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Abstract

Machine reading comprehension is a heavily-
studied research and test field for evaluating
new pre-trained language models (PrLMs)
and fine-tuning strategies, and recent studies
have enriched the pre-trained language models
with syntactic, semantic and other linguistic
information to improve the performance of
the models. In this paper, we imitate the
human reading process in connecting the
anaphoric expressions and explicitly leverage
the coreference information of the entities to
enhance the word embeddings from the pre-
trained language model, in order to highlight
the coreference mentions of the entities that
must be identified for coreference-intensive
question answering in QUOREF, a relatively
new dataset that is specifically designed to
evaluate the coreference-related performance
of a model. We use two strategies to fine-
tune a pre-trained language model, namely,
placing an additional encoder layer after a
pre-trained language model to focus on the
coreference mentions or constructing a rela-
tional graph convolutional network to model
the coreference relations. We demonstrate
that the explicit incorporation of coreference
information in the fine-tuning stage performs
better than the incorporation of the coreference
information in pre-training a language model.

1 Introduction

Machine reading comprehension (MRC), a task
that automatically identifies one or multiple words
from a given passage as the context to answer
a specific question for that passage, is widely
used in information retrieving, search engines, and
dialog systems. Several datasets on MRC that limit
the answer to one single word or multiple words
from the passage are introduced, including TREC
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Context: Frankie Bono, a mentally disturbed hitman
from Cleveland, comes back to his hometown in New York
City during Christmas week to kill a middle-management
mobster, Troiano. ...First he follows his target to select
the best possible location, but opts to wait until Troiano
isn’t being accompanied by his bodyguards. ... Losing
his nerve, Frankie calls up his employers to tell them he
wants to quit the job. Unsympathetic, the supervisor tells
him he has until New Year’s Eve to perform the hit.
Question: What is the first name of the person who has
until New Year’s Eve to perform a hit? Answer: he -
>Frankie
Question: What is the first name of the person who follows
their target to select the best possible location? Answer:
he ->Frankie

Table 1: An example from QUOREF: coreference
resolution is required to extract the correct answer.
We highlight the supporting text in teal color and the
related deictic expressions in bold.

(Harman, 1993), SQuAD (Rajpurkar et al., 2018),
NewsQA (Trischler et al., 2017), SearchQA (Dunn
et al., 2017), and QuAC (Choi et al., 2018), and
intensive efforts were made to build new models
that surpass the human performance on these
datasets, including the pre-trained language models
(Devlin et al., 2019; Liu et al., 2019; Yang et al.,
2019a) or the ensemble models that outperform the
human, in particular on SQuAD (Lan et al., 2020;
Yamada et al., 2020; Zhang et al., 2021). More
challenging datasets are also introduced, which
require several reasoning steps to answer (Yang
et al., 2018; Qi et al., 2021), the understanding
of a much larger context (Kočiský et al., 2018) or
the understanding of the adversarial content and
numeric reasoning (Dua et al., 2019).

Human texts, especially long texts, are abound
in deictic and anaphoric expressions that refer
to the entities in the same text. These deictic
and anaphoric expressions, in particular, con-
strain the generalization of the models trained
without explicit awareness of the coreference.
The QUOREF dataset (Dasigi et al., 2019) is
specifically designed to validate the performance
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of the models in coreferential reasoning, in that
“78% of the manually analyzed questions cannot
be answered without coreference” (Dasigi et al.,
2019). The example in Table 1 shows that the
answers to the two questions cannot be directly
retrieved from the sentences because the word in
the corresponding sentence of the context is an
anaphoric pronoun he, and to obtain the correct
answers, tracing of its antecedent Frankie is
required. The reasoning in coreference resolution
is required to successfully complete the task in
machine reading comprehension in the SQuAD-
style QUOREF dataset.

Pre-trained language models, including BERT
(Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019b), that are
trained through self-supervised language modeling
objectives like masked language modeling, perform
rather poorly in the QUOREF dataset. We argue
that the reason for the poor performance is that
those pre-trained language models do learn the
background knowledge for coreference resolution
but may not learn adequately the coreference
information required for the coreference-intensive
reading comprehension tasks. In the human
reading process, as shown in the empirical study
of first-year English as a second language students
during the reading of expository texts, “anaphoric
resolution requires a reader to perform a text-
connecting task across textual units by success-
fully linking an appropriate antecedent (among
several prior antecedents) with a specific anaphoric
referent” and “students who were not performing
well academically were not skilled at resolving
anaphors” (Pretorius, 2005) and the direct instruc-
tion on anaphoric resolution elevated the readers’
comprehension of the text (Baumann, 1986). In
addition, the studies on anaphor resolution in
both adults using eye movement studies (Duffy
and Rayner, 1990; van Gompel et al., 2004) and
children (Joseph et al., 2015) evidenced a two-
stage model of anaphor resolution proposed by
Garrod and Terras(Garrod and Terras, 2000). The
first stage is “an initial lexically driven, context-
free stage known as bonding, whereby a link
between the anaphor and a potential antecedent
is made, followed by a later process known as
resolution, which resolves the link with respect
to the overall discourse context” (Joseph et al.,
2015). The pre-trained language models only
capture the semantic representations of the words

and sentences, without explicitly performing such
text-connecting actions in the specific coreference-
intensive reading comprehension task, thus they do
not learn adequate knowledge to solve the complex
coreference reasoning problems.

Explicitly injecting external knowledge such
as linguistics and knowledge graph entities, has
been shown effective to broaden the scope of
the pre-trained language models’ capacity and
performance, and they are often known as X-
aware pre-trained language models (Zhang et al.,
2020; Liu et al., 2020; Kumar et al., 2021). It
is plausible that we may imitate the anaphoric
resolution process in human’s two-stage reading
comprehension of coreference intensive materials
and explicitly make the text-connecting task in our
fine-tuning stage as the second stage in the machine
reading comprehension.

As an important tool that captures the anaphoric
relationship between words or phrases, coreference
resolution that clusters the mentions of the same
entity within a given text is an active field in natural
language processing (Chen et al., 2011; Sangeetha,
2012; Huang et al., 2019; Joshi et al., 2020;
Kirstain et al., 2021), with neural networks taking
the lead in the coreference resolution challenges.
The incorporation of the coreference resolution
results in the pre-training to obtain the coreference-
informed pre-trained language models, such as
CorefBERT and CorefRoBERTa (Ye et al., 2020),
has shown positive improvements on the QUOREF
dataset, a dataset that is specially designed for
measuring the models’ coreference capability, but
the performance is still considerably below the
human performance.

In this paper, we make a different attempt to
leverage the coreference resolution knowledge and
complete the anaphoric resolution process in read-
ing comprehension. We propose a fine-tuned coref-
aware model that directly instructs the model to
learn the coreference information1. Our model can
be roughly divided into three major components:
1) pre-trained language model component. We use
the contextualized representations from the pre-
trained language models as the token embeddings
for the downstream reading comprehension tasks.
2) coreference resolution component. NeuralCoref,
an extension to the spaCy, is applied here to
extract the mention clusters from the context. 3)

1Our codes are publicly available at https://github.
com/bright2013/CorefAwareMRC.
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coreference enrichment component. We apply
three methods in incorporating the coreference
knowledge: additive attention enhancement, mul-
tiplication attention enhancement, and relation-
enhanced graph-attention network + fusing layer.

In this paper, we show that by simulating
the human behavior in explicitly connecting the
anaphoric expressions to the antecedent entities and
infusing the coreference knowledge our model can
surpass that of the pre-trained coreference language
models on the QUOREF dataset.

2 Background and Related Work

2.1 Models and Training Strategies

Recent studies on machine reading comprehension
mainly rely on the neural network approaches.
Before the prevalence of the pre-trained language
models, the main focus was to guide and fuse the
attentions between questions and paragraphs in
their models, in order to gain better global and
attended representation (Huang et al., 2018; Hu
et al., 2018; Wang et al., 2018).

After the advent of the BERT (Devlin et al.,
2019), there were two trends in solving the machine
reading comprehension. The first trend was
to develop better pre-trained language models
that captured the representation of contexts and
questions (Liu et al., 2019; Yang et al., 2019a;
Lewis et al., 2020), and more datasets on question
answering were introduced to increase the difficulty
in this task, including NewsQA (Trischler et al.,
2017), SearchQA (Dunn et al., 2017), QuAC
(Choi et al., 2018), HotpotQA (Yang et al., 2018),
NarrativeQA (Kočiský et al., 2018), DROP (Dua
et al., 2019), and BeerQA (Qi et al., 2021).

However, the raw pre-trained language models,
being deprived of the in-domain knowledge, the
structures and the reasoning capabilities required
for the datasets, often perform unsatisfactorily
in the hard datasets, being significantly below
the human performance. Efforts had been made
to boost the model performance by enriching
the pre-trained language models with specific
syntactic information (Ye et al., 2020) or semantic
information. Another trend was to fine-tune the
pre-trained language model and added additional
layers to incorporate task-specific information for
better representation, in particular, the coreference
information (Ouyang et al., 2021; Liu et al., 2021).
For some questions that have multi-span answers,
in other words, a single answer contains two or

more discontinuous entities in the context, the BIO
(B denotes the start token of the span; I denotes the
subsequent tokens and O denotes tokens outside
of the span) tagging mechanism is used to identify
these answers and improve the model performance
(Segal et al., 2020).

Recent studies also explored the possibilities of
prompt-based learning in machine reading compre-
hension, including a new pre-training scheme that
changed the question answering into a few-shot
span selection model (Ram et al., 2021) and a new
model that fine-tuned the prompts with knowledge
(Chen et al., 2021). The performance of the models
using prompt-based learning is significantly higher
than the baseline models, but is still below that of
the fine-tuned models (Chen et al., 2021).

2.2 Graph Neural Network in Machine
Reading Comprehension

Graph neural network (GNN) captures the relations
among the entities in the text by modeling the
entities as nodes in the graph and learning the
weights via the message passing between the nodes
of the graph (Kipf and Welling, 2017; Velickovic
et al., 2018). As the dependencies in the natural
language text, the relations among entities and
knowledge-base triples can be relatively easily
modeled in a graph structure, graph neural net-
works are used for numeric reasoning (Ran et al.,
2019), for multi-document question answering by
connecting mentions of candidate answers (De Cao
et al., 2019), and for multi-hop reasoning by adding
the edges with co-occurrence relations(Qiu et al.,
2019), or with contextual sentences as embeddings
(Tu et al., 2020), or with a hierarchical paragraph-
sentence-entity graph (Fang et al., 2020), but none
of them had attempted to connect the anaphoric
expressions and their antecedents as a coreference
resolution strategy in a graph neural network for
machine reading comprehension.

3 Coreference-aware Machine Reading
Comprehension

Our model, inspired by the anaphoric connecting
behavior in the human reading comprehension
process, consists of four parts, namely, a pre-
trained language model, a coreference resolution
component, a graph encoder and a fusing layer.
Context in the machine reading comprehension task
is first processed by a coreference resolution model
to identify the underlying coreference clusters,
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Figure 1: Coref-aware fine-tuning for machine reading comprehension. The text is tokenized and fed into a pre-
trained language model to obtain the embeddings, and into a coreference resolution model to obtain coreference
information. Both the embeddings and the coreference information are used in the fine-tuning stage to 1)
enhance cross attentions with additive operations; 2) enhance cross attentions with multiplication operations, or;
3) construct a coreference graph neural network with the coreference relations as edges.

which are formed by dividing the entities and
anaphoric expressions in the context into disjoint
groups on the principle that the mentions of the
same entity should be in the same group. Then
we use the coreference clusters to construct a
coreference matrix that labels each individual
cluster and identifies each element in the same
cluster with the same cluster number. Meanwhile,
the context is tokenized by the tokenizer defined
in the pre-trained language model and the em-
beddings for each token are retrieved from that
model. We propose three methods for connecting
the anaphoric expressions and their antecedent
entity: 1) adding the coreference matrix with
each attention head in the additional coreference
encoder layer; 2) multiplying the coreference
matrix with each attention head in the additional
coreference encoder layer; 3) constructing a graph
neural network based on the coreference matrix
with the edges corresponding to the coreference
relations and then fusing the graph representation
in the graph neural network with the embeddings
of the context, as shown in Figure 1. The
final representations from either one of the three
methods are fed into the classifier to calculate the
start/end span of the question.

3.1 Coreference Resolution

Coreference resolution is the process that identifies
all the expressions of the same entity in the text,
clusters them together as coreference clusters, and
locates their spans. For example, after coreference
resolution for the text Losing his nerve, Frankie
calls up his employers to tell them he wants to
quit the job., we obtained two mention clusters
[Frankie: [his, Frankie, his, he], his employers:
[his employers, them]], where Frankie is the
head entity and his, Frankie, his, he are all the
expressions referring to this entity, as shown in
Figure 2.

As pre-trained language models use subwords
in their tokenization and the coreference resolution
uses word in the tokenization, a mapping is
required to establish the relations. For the input
sequence X = {x1, ...xn} of length n, the words
W = {w1, ..., wm} obtained from the coreference
tokenization are mapped to the corresponding
subwords (tokens) T = {t1, ..., tk} from the
tokenizer in the pre-trained language model, with
one word contains one or more than one subwords.
Then we constructed a coreference array with the

2Image generated from https://huggingface.co/coref/

1284



Figure 2: Coreference resolution: the red curves connecting the mentions of the same entity and marking the
coreference relations. 2

following rule:

coref(i) =

{
0 if tokens[i] /∈ Sm,

n if tokens[i] ∈ Sm,
(1)

where i is the position of the token in the token
array, Sm is an array of all words in the coreference
mention clusters, n is the sequence number of the
mention cluster and n ≥ 1. Tokens in the same
mention cluster have the same sequence number n
in the coreference array.

3.2 Graph Neural Network

We use the standard relational graph convolutional
network (RGCN) (Sejr Schlichtkrull et al., 2018)
to obtain the graph representation of the context
enriched with coreference information. We use
the coreference matrix and the word embed-
dings to construct a directed and labeled graph
G = (V, E ,R), with nodes (subwords) vi ∈ V ,
edges(relations) (vi, r, vj)) ∈ E , where r ∈ R is
one of the two relation types (1 indicates coref-
erence relation and self-loop; 2 indicates global
relation), as shown in Figure 3 .

Figure 3: Coreference graph. We connect the entities
with their coreference mentions to form a graph, and
the nodes are connected to the global node to form
global representations.

The constructed graph is then fed into the RGCN,
with the differentiable message passing and the

basis decomposition to reduce model parameter
size and prevent overfitting:

hl+1
i = σ

(
W

(l)
0 h

(l)
i +

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)
r h(l)

)
,

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b ,

(2)
where N r

i denotes the set of neighbor indices
of node i under the relation r ∈ R, ci,r is the
normalization constant, and W

(l)
r is a linear

combination of basis transformation V
(l)
b with

coefficient a(l)rb .

3.3 Coreference-enhanced Attention

In addition to the Graph Neural Network method,
we also explore the possibility of using the self-
attention mechanism (Vaswani et al., 2017) to
explicitly add an encoder layer and incorporate the
coreference information into the attention heads of
that layer, so as to guide the model to identify the
mentions in the cluster as the same entity.

We use two methods to fuse the coreference
information and the original embeddings from
the pre-trained language model: additive attention
fusing and dot product attention fusing (multi-
plication). Given the coreference array A =
{m1, 0,m1,m2, 0,m2,m3, 0,m3,m1...}, where
mn denotes the nth mention cluster, and 0 denotes
no mentions, the enriched attention for additive
attention fusing is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

+MA)V,

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ),

(3)
whereMA is a coreference matrix constructed from
the coreference array A with the element value
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in the matrix calculated by adding (for additive
model) or multiplying (for multiplication model)
the coreference hyper-parameter corefweight with
the original attention weight if the element belongs
to the coreference array, Q,K, V are the query,
key and value respectively, dk is the dimension of
the keys, and Wi is trainable parameter. For dot
product (multiplication) fusing, it is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk
�MA)V,

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ),

(4)
where we calculate the dot product of QKT

√
dk

and
a coreference matrix MA constructed from the
coreference array A.

3.4 Integration
A machine reading comprehension task expects
the model to output the start and end positions of
the answer. For the RCGN method, we fuse the
hidden state of nodes vi in the last layer of RCGN
and the embeddings from the pre-trained language
model with a fully-connected (FC) layer , and then
calculate the start/end positions of the answer.

E = FC(EprLM ||Egnn),
Ps = argmax(softmax(WsS)),

(5)

where EprLM denotes the embeddings from the
pre-trained language model, Egnn denotes the
embeddings from the graph encoder, Ps denotes
the predicted start positions,Ws denotes the weight
matrix and S denotes the text feature.

For the two methods that add one additional en-
coder layer for additive or multiplication attention
enrichment, we directly used the output of that
encoder layer for the follow-up processing.

Following the practice of CorefRoBERTa (Ye
et al., 2020) in handling multiple answers for the
same question, we use the cross entropy to calculate
the losses for each answer if the question has
multiple answers:

En = FC(EprLM , n),

Ls =
n∑
i

H(psi, qsi),

Le =
n∑
i

H(pei, qei),

Ltotal = avg(Ls + Le + L(En, n)),

(6)

where n denotes the answer count as a hyper
parameter for handling multiple answers, En
denotes the results after the linear transformation
of the embeddings for the answer count and then
we obtains the predicted start positions and end
positions from that embeddings, L(En, n) denotes
the cross-entropy loss between the transformed
embeddings and the answer count, Ls denotes the
total loss of the start positions, Le denotes the total
loss of the end positions and Ltotal denotes the
combined total loss.

4 Experiments

4.1 Model Settings

We developed three models based on the sequence-
to-sequence Transformer architecture. The pre-
trained RoBERTa-large was used as the base model
and then we used the following three methods to
fine-tune it: 1) CorefGNN: feeding the coreference
information into a graph neural network and then
fuse the representations; 2) CorefAddAtt: adding
the coreference weights with the self-attention
weights; 3) CorefMultiAtt: calculating the dot
product of the coreference weights with the self-
attention weights. We used the results from
CorefRoBERTa (Ye et al., 2020) as our baselines.

4.2 Setup

Our coreference resolution was implemented in
spaCy (Honnibal and Montani, 2017) and Neural-
Coref. NeuralCoref is an extension for spaCy that
is trained on the OntoNotes 5.0 dataset based on the
training process proposed by Clark and Manning
(Clark and Manning, 2016), which identifies the
coreference clusters in the text as mentions. In
particular, spaCy 2.1.0 and NeuralCoref 4.0 are
used, because the latest spaCy version 3.0+ has
compatibility issues with NeuralCoref and extra
efforts are required to solve the issues.

The neural network implementation was im-
plemented in PyTorch (Paszke et al., 2019) and
Hugging Face Transformers (Wolf et al., 2020). We
used the embeddings of the pre-trained language
model RoBERTaLARGE, with the relational graph
convolutional network implemented in Deep Graph
Library (DGL) (Wang et al., 2020). We used Adam
(Kingma and Ba, 2015) as our optimizer, and the
learning-rate was {1e-5, 2e-5, 3e-5}. We trained
each model for {4, 6} epochs and selected the best
checkpoints on the development dataset with Exact
match and F1 scores. All experiments were run on
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Model Dev Test
EM F1 EM F1

QANet∗ 34.41 38.26 34.17 38.90
QANet + BERT∗

BASE 43.09 47.38 42.41 47.20
BERT+

BASE 61.29 67.25 61.37 68.56
CorefBERT+

BASE 66.87 72.27 66.22 72.96

BERT+
LARGE 67.91 73.82 67.24 74.00

CorefBERT+
LARGE 70.89 76.56 70.67 76.89

RoBERTa+LARGE 74.15 81.05 75.56 82.11
CorefRoBERTa+LARGE 74.94 81.71 75.80 82.81

CorefGNN 79.23 85.89 78.60 85.15
CorefAddAtt 80.02 86.13 79.11 85.86
CorefMultiAtt 79.85 86.02 78.52 85.27

Table 2: Exact Match and F1 scores of baselines and
our proposed models. Results with *, + are from Dasigi
et al. (2019) and Ye et al. (2020) respectively.

two NVIDIA TITAN RTX GPUs, each with 24GB
memory.

4.3 Tasks and Datasets
Our evaluation was performed on the QUOREF
dataset (Dasigi et al., 2019). The dataset contains
a train set with 3,771 paragraphs and 19,399
questions, a validation set with 454 paragraphs and
2,418 questions, and a test set with 477 paragraphs
and 2,537 questions.

4.4 Results
We quantitatively evaluated the three methods and
reported the standard metrics: exact match score
(EM) and word-level F1-score (F1) (Rajpurkar
et al., 2016).

As shown in Table 2, compared with the
baseline model CorefRoBERTa, the performance
of our models improves significantly. In particular,
CorefAddAtt performs best with 5.08%, 4.42%
improvements over the baseline model in Exact
Match and F1 score respectively on the QUOREF
dev set, and 3.05% (F1) and 3.31% (Exact
Match) improvements on the QUOREF test set.
CorefGNN and CorefMultiAtt also outperform the
baseline model by 2.34% (F1) and 2.80% (Exact
Match), and 2.46% (F1) and 2.72% (Exact Match)
respectively on the test set. Compared with the
RoBERTaLARGE that does not use any explicit
coreference information in the training or the
CorefRoBERTaLARGE that uses the coreference
information in the training, the improvements of
our model are higher, which proves the effective-
ness of the explicit coreference instructions in our
strategies.

5 Analysis

5.1 Model Efficiency
As shown in Table 2, compared with
RoBERTaLARGE, our methods added only
one component that explicitly incorporates the
coreference information, and the three methods we
used all exhibit considerable improvements over
the baselines. Compared with RoBERTaLARGE

which has 354M parameters, CorefAddAtt and the
CorefMultiAtt add an encoder layer, which adds
over 12M parameters. For the CorefGNN method,
we added one hidden layer in GNN and two linear
layers to transform the feature dimensions, with
around 68.7K parameters in total. Our predictions
are that intuitively with more focuses on the
coreference clues, the models perform better
on the task that requires intensive coreference
resolution, as we have explicitly increased the
attention weights to connect the words in the same
coreference mention clusters. However, the overall
performance of the models is also limited by the
performance of the coreference component we use,
namely, NeuralCoref.

5.2 Case Studies
To understand the model’s performance beyond
the automated metrics, we analyze our predicted
answers qualitatively. Table 3 compares the
representative answers predicted by our models
and CorefRoBERTaLARGE. These examples
require that the models should precisely locate
the entity from several distracting entities for
the anaphoric expression that directly answers
the questions. Our model demonstrates that,
after resolving the anaphoric expression with the
antecedents in the context and enhancing with
the coreference information by connecting the
anaphoric expression with its antecedents, such
as the connection from her to Henrietta in the first
example and the connection from she to Rihanna
in the second example, our model accurately
locates the entity name among several names in the
context, which the CorefRoBERTaLARGE fails to
uncover.

We further explored the effects of the anaphoric
connections on the attention weights by comparing
the attention weights of the sample in the first
row in Table 3 between our CorefAddAtt and
CorefRoBERTaLARGE model, as shown in Figure
4. It is clear that the anaphoric expressions are not
connected in the CorefRoBERTaLARGE model,
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Coref-resolved Context (Abbreviated) Question Answers

Henrietta take an immediate liking to her, and she asks if Luce can sit by her
during the wedding. Rachel arrives with her father and the ceremony begins. As
Rachel is walking down the aisle, her eyes wander and she makes eye contact
with Luce.

Rachel makes
eye contact with
a woman sitting
next to whom?

Henrietta (Golden)
Rachel (CorefR)
Henrietta (CAddAtt)

After the song was completed, they wanted to play it to Rihanna, but Blanco was
skeptical about the reaction towards the song because of its slow sound. After
StarGate played it to her, they called Blanco from London and told him that she
liked the song: “She’s flippin’ out.

Who liked a
song?

Rihanna (Golden)
Blanco (CorefR)
Rihanna (CAddAtt)

Table 3: Comparison of the predictions for two questions in QUOREF dev set. The blue and bold words indicate the
mentions in the same coreference cluster obtained from coreference resolution. In the Answers column, Golden
indicates the golden answer; CorefR indicates the prediction made by CorefRoBERTaLARGE model; CAddAtt

indicates the prediction made by CorefAddAtt model.

Figure 4: Sample average cross attentions for all heads from CorefAddAtt model (left) and CorefRoBERTaLARGE

model (right). The cross attentions among the anaphoric expressions and the entities of our model (CorefAddAtt )
are visibly much more distinctive than those of the baseline model (CorefRoBERTaLARGE ).

as indicated by the obtrusive attentions on Rachel
and Her in the heatmap on the right of the figure.
For the CorefAddAtt, the varying colors on the left
heat-map indicate the connection strength among
the anaphoric expressions and evidence the effects
of explicit coreference addition that smooth and
strength the attentions for anaphoric expressions,
which contributes to the higher performance of our
models.

5.3 Error Analysis

Despite the improvements made by our model, it
still fails to predict the correct answers for some
questions. We analyzed and summarized several
error cases as follows.

Table 4 shows three representative types of
errors. The first type of errors is caused by the

limitations of the coreference resolution compo-
nent, NeuralCoref, as its performance had not
reached 80% in F1 for MUC, B3 or CEAFφ4
(Clark and Manning, 2016), which is evidenced
by the failure in resolving the antecedent of the
anaphoric expression its as the academy in the first
sample, and the failure in clustering the anaphoric
expressions her with the entity Beyoncé in the
second sample, despite the success in resolving
the second Gilman to its antecedent Rockwell
"Rocky" Gilman. The second type of errors
is more complicated, which involves multi-step
reasoning that cannot be handled by simply adding
the coreference information. To correctly answer
the second question, the model should perform
two successive tasks successfully: 1) it should
understand that Mathew Knowles is the father
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Coref-resolved Context (Abbreviated) Question Answers

West Point cadet Rockwell "Rocky" Gilman is called before a
hearing brought after an influential cadet, Raymond Denmore, Jr.,
is forced to leave the academy...Denmore’s attorney, Lew Proctor,
attacking the academy and its Honor Code system, declares that
Gilman is unfit and possibly criminally liable.

Who’s honor code sys-
tem does Proctor at-
tack?

the academy (Golden)
West Point (CAddAtt)

Following a career hiatus that reignited her creativity, Beyoncé was
inspired to create a record with a basis in traditional rhythm and
blues that stood apart from contemporary popular music...Severing
professional ties with father and manager Mathew Knowles,
Beyoncé eschewed the music of her previous releases

What is the last name
of the person who went
on a career hiatus?

Knowles (Golden)
Beyoncé (CAddAtt)

When the prosecutor suggests that the crime would have still
happened if the owner were a woman, Christine, Andrea, Annie,
Janine and the other women who witnessed the crime all laugh and
exit the courtroom.

What are the names of
the women Janine has
to determine are sane
or crazy?

Christine, Andrea, Annie
(Golden)
Christine, Andrea
(CAddAtt)

Table 4: Errors in predictions for three questions in QUOREF dev set. The blue and bold words indicate the
mentions in the same coreference cluster. The bold words in red or magenta indicate the failure of our model in
making necessary reasoning. In the Answers column, Golden indicates the golden answer; CAddAtt indicates the
prediction made by CorefAddAtt model.

of Beyoncé; 2) it should understand the world
knowledge that the last name of Beyoncé is the
same as her father’s, which should be Knowles.
This type of errors shows that our model performs
poorly on the questions that require multi-step
reasoning. The third type of errors is caused by
the questions that have multiple items in an answer.
A hyperparameter that limits the total number of
items in an answer is used in our models and this
parameter is set to 2 in the training, thus when the
number of total items in the answer exceeds 2, our
models fail to predict the exact items, and the third
item Annie is ignored.

6 Conclusion

In this paper, we present intuitive methods to solve
coreference-intensive machine reading comprehen-
sion tasks by following the reading process of
human in which people connect the anaphoric
expressions with explicit instructions. We demon-
strate that all our three fine-tuning methods, includ-
ing CorefGNN, CorefAddAtt and CorefMultiAtt, are
superior to the pre-trained language models that
incorporate the coreference information in the pre-
training stage, such as CorefRoBERTaLARGE. As
the fine-tuning methods rely on the coreference
resolution models supplied by other researchers,
their performance is also constrained by the
accuracy of those coreference resolution models.
In addition, the questions that require multi-
step reasoning, span multiple entities or contain
multiple answer items also pose the challenges to
our models. In the future, with more in-depth study

on human reasoning in reading comprehension and
more progress in graph neural networks, the GNN-
based coreference graph can be enriched with more
edge types and diverse structures to leverage more
linguistic knowledge and gain better performance.
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