01 in tables 3 and 4.

We point out that for predicting the discrimina-
tion, the number of cardinal digits in the answer
was the most important indicator of high discrimi-
nation. The positive correlation between the num-
ber of digits in the answer and the discrimination
of a question is expected. Qiu et al. (2019) showed
that the DFGN model has a significant weakness
in numeric operations. This gives questions with
numeric answers a high discrimination value as
DFGN models are naturally inhibited in this regard,
and thus only a few models with the most training

Features Dev
MSE

Dev
R2

Test
MSE

Test
R2

All 9.08 0.13 9.14 0.13
All (Q) 9.32 0.10 9.50 0.09
All (A) 9.59 0.08 9.98 0.04
BERT (Q) 9.02 0.11 9.27 0.11
BERT (A) 9.52 0.08 9.64 0.08
H.C (Q) 9.76 0.04 9.86 0.06
H.C (A) 10.09 0.03 10.31 0.02
Lex. & Syn. (Q) 9.75 0.04 9.86 0.06
Lex. & Syn. (A) 10.13 0.01 10.21 0.03
Read. (Q) 10.08 0.01 10.17 0.03
Read. (A) 10.13 0.02 10.31 0.01
Sem. Ambiguity (Q) 10.05 0.02 10.16 0.03
Sem. Ambiguity (A) 10.21 0.00 10.47 0.00
P.O.S. (Q) 9.96 0.04 10.10 0.03
P.O.S. (A) 9.78 0.03 9.82 0.06
A/Q/C Overlap 9.56 0.06 9.63 0.08
Mean 10.21 0.00 10.53 0.00

Table 2: Results for predicting the 2PL discrimination param-
eters. The setup is the same as in table 1. BERT (Q) has
the highest performance. However, the difference in perfor-
mance when using BERT (Q) compared to using All is not
statistically significant. See Appendix D for significance tests.

Feature Change
in MSE

Interval Corr.

# Commas A. 0.06 ± 0.02 0.10
# Complex Words A. 0.05 ± 0.01 -0.04
# NNP A. 0.05 ± 0.02 -0.16
# SNP A/G.C. 0.02 ± 0.01 0.04
# Commas Q. 0.01 ± 0.01 -0.11

Table 3: Feature importances for difficulty parameters (all fea-
tures considered). A. refers to a feature capturing information
from the answer, Q. refers to a feature capturing informa-
tion from the question. A/G.C. refers to a feature measuring
overlap between the answer and gold contexts.

Feature Change
in MSE

Interval Corr.

# CD A. 0.25 ± 0.03 0.17
# Commas Q. 0.08 ± 0.02 -0.11
Avg. Sense/Adverb A. 0.01 ± 0.02 -0.03

Table 4: Feature importances for discrimination parameters
(all features considered)

data will be capable of answering these questions.
We find a similar positive Pearson score (ρ = 0.14)
between the difficulty and the number of cardinal
digits in the answer. While this weakness of the
DFGN model cannot be applied to an arbitrary QA
model, the methodology used to determine this
weakness can be applied arbitrarily, which can give
solid grounding to claims about model weaknesses.

4 Qualitative Analysis

We qualitatively analyze the difficulty predic-
tions to understand the predictions of our best-
performing model. Similar to Figure 2, Figure 3
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shows a UMAP scatterplot4 for questions on our
test split of the estimated IRT parameters. In this
case, instead of color-coding by difficulty as in
Figure 2, we instead color-code by the absolute
error between our predictions and the measured dif-
ficulty of each question. We again apply KMeans
(k = 10) to our data with a smaller number of
clusters due to the smaller size of the test set. We
highlight CT.1, like C.1 and C.2 of Figure 2, this
cluster consists primarily of yes/no questions. The
difficulty in CT.1 has significantly smaller vari-
ance in the estimated difficulties than the rest of
the clusters (ρ = 0.02). As well, the prediction
error for CT.1 has significantly smaller variance
(ρ=0.04) and had the smallest average prediction
error compared to the other clusters (0.68). This
indicates that the model is able to recognize when
question groupings, such as yes/no questions, have
consistent difficulties (as discussed in 2.1) and has
consistently lower error when predicting difficulty
for these questions. However, the prediction error
tends to vary more when the surface-level ques-
tion types are not sufficient to characterize their
difficulty.

We explore this further through a small counter-
factual experiment. We are interested in taking an
item with high prediction error and slightly tweak-
ing it to understand how the model’s predictions
can change with changes in the question and an-
swer. We selected an item with >2 absolute error
to perform this experiment. The question we use
in this study is: Which university is this American
philosopher, theologian, and Christian apologist
who supports theistic science, professor at? with
an answer of Biola University. The predicted dif-
ficulty was −0.51. We found that simple changes
to the question, such as using synonyms and re-
moving unnecessary information, can increase the
predicted difficulty up to−0.21. However, by mod-
ifying the answer (and by necessity the question)
to be either a date or yes, we achieve a higher diffi-
culty prediction (0.53 and 1.02, respectively). This
further indicates the model’s bias towards yes/no
questions being of a higher difficulty regardless of
the style or topic of question being asked. Some
of our changes and their corresponding predictions
are listed in Appendix E.

4Similar plots for the discrimination parameters are in-
cluded in Appendix G

Figure 3: UMAP scatterplot of questions color coded by pre-
diction error for difficulty. (Test set)

5 Conclusion

In this paper, we explored QA datasets through the
lens of Item Response Theory. We have demon-
strated a way to build regression models that can
describe the difficulty and discrimination of a ques-
tion. We note that our work is limited in two im-
portant ways: firstly, we only use the DFGN model
in our artificial crowd, which may have introduced
a bias in which some factors that make questions
difficult/discriminatory are only applicable to this
model. Secondly, we only explore the HotPotQA
dataset, which may further limit our analysis to
only be applicable to HotPotQA or similar datasets.
Future work could incorporate multiple models and
datasets to explore a more easily generalizable dif-
ficulty/discrimination prediction pipeline. We also
note that our analysis here focused on QA. How-
ever, there are many NLP tasks in which the diffi-
culty or discrimination of an item may be important.
Our work here could naturally extend to these do-
mains. Finally, automatically predicting these traits
without relying on user responses can engender a
host of creative educational applications. Future
work can also leverage such predictive models to
explore more efficient strategies for learning and
evaluation.
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A Models & Training

For the 1PL and 2PL prediction, we considered
linear models with L1 & L2 regularization, random
forests, gradient boosted regressors, and bayesian
ridge models. All hyperparameters were kept con-
stant as the default in the sklearn package (Pe-
dregosa et al., 2011). We performed 10-fold cross-
validation using PyCaret (Ali, 2020). All models
were trained on a consumer grade processor.

B Feature Definitions

• Human-Centric Features
– Lexical & Syntactic features: These

consist primarily of counting features:
ContentWords, Type-token ratio, Avg.
Word Length, Complex Words (> 3 syl-
lables). These are calculated for both the
answer and question. A full list of these
features can be found in Appendix F

– Semantic-Ambiguity features: We use
WordNet (Miller, 1995) to calculate the
ambiguity of sentences, similar to Ha
et al. (2019). These are calculated for
both answer and question.

– Readability features: We use previous
work (Kincaid et al., 1975; Gunning,
1952; Laughlin, 1969) to model the read-
ability of a question/answer (e.g. Fleisch
Kincaid index). These are further ex-
panded on in Appendix C.

• Machine-Centric Features
– Contextual Embeddings: We use the

BERT-base model (Devlin et al., 2019)
to obtain sentence embeddings for ques-
tions and answers.

– Overlap Counts: We count overlaps
between the question and answer of n-
grams up to n = 3. We also com-
pute overlap counts between the ques-
tion/answer and the gold and distractor
paragraphs.

– Part of Speech Counts: We count POS
tags for tags from the Stanford NLP
tagset (Toutanova et al., 2003) for both
the question and answer.

C Reading Difficulty Features

We list the reading difficulty features we used in our
experiments and an overview of their calculations.
Each calculation has its own coefficients that can
be found in their respective citations.

• Flesch Reading Ease - linear combination of
words/sentence and syllables/word (Flesch)

• Flesch Kincaid Grade Level - linear combi-
nation of word/sentence and syllables/word
(Kincaid et al., 1975)

• Automated Readability Index (ARI) - lin-
ear combination of characters/word and
words/sentence (Smith and Senter, 1967)

• Gunning Fog index - linear combination of
words/sentence and complex words/words.
Complex words are words with 3 syllabus
(Gunning, 1952)

• Coleman-Liau - linear combination of
letters/100 words and sentences/100
words.(Entin and Klare, 1978)

• SMOG index - calculates the grade level
by considering the number of complex
words/sentence (Laughlin, 1969)

D Significance Tests

We provide significance tests for the difficulty and
discrimination predictions in tables 5 and 6. We see
that the BERT features and using all features are
able to beat the baseline with statistical significance
(ρ≤ .1). Note that we compare using MSE rather
than R2 as the baseline always has an R2 score of
0. We also provide in table 7 the significance tests
for using all features against BERT features. We
find that the best performing BERT feature set does
not have a statistically significant improvement in
performance when compared to the all feature set.
In this case, we use R2 as the performance metric.

Features p
All 0.034
BERT (Q) 0.211
BERT (A) 0.078
H.C. (Q) 0.551
H.C. (A) 0.261
A/Q Con. 0.674
P.O.S. (Q) 0.501
P.O.S. (A) 0.523

Table 5: 1PL difficulty predictions. P-values for feature set
performance (MSE) tested against the baseline.

E Counterfactual Results

• – Question (original): Which university is
this American philosopher, theologian,
and Christian apologist, who supports
theistic science, professor at?’
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Features p
All 0.007
BERT (Q) 0.013
BERT (A) 0.098
H.C. (Q) 0.165
H.C. (A) 0.726
A/Q Con. 0.831
P.O.S. (Q) 0.656
P.O.S. (A) 0.174

Table 6: 2PL discrimination predictions. P-values for feature
set performance (MSE) tested against the baseline.

Features p
BERT (Q) (Diff.) 0.042
BERT (Q) (Discrim.) 0.769
BERT (A) (Diff.) 0.278
BERT (A) (Discrim.) 0.089

Table 7: 1PL and 2PL Difficulty and Discrimination predic-
tions. P-values for BERT performance (R2) tested against all
features performance.

– Answer: "Biola University"
– Pred. Diff: −0.51

• – Question : Which school is this philoso-
pher and theologian who supports sci-
ence, professor at?

– Answer: "Biola University"
– Pred. Diff: −0.21

• – Question : What was the birth date of a
professor at Biola University who is an
American philosopher, theologian, and
Christian apologist, who supports theis-
tic science?

– Answer: March 9, 1948
– Pred. Diff: 0.53

• – Question : Does Biola University have
a professor who is an American philoso-
pher, theologian, and Christian apologist,
who supports theistic science?

– Answer: yes
– Pred. Diff: 1.02

F Lexical Features

We list our full list of lexical features, these features
are a subset of the lexical features used in Ha et al.
(2019).

• Word Count

• Content Word Count

• Content Word Incidence

• Content Word Count No Stopwords

• Noun Count

• Noun Incidence

• Verb Count

• Verb Incidence

• Adjective Count

• Adjective Incidence

• Adverb Count

• Adverb Incidence

• Number Count

• Number Incidence

• Type Count

• Type Token Ratio

• Comma Count

• Comma Incidence

• Average Word Length In Syllables

• Complex Word Count

• Complex Word Incidence,

• Average Sentence Length

• Negation Count

• Negation Incidence

• Negation In Stem

• NP Count

• NP Incidence

• Average NP Length

• NP Count With Embedding

• NP Incidence With Embedding

• Average All NP Length,

• PP Count

• PP Incidence

• PPs Per Sentence Ratio

• VP Count
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• VP Incidence

• Passive Active Ratio

• Proportion Active VPs

• Proportion Passive VPs

• Agentless Passive Count

• Relative Clauses Count

• Relative Clauses Incidence

• Proportion Relative Clauses

• Polysemic Word Count

• Polysemic Word Incidence

• Average Sense No Content Words

• Average Sense No Nouns

• Average Sense No Verbs

• Average Sense No Non Auxiliary Verbs

• Average Sense No Adjectives

• Average Sense No Adverbs

• Average Noun Distance To WNRoot

• Average Verb Distance To WNRoot,

• Average Noun And Verb Distance To WN-
Root

• Answer Words In Word Net Ratio

• Average Word Frequency Abs

• Average Word Frequency Rel

• Average Word Frequency Rank

• Average Content Frequency Abs

• Average Content Frequency Rel

• Average Content Frequency Rank

• Not In First 2000 Count

• Not In First 2000 Incidence

• Not In First 3000 Count

• Not In First 3000 Incidence

• Not In First 4000 Count

• Not In First 4000 Incidence

• Not In First 5000 Count

• Not In First 5000 Incidence

• Imagability

• Imagability Found Only

• Imagability Ratio

• Familiarity

• Familiarity Found Only

• Familiarity Ratio

• Concreteness

• Concreteness Found Only

• Concreteness Ratio

• Age Of Acquisition

• Age Of Acquisition Found Only

• Age Of Acquisition Ratio

• Meaningfulness Colorado Found Only

• Meaningfulness Pavio Found Only

• No Imagability Rating

• No Familiarity Rating

• No Concreteness Rating

• No Age of Acquisition Rating

• Connectives Count

• Connectives Incidence

• Additive Connectives Count

• Additive Connectives Incidence

• Temporal Connectives Count

• Temporal Connectives Incidence

• Causal Connectives Count

• Causal Connectives Incidence

• Referential Pronoun Count,

• Referential Pronoun Incidence
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G Discrimination UMAP plots

In the following section, we provide the UMAP
reduction plots for the discrimination parameters
(darker being more discriminatory), as well as the
prediction error UMAP plot for our best model
(darker meaning higher error).

Figure 4: Answer BERT UMAP Reduction VS Discrimination
values, train/dev set

Figure 5: Answer BERT UMAP Reduction VS Discrimination
values, test set

Figure 6: Question BERT UMAP Reduction VS Discrimina-
tion values, train/dev set

Figure 7: Question BERT UMAP Reduction VS Discrimina-
tion values, test set

Figure 8: Question BERT UMAP Reduction VS Predicted
Discrimination values, test set
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Figure 9: Question BERT UMAP Reduction VS Discrimina-
tion prediction error, test set
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