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Abstract

As a more natural and intelligent interac-
tion manner, multimodal task-oriented dia-
log system recently has received great atten-
tion and many remarkable progresses have
been achieved. Nevertheless, almost all ex-
isting studies follow the pipeline to first
learn intra-modal features separately and
then conduct simple feature concatenation or
attention-based feature fusion to generate re-
sponses, which hampers them from learning
inter-modal interactions and conducting cross-
modal feature alignment for generating more
intention-aware responses. To address these
issues, we propose UniTranSeR, a Unified
Transformer Semantic Representation frame-
work with feature alignment and intention rea-
soning for multimodal dialog systems. Specif-
ically, we first embed the multimodal features
into a unified Transformer semantic space to
prompt inter-modal interactions, and then de-
vise a feature alignment and intention reason-
ing (FAIR) layer to perform cross-modal en-
tity alignment and fine-grained key-value rea-
soning, so as to effectively identify user’s in-
tention for generating more accurate responses.
Experimental results verify the effectiveness
of UniTranSeR, showing that it significantly
outperforms state-of-the-art approaches on the
representative MMD dataset.

1 Introduction

The multimodal task-oriented dialog systems are
designed to help users achieve specific goals such
as clothing recommendation or restaurant reserva-
tion, which is in growing demand in the current
business environment. As a leading study, Saha
et al. (2018) released a multimodal dialog dataset
(MMD) in the online retail domain. Based on such
a benchmark dataset, many multimodal dialog mod-
els incorporating domain knowledge have recently
been proposed (Chauhan et al., 2019; Zhang et al.,
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Hello, how can i help you?

Found some similar black leather-jackets for you. 

I like the 2nd one, will it go well with jeans? Is it popular among celebrities?

Yes, it is a good match, and it's universally popular among celebrities.

Multimodal Dialogue System

Figure 1: Example of multimodal task-oriented dialog
including multimodal entity alignment and knowledge
query from the MMD dataset (Saha et al., 2018). Note
that red marks the entities to be queried in the mul-
timodal knowledge base and blue marks the acquired
knowledge information.

2019, 2021), which basically exploit taxonomy-
based method (Liao et al., 2018; Cui et al., 2019)
or attention-based method (Nie et al., 2019; He
et al., 2020) to incorporate knowledge base (KB)
information for better performance.

Though achieving remarkable progress, existing
multimodal task-oriented dialog systems still suf-
fer from the following three limitations. Firstly,
prior models only learn the intra-modal features
(including textual features, visual features and do-
main knowledge) separately before fusing them.
Since these multimodal cues in general can enhance
and complement each other, projecting them into
a unified semantic space to learn the inter-modal
features, with no doubt, can help improve the abil-
ities of natural language understanding, which in
turn will benefit the response generation. Sec-
ondly, prior models only conduct simple feature
concatenation (Saha et al., 2018; Nie et al., 2019) or
attention-based feature fusion (Cui et al., 2019) af-
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ter acquiring intra-modal representations, but with-
out learning fine-grained alignment between differ-
ent modalities before fusion, which is not favorable
to query knowledge for accurate multimodal re-
sponse generation. Take the dialog in Figure 1 as
an example, when answering the user’s query on
similar style of jackets, the model is expected to
align the word “jackets” with the corresponding vi-
sual features for proper semantic complement and
entity enhancement. Thirdly, prior models basi-
cally lack the capability of entity-level reasoning,
which prevents them from performing reasoning
over crucial entities to guide intention-aware re-
sponse generation. For example, in Figure 1, when
the user asks “show some similar jackets in black
color”, the chatbot is expected to properly explore
the pivot attribute “black” that connects the start
query cue “jackets” with the target recommended
product images. Specifically, the model needs to
perform a 2-hop reasoning over triples (jacket_q,
attribute, black_v) and (black_q, image, jacket_v)
and obtain the intended 4 images.

To address the aforementioned limitations, we
propose a Unified Transformer Semantic Repre-
sentation framework with feature alignment and
intention reasoning, UniTranSeR for short. Specif-
ically, to address the first limitation, we stand on
the shoulder of Vision-and-Language Pre-training
(VLP) methods (Lu et al., 2019; Li et al., 2019;
Chen et al., 2020; Li et al., 2021) to propose a
unified-modal Transformer encoder, which is used
to project all the multimodal features into a unified
semantic space to prompt inter-modality interac-
tions, with the objective of learning better repre-
sentations. Based on the unified encoder, we fur-
ther address the second limitation by designing a
feature alignment module to perform cross-modal
feature alignment. Finally, to address the third
limitation, we devise a fine-grained intention rea-
soning module for capturing users’ real intentions,
by leveraging a key-value attention based memory
mechanism to perform multi-hop knowledge query
for generating text or image responses.

We conduct experiments on MMD, one of the
most influential benchmark datasets for multimodal
dialog generation. We follow the mainstream eval-
uation script of dialog generation and demonstrate
that UniTranSeR significantly outperforms the cur-
rent state-of-the-art baselines. Ablation study also
shows the efficacy of each component in improving
the performance of dialog generation, and a further

case study reveals that our model can effectively
perform fine-grained token-level feature alignment
for multimodal dialog generation.

2 Related Work

2.1 Unimodal Dialog Systems

Recent years has witnessed the remarkable success
in textual dialog systems, which can be roughly
divided into two categories: open-domain conver-
sations with casual chi-chat (Song et al., 2020;
Gangal et al., 2021; Chan et al., 2021; Yang et al.,
2021) and task-oriented dialog systems (Pei et al.,
2021; Santra et al., 2021; Wang et al., 2021; Mi
et al., 2021; Madotto et al., 2021; Gou et al., 2021;
Raghu et al., 2021), which are designed to help
users achieve specific goals. Early efforts mainly
adopt a sequence-to-sequence (Seq2Seq) architec-
ture, but cannot work well in KB retrieval and rea-
soning. To alleviate this problem, copy mecha-
nism (Eric and Manning, 2017) have been adopted
and many memory augmented Seq2Seq models
have been proposed (Bordes et al., 2017; Wen et al.,
2018; Madotto et al., 2018; Wu et al., 2019; Reddy
et al., 2019; Qin et al., 2019; Wang et al., 2020;
Qin et al., 2020), which achieve promising results.

2.2 Multimodal Dialog Systems

With the flourishing of social media platforms,
massive amounts of multimedia data are gener-
ated daily, which poses great demand for mul-
timodal dialog systems. However, due to the
lack of large-scale multimodal dialog datasets, re-
searches in this domain have been limited. To
this end, Saha et al. (2018) provided a vertical re-
tail domain dataset MMD to promote the research
and proposed a multimodal hierarchical encoder-
decoder model (MHRED) as a baseline. Based
on MHRED, Liao et al. (2018) incorporated the
style tips into a knowledge-aware multimodal di-
alog model (KMD). Cui et al. (2019) designed
a user attention-guided multimodal dialog system
(UMD) by additionally considering the hierarchi-
cal product taxonomy and user’s attention to prod-
ucts. Chauhan et al. (2019) introduced an ordi-
nal and attribute aware multimodal dialog system
(OAM) by employing a novel position and attribute
aware attention mechanism. Later, Nie et al. (2019)
proposed a multimodal dialog system with adaptive
decoders (MAGIC), which can incorporate differ-
ent forms of domain knowledge to generate differ-
ent kinds of responses. Recently, combining with
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Transformer (Vaswani et al., 2017), He et al. (2020)
advanced a multimodal dialog system via capturing
context-aware dependencies of semantic elements
(MATE) for textual response generation.

Most existing multimodal dialog systems learn
intra-modal features separately for later feature con-
catenation or fusion. Different from them, our pro-
posed UniTranSeR can project all the multimodal
features into a unified semantic space to perform
fine-grained feature alignment and intention rea-
soning, which can lead to more accurate responses.
Vision-and-Language Pre-training (VLP) (Lu et al.,
2019; Li et al., 2021) is another line of research
relevant to our work, but different from ours in that
it focuses more on boosting the performance of
representation learning, while the multimodal dia-
log systems focus more on multi-turn multimodal
interaction between users and agents.

3 Methodology

The proposed UniTranSeR mainly comprises three
parts: Unified-modal Transformer Semantic (UTS)
encoder (Sec. 3.1), Feature Alignment and Inten-
tion Reasoning (FAIR) layer (Sec. 3.2), and Hi-
erarchical Transformer Response (HTR) decoder
(Sec. 3.3), as shown in Figure 2. We define
the multimodal dialog generation task as gener-
ating the most likely response sequence Y =
{y1, y2, · · · , yn} and selecting top-k most matched
images, giving multimodal context utterances U =
{u1, u2, . . . , u|U |} and multimodal knowledge base
B as inputs. The probability of a textual response
can be formally defined as,

P (Y |U,B) =

n∏
t=1

P (yt|y1, . . . , yt−1, U,B) (1)

where yt represents the current token decoded by
the HTR decoder.

The UTS encoder is used to project all the mul-
timodal features into a unified vector space for
inter-modal interactions, while the FAIR layer is
designed to align cross-modal hidden features, with
textual features and visual features from previous
UTS encoder as inputs. Similar to MAGIC (Nie
et al., 2019), our HTR decoder is designed to de-
code three types of responses: general responses
that refer to the highly frequent responses (e.g.,
courtesy greetings) in the conversation, such as

“How can I help you?”; intention-aware responses
that refer to the task-oriented utterances, such as

“Found some similar black leather-jackets for you”;
and multimodal responses that refer to the intention-
aware responses with image output. The response
type is determined by a query vector Q from the
FAIR layer, in which an intention classifier is
trained to decide which kind of response should be
given out.

3.1 UTS Encoder

We first use a text embedder and an image embed-
der to extract textual features and visual features,
respectively, and extract informative features from
external knowledge by utilizing both text and image
embedders. Afterwards, we feed these three kinds
of features into a unified Transformer encoder for
unified-modal semantic representation learning.

Text Embedder. To learn textual intra-modal
features, we use a BERT tokenizer to split the in-
put sentence into words and exploit a single trans-
former layer to obtain these words’ initial embed-
dings. Note the self-attention mechanism in Trans-
former is order-less. So, it is necessary to encode
the words’ position as additional inputs. The final
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representation for each word is derived via sum-
ming up its word embedding and position embed-
ding, followed by a layer normalization (LN) layer.

Image Embedder. To learn visual intra-modal
features, we use a contour slicer to cut the input
images into patches and exploit ResNet-50 (He
et al., 2016) to extract these patches’ visual fea-
tures. We notice that people usually focus on
four parts of a clothing image: head, upper body,
lower body, and feet, so we intuitively use an
equal-height mode to slice an image into four
patches, which efficiently solves the problem
of region feature extraction, without using com-
plex target detection networks such as Faster R-
CNN (Ren et al., 2015). Then, we feed the patches
into ResNet-50 to get the patches’ initial embed-
dings. Similarly, we also encode the position
features for each patch via a 4-dimensional vec-
tor [image_index, patch_index,width, height].
Both visual and position features are then fed
through a fully-connected (FC) layer, to be pro-
jected into the same embedding space. The final
visual embedding for each patch is obtained by first
summing up the two FC outputs, and then passing
them through an LN layer.

Knowledge Embedder. To integrate informa-
tive features from external knowledge1 into the
task-oriented dialog, we equip the product knowl-
edge base for each utterance through searching a
fashion item table provided by MMD. We then
treat these searched knowledge entries into the
same triplet format, i.e., (product, match, product),
(product, attribute, value), (product, celebrity, pas-
sion_score). Next, for the text and image elements
of these triples, we use the text and image embed-
ders to obtain their respective representations.

Unified Transformer Encoder. After obtaining
the multimodal initial embeddings, denoted as ht,
hv and hk respectively, we project them into a
unified semantic space to obtain interactive repre-
sentations by using a unified Transformer encoder.
Specifically, in each utterance, the textual features,
visual features and informative features correspond
to l tokens with “[TXT]”, 4 tokens2 with “[IMG]”
and 4 tokens3 with “[KNG]”. In order to integrate

1External knowledge of MMD includes: style tips graph,
attributes table and celebrities histogram, as shown in Figure 1.

2Note when an utterance contains multiple images, it can
be unrolled into a sequence of utterances, each containing a
single image, the same as previous work.

3Including 3 textual features and 1 visual features.

Unified-modal MLM

show some similar [MASK] ...

T-shirts

Unified-modal MPM

show some similar ...T-shirts

Figure 3: Illustration of MLM and MPM.

dialog history of previous rounds, we initialize
the current [CLS]p by using the representation of
the previous round [CLS] p−1. The output hidden
state representations can then be phrased as:

Hp = f
(
[CLS]p−1hpt [TXT]h

p
v[IMG]hpk[KNG]

)
(2)

where f(·) denotes the Transformer encoder, Hp
0

denotes the hidden state representation of the cur-
rent round [CLS]p, which is regarded as the con-
textual semantic vector of the entire utterance in
this round, Hp

1:l denotes the representations for the
text sequence, Hp

l+1:l+4 denotes the representations
for the patch sequence, and Hp

l+5:l+8 denotes the
representations for knowledge entries. Note the su-
perscript p is omitted for simplicity if no confusion
occurs in the following discussion.

To obtain better representations, we introduce
the Masked Language Modeling (MLM) loss and
Masked Patch Modeling (MPM) loss to train them.
We denote the input words as w = {w1, . . . , wl},
the image patches as v = {v1, . . . , v4}, the knowl-
edge elements as k = {k1, . . . , k4}, and the mask
indices asm ∈ NL, where N is the natural numbers
and L is the length of masked tokens. In MLM, we
randomly mask out the input words with a probabil-
ity of 15%, and replace the masked ones wm with a
special token “[MASK]”, as illustrated in Figure 3.
The goal is to predict these masked words by atten-
tively integrating the information of their surround-
ing words w\m, image patches v and knowledge
elements k, by minimizing the following loss:

LMLM(θ) = −E(w,v,k)∼U logPθ
(
wm|w\m, v, k

)
(3)

Similar to MLM, in MPM, we also randomly mask
out the image patches and use zeros tensor to re-
place them, as shown in Figure 3. Unlike textual
words that can be categorized as discrete labels,
visual features are high-dimensional and continu-
ous tensors, thus cannot be supervised via a nega-
tive log-likelihood loss. Following UNITER (Chen
et al., 2020), we built the MPM loss as:

LMPM(θ) = E(w,v,k)∼Ugθ
(
vm|v\m, w, k

)
(4)

where vm are masked image patches and v\m are
remaining patches. Note here gθ is defined as an
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L2 regression function, where

gθ
(
vm|v\m, w, k

)
=

L∑
i=1

∥∥∥fθ (v(i)m )− h
v
(i)
m

∥∥∥2
2

(5)

3.2 The FAIR Layer

To align the cross-modal features for accurate in-
tention classification and knowledge query, we de-
vise a feature alignment and intention reasoning
(FAIR) layer. In feature alignment, we use Image-
Text Matching (ITM) and Word-Patch Alignment4

(WPA) to conduct a two-level alignment. That is,
ITM is used to align text and image in sentence-
level, while WPA is used to align each split word
and each sliced patch in token-level. In intention
reasoning, we fuse f([CLS]) and aligned entities’
hidden state representations to obtain a query vec-
tor Q, which is then used for intention classification
and knowledge query.

3.2.1 Feature Alignment
Image-Text Matching (ITM). In ITM, we use
the output f([CLS]) of the unified Transformer
encoder to compute the match probability of the
sampled pair. Specifically, we feed f([CLS]) into
an FC layer and a sigmoid function to predict a
probability score Pθ(w, v), which is between 0 and
1. During training, we sample a positive or negative
pair (w, v) from the dataset D at each step. The
negative pair is created by randomly replacing the
image or text in the same batch. We employ a
binary cross-entropy loss for optimization:

LITM(θ) =− E(w,v)∼D[y logPθ(w, v)+

(1− y) log (1− Pθ(w, v))]
(6)

where y is a binary truth label. Note here we only
use ITM to train image-text pairs but without con-
sidering the knowledge vector, because it has al-
ready matched the textual sequence when being
searched out.

Word-Patch Alignment (WPA). For more fine-
grained alignment between each word and image
patch, we introduce a WPA technology, which is
used to train the consistency and exclusiveness be-
tween these cross-modal features to prompt align-
ment. We use a WPA loss to supervise the process,

4A modified version of the previous Word-Region Align-
ment (WRA), which can be adapted to the alignment between
textual words and visual patches.

which is defined as:

LWPA(θ) = −
∑l

i=1

∑4

j=1
Tij ·φ (wi, vj) (7)

where φ denotes the cos(·) similarity function,
T ∈ Rl×4 is a ground truth table and each Tij ∈ T
is a binary label 0 or 1. During training, we sample
positive or negative pairs (wi, vj) from each multi-
modal utterance to construct a probability table, as
shown in Figure 2. The above loss function LWPA

is then used to update the parameters θ. During
inference, we continue to fuse aligned entities’ hid-
den state representation and f([CLS]) to obtain a
unified query vector Q, which contains multimodal
query information with entity enhancement, and
will be used for subsequent intention reasoning.

3.2.2 Intention Reasoning
Intention Classify (IC). Given the query vector
Q, this component aims to understand the users’
intention and thereafter determine which type of
response should be generated. To be clear, there
are a total of 17 types labeled in the MMD dataset,
and each user’s utterance is labeled with a specific
intention type. Following MAGIC, we customize
the type of response specifically for each intention,
as shown in Table 1. Subsequently, we leverage an
MLP layer to predict Q’s probability distribution
and select the highest probability to generate a re-
sponse. Besides, a cross-entropy loss is applied to
optimizing the intention classifier:

LIC(θ) =
∑|U |

i=1

∑17

j=1
I∗ij logPθ (Iij | Q) (8)

where Pθ (Iij | Q) denotes the probability of being
predicted as intention Iij , and I∗ij is a ground truth
label. The intention classifier is trained by the loss
function LIC(θ) to update parameter θ, and finally
outputs a reliable intention prediction result I in
the inference phase.

Knowledge Query (KQ). Given the predicted
intention result I , this component first determines
whether knowledge query is required based on Ta-
ble 1. If required, we adopt a key-value mem-
ory mechanism to query all embedded knowledge
triples5. Specifically, these embedded knowledge
triples are divided into key parts and value parts,
which are respectively denoted as vector K and
vector V. Note here K is obtained through a linear

5The triple is in the form of (head, relation, tail)
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Id Intention categories Response type Component Id Intention categories Response type Component
1 greeting general IC 10 ask-attribute intention-aware IC+KQ
2 self-info general IC 11 suited-for intention-aware IC+KQ
3 give-criteria multimodal IC+KQ+MR 12 celebrity intention-aware IC+KQ
4 show-image multimodal IC+KQ+MR 13 filter-results multimodal IC+KQ+MR
5 give-description multimodal IC+KQ+MR 14 sort-results multimodal IC+KQ+MR
6 show-more multimodal IC+KQ+MR 15 switch-synset general IC
7 show-orientation multimodal IC+KQ+MR 16 buy general IC
8 show-similar multimodal IC+KQ+MR 17 exit general IC
9 goes-with intention-aware IC+KQ

Table 1: The categories of user’s intentions, their corresponding response types and required components.

fusion of the embedded head-entities and relations.
The knowledge query process is as follows:

αi = Softmax
(
QT ·Ki

)
(9)

VT =
∑|M |

i=1
αiVi (10)

where αi denotes the attentive probability score for
Ki, |M | is the number of knowledge triples, and
VT is a weighted sum of Vi, which will be used for
textual decoding in an intention-aware response.

Multi-hop Recommend (MR). Given the pre-
dicted intention result I and one-hop query re-
sult VT , this component first needs to determine
whether an image recommendation is required
based on Table 1. If required, we continue to use
VT as a query vector to perform another hop query
over the entire knowledge base, which implies that
the product images will be recommended, if the
key parts of their corresponding triples have high
similarity to VT . Specifically,

βi = Softmax
(
VT
T ·Ki

)
(11)

After deriving βi, we use VI = {qi}, an image
pointer vector, to select images with top βi for
recommendation, where

qi =

{
1, if Vi = 11×512
0, otherwise

(12)

and 11×512 is a column vector with each element
equal to 1, which denotes for the special token
[URL] of the image’s link. Note here 512 is the
embedding size in our unified Transformer encoder.
It is not difficult to see that UniTranSeR can extend
the above one-hop knowledge query to multi-hop
by iteratively performing attention-based key-value
reasoning and ultimately achieve multi-hop image
recommendation.

3.3 HTR Decoder
As mentioned earlier, we used a hierarchy mech-
anism to decode different types of response se-
quences, including general responses, intention-
aware responses and multimodal responses. They

Dataset Statistics Train Valid Test
Dialogs 105,439 22,595 22,595
Proportion 70% 15% 15%

Table 2: Statistics of the MMD dataset.

share the same uni-directional Transformer layer,
but the semantic representations fed to this de-
coder are different. Specifically, for general re-
sponses, we just take the sentence-level represen-
tations f([CLS]) as input. For intention-aware re-
sponses, we take the concatenation of f([CLS])
and attentive vector VT followed by an FC layer
as input. For multimodal responses, we take the
input for the intention-aware responses, as well as
VI , the image pointer vector, as input.

4 Experimental Setup

4.1 Datasets and Metrics

To evaluate the performance of UniTranSeR, we
conduct experiments on the widely-used bench-
mark dataset MMD contributed by Saha et al.
(2018). The MMD dataset consists of over 150k
conversations between users and chatbots in the
retail domain, and each conversation describes a
complete online shopping process. During the con-
versations, the user proposes his/her requirements
in multimodal utterances and the chatbot introduces
different products step by step until they make
a deal. In our experiments, we follow Nie et al.
(2019) to partition MMD. The statistics the dataset
after partition are presented in Table 2, and more
detailed statistics can be found in Appendix A.4.

Following several previous work (Nie et al.,
2019; He et al., 2020; Zhang et al., 2021), we
use Bleu-n, Nist and Recall@k to evaluate our
model over two basic tasks separately, i.e., text
task and image task. For the text task, we employ
the proposed HTR decoder to produce all general
responses and intention-aware responses. As the
length of 20.07% target responses in MMD is less
than 4, such as “Hello!” and “Thanks a lot!”, we
follow Nie et al. (2019) to calculate Bleu-n by
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Methods Text Task Image Task
Bleu-1 Bleu-2 Bleu-3 Bleu-4 Nist Recall@1 Recall@2 Recall@3

Previous
Methods

MHRED (Saha et al., 2018) 32.60 25.14 23.21 20.52 3.0901 0.7980 0.8859 0.9345
KMD (Liao et al., 2018) - - - - - 0.9198 0.9552 0.9755
UMD (Cui et al., 2019) 42.78 33.69 28.06 23.73 - 0.9796 0.9980 0.9990
OAM (Chauhan et al., 2019) 48.30 38.24 32.03 27.42 4.3236 - - -
MAGIC (Nie et al., 2019) 50.71 39.57 33.15 28.57 4.2135 0.9813 0.9927 0.9965
MATE (He et al., 2020) 56.55 47.89 42.48 38.06 - - - -

Ours UniTranSeR 63.27 55.93 51.31 48.07 4.9774 0.9983 0.9995 0.9998
Table 3: Main results. Relevance (higher better) between generated responses and golden responses. Note all our
results are statistically significant with p < 0.05 under t-test.

varying n from 1 to 4. Note higher Bleu and Nist
scores indicate that more n-gram overlaps exist
between the predicted and target responses, and
hence are more favorable. For the image task, we
adopt Recall@k to evaluate the efficacy of image
response, where k is varied from 1 to 3. Note the
image response is correct only if the positive image
is recommended in the top-k product images.

4.2 Baselines

We compare our model with the following state-of-
the-art baselines.

• MHRED (Saha et al., 2018)6 is the first base-
line work to integrate the visual features into a
hierarchical encoder-decoder model for their
constructed MMD dataset.

• KMD (Liao et al., 2018) incorporates the style
tips into the memory augmented neural model
and adopts deep reinforcement learning to
boost the performance.

• UMD (Cui et al., 2019)7 proposes a user
attention-guided multimodal dialog system by
considerring the hierarchical product taxon-
omy and the user’s attention to products.

• OAM (Chauhan et al., 2019) proposes a novel
ordinal and attribute aware attention mecha-
nism for multimodal dialog generation.

• MAGIC (Nie et al., 2019)8 adopts the adap-
tive decoders with intention understanding to
explicitly generate three types of responses.

• MATE (He et al., 2020)9 utilizes a multi-
modal element-level encoder to integrate dia-
log context and leverages a knowledge-aware
two-stage decoder for response generation,
and achieves state-of-the-art performance.

6https://github.com/amritasaha1812/MMD_Code
7https://github.com/ChenTsuei/UMD
8https://acmmultimedia.wixsite.com/magic.
9https://github.com/githwd2016/MATE/tree/dev

4.3 Implementation Details

Following Saha et al. (2018) and Nie et al. (2019),
we utilize two-turn utterances prior to the target
response as the context, and set the vocabulary size
to 26, 422. In our trainings, the batch size is set to
64, learning rate is set to 1e−4 and the max number
of training epoches is set to 1e4. Adam optimizer
is used to optimize all models. All experiments are
conducted with PyTorch. More details about hyper-
parameter settings can be found in Appendix A.1.

5 Evaluation Results

5.1 Response Quality Evaluation

Automatic Evaluation Following KMD, UMD
and MAGIC, we evaluate model performance auto-
matically from two aspects: text response and im-
age response. From the results in Table 3, we can
observe that our model UniTranSeR achieves the
state-of-the-art performance on both tasks. Specifi-
cally, in text task, UniTranSeR exhibits the highest
Bleu-n with varying n from 1 to 4 compared with
other baselines, indicating that our model can gen-
erate responses closer to the golden ones. More-
over, our model outperforms MATE, a recent model
that can capture context-aware dependencies of se-
mantic elements, by 26.3% in Bleu-4 score, which
verifies the effectiveness of our model in learning
cross-modal feature alignment and conduct inten-
tion reasoning to generate more accurate and infor-
mative responses. In image task, an extremely dif-
ficult performance improvement can be observed,
which further verifies the superiority of our model.

Human Evaluation The human evaluation
mainly focuses on four aspects: fluency, relevance,
correctness, and informativeness, which are all im-
portant for task-oriented dialogue systems (Cui
et al., 2019; Nie et al., 2019; He et al., 2020). We
first randomly selected 200 dialogs from the MMD
datasets, and used different models to generate re-
sponses, including UMD, OAM, MAGIC, MATE
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Model Flue. Rele. Corr. Info. Overall
Average

Achieve
Ratio

UMD 2.25 2.84 3.20 2.20 2.62 54.1%
OAM 2.45 2.90 3.38 3.10 2.96 61.2%
MAGIC 2.20 3.15 3.45 3.88 3.17 65.5%
MATE 3.24 3.08 3.56 4.12 3.50 72.3%
UniTranSeR 3.65 4.00 3.92 4.22 3.95 81.6%
Golden 4.95 4.82 4.85 4.75 4.84 100%

Table 4: Human evaluation of responses on fluency
(Flue.), relevance (Rele.), correctness (Corr.), informa-
tiveness (Info.) on randomly selected dialogs.

Methods Bleu-4 Nist
Test ∆ Test ∆

UniTranSeR Complete 48.07 - 4.9774 -
-UTS Encoder -Trans. 42.07 12.48% 4.2620 14.37%
-HTR Decoder -Trans. 45.35 5.66% 4.6291 7.00%

-FA Module -ITM 40.20 16.37% 3.9580 20.48%
-WPA 38.82 19.24% 3.5567 28.54%

-IR Module -IC+KQ 21.65 54.96% 2.2804 54.18%
Table 5: Ablation study on MMD dataset.

and UniTranSeR. Then, we hired human experts to
score the responses and golden responses in blind
review on a scale from 1 to 5, which simulated
a real-life multimodal task-oriented conversation
scenario. By calculating the average score of the
above metrics, we obtained the final manual evalua-
tion results, as shown in Table 4. It can be observed
that UniTranSeR consistently outperforms the other
four models on all metrics, which is in line with
the results of automatic evaluation.

5.2 Ablation Study

In this part, we perform ablation experiments to
evaluate the effectiveness of each component. We
focus on five crucial components and set them ac-
cordingly: 1) w/o UTS Encoder denotes that we use
a BiGRU to replace the unified-modal Transformer
encoder for multimodal encoding; 2) w/o HTR De-
coder denotes that we use a Uni-directional GRU
to replace the hierarchical Transformer decoder for
response generation; 3) w/o ITM denotes that we
remove the LITM loss to make the parameters not
updated; 4) w/o WPA denotes that we remove the
LWPA loss and just regard the sentence-level rep-
resentation f([CLS]) as query vector Q to query
knowledge; 5) w/o IR Module denotes that we re-
move the IC and KQ components and just adopt the
context vector f([CLS]) to generate responses10;
From Table 5, we can observe that removing each
component will result in a performance degrada-
tion. Specifically, w/o IR Module causes 54.96%
drops in Bleu-4 score and 54.18% drops in Nist

10Equivalent to generating general responses, since there is
no knowledge query.

 

(2) I like similar outfits: sunglasses, a short-sleeved 
T-shirt, long jeans and chunky sandals.

(1) Show more suggestions with T-shirt, short jeans,
backpack and flat shoes.

T-shirt short jeans

backpack flat shoes

sunglasses short-sleeved T-shirt

long jeans chunky sandals

Figure 4: Visualization of Feature Alignment.

score, which verifies the great efficacy of intention
classify and knowledge query components. More-
over, w/o WPA, w/o ITM and w/o UTS Encoder
respectively cause 28.54%, 20.48% and 14.37%
drops in Nist score, which further demonstrates the
effectiveness of cross-modal feature alignment and
unified-modal semantic encoding.

5.3 Case Study and Visualization
To better illustrate the advantage of our model and
understand what the feature alignment module has
learned, we visualize several examples of text-to-
image attention, as shown in Figure 4. It can be ob-
served that our model is able to capture fine-grained
entity alignment between different modalities. The
reason may be that: 1) We adopt a unified-modal
Transformer semantic encoder, which enables to
map different modalities of semantic cues into a
same vector space to prompt inter-modality inter-
actions for better representations; 2) Based on the
obtained representations, the WPA technology can
help supervise fine-grained word-patch alignment,
which is beneficial to identifying user’s real inten-
tion and generate more intention-aware responses.

6 Conclusion

In this paper, we propose a Unified Transformer
Semantic Representation framework with feature
alignment and intention reasoning, referred to Uni-
TranSeR. Specifically, we project the multimodal
features into a unified semantic space by utilizing
a Transformer encoder to prompt inter-modal inter-
actions. We further design a feature alignment and
intention reasoning layer to conduct cross-modal
feature alignment and fine-grained intention rea-
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soning, with the objective of generating more accu-
rate and intention-aware responses. Experiments
on the representative MMD dataset demonstrate
the effectiveness and superior performance of our
UniTranSeR model in both automatic and human
evaluation.
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A Appendices

A.1 Hyperparameters Setting
The hyperparameters used for MMD dataset are
shown in Table 6.

Hyperparameter Name MMD
Batch Size 64
Epoches 10,000
Text Embedding Size 512
Image Embedding Size 512
Transformer Embedding Size 512
Learning Rate 0.0001
Dropout Ratio 0.15
Teacher Forcing Ratio 0.9
Mask Length 6
Mask Probability 0.15
Replace Probability 0.15
Vocabulary Size 26,422

Table 6: Hyperparameters we used for MMD.

A.2 Description of Special Tokens
The special tokens used in our experiments are
shown in Table 7.

A.3 Loss Function
Our total loss functionLTotal comprises three parts:
UTS encoder loss LE , FAIR layer loss LF and
HTR decoder loss LD, which can be calculated as
follows:

LTotal = γELE + γFLF + γDLD (13)

where γE , γF and γD are hyperparameters, and are
initialized equally, i.e., 0.33, 0.33 and 0.33. Then,
we tune them on the verification set to obtain a
better weight setting of 0.30, 0.35 and 0.35.

The UTS encoder loss LE contains two parts:
LMLM and LMPM,

LE = LMLM + LMPM (14)

the FAIR layer loss contains three parts: LITM,
LWPA and LIC:

LF = LITM + LWPA + LIC (15)

and the HTR decoder loss is divided into two types:
the textual decoding loss LTXT for text task and
image recommend lossLIMG for image task, which
is consistent with previous work (Nie et al., 2019).

LD = LTXT + LIMG (16)

Token Description
[CLS] Utterances classfication token
[TXT] Text token
[IMG] Image token
[KNG] Knowledge token
[MASK] Mask token
[URL] Image link token
[PAD] Padding token
[UNK] Unknown token

Table 7: Description of special tokens in our experi-
ments.
Dataset Statistics Train Valid Test
Dialogs 105,439 22,595 22,595
Proportion 70% 15% 15%
Questions 2M 446K 445K
Image Responses 904K 194K 193K
Text Responses 1.54M 331K 330K
Avg. Utterances 40 40 40
Avg. Pos. Images 4 4 4
Avg. Neg. Images 4 4 4
Avg. Words in Question 12 12 12
Avg. Words in Response 14 14 14

Table 8: Detailed statistics of the MMD dataset.

A.4 Dateset Statistics
A detailed statistics of the MMD dataset is pre-
sented in Table 8.

A.5 Error Analysis
To better understand the limitations of our model,
we conduct an error analysis on UniTranSeR. We
randomly select 100 responses generated by Uni-
TranSeR that achieve low human evaluation scores
in the test set of MMD. We report several reasons
for the low scores, which can roughly be classified
into four categories. (1) KB information in the
generated responses is incorrect (38%), especially
when the corresponding equipped knowledge base
is large and complex. (2) The sentence structure
of the generated responses is incorrect and there
are serious grammatical and semantic errors (24%).
(3) The model makes incomplete response when
there are multiple intentions contained in users’ ut-
terances (21%). (4) The model selects incorrect
product images since different products have simi-
lar attributes (17%).
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