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Abstract

Information integration from different modal-
ities is an active area of research. Human be-
ings and, in general, biological neural systems
are quite adept at using a multitude of signals
from different sensory perceptive fields to in-
teract with the environment and each other. Re-
cent work in deep fusion models via neural
networks has led to substantial improvements
over unimodal approaches in areas like speech
recognition, emotion recognition and analysis,
captioning and image description. However,
such research has mostly focused on architec-
tural changes allowing for fusion of different
modalities while keeping the model complexity
manageable. Inspired by neuroscientific ideas
about multisensory integration and processing,
we investigate the effect of introducing neu-
ral dependencies in the loss functions. Experi-
ments on multimodal sentiment analysis tasks
with different models show that our approach
provides a consistent performance boost.

1 Introduction

Human beings perceive the world as a unified
whole, not in individual sensory modalities. While
traditionally different sensory models have been
studied in isolation, it has been well recognized
that perception operates via integration of informa-
tion from multiple sensory modalities.

Research in multimodal fusion aims to achieve
a similar goal in artificial models: extract and in-
tegrate all information from different input modal-
ities. For example, if someone is sarcastic, the
facial expression and voice intonation provide in-
formation not directly decipherable from the ut-
tered words. If a model only looks at the text of
the interaction, then it is unlikely to classify this
interaction currently. Current research in deep mul-
timodal fusion primarily deals with architectural
improvements to create complex feature-rich, yet
efficient representations (Zadeh et al., 2017; Liu
et al., 2018; Hazarika et al., 2020). The hope is

that more complex models will be able to integrate
the complementary information from different uni-
modal representations into a unified common rep-
resentation. Learning such unified representations,
however, is a challenging task. Different modalities
can present the same information in radically dif-
ferent ways with emphasis on different aspects of
the content. These heterogeneities across different
modalities mean that learning multimodal represen-
tations must deal with feature shifts, distributional
effects, nuisance variation and a variety of related
challenges (Baltrušaitis et al., 2018).

Inspiring from work in multisensory neural pro-
cessing, we define a loss regularizer that we call
synergy to train these models. Synergy has a spe-
cific meaning in information-theoretic literature
(Cover, 1999). The synergy between random vari-
ables X and Y refers to the unique mutual infor-
mation that X provides about Y . While our loss
function is not the same as information theoretic
synergy, the intuition behind our proposed loss is
the same as actual synergy; to try to maximize de-
pendencies between the representations. As our
method uses neural networks or kernel-based meth-
ods to capture distributional divergences, we expect
that this method will allow our model to capture
complex dependencies which cannot be captured
via techniques like subspace alignment.

We test our proposed training loss on dif-
ferent multimodal fusion architectures including
LFN(Zadeh et al., 2017), MFN (Zadeh et al.,
2018a), MAGBERT(Rahman et al., 2020) and
MIM (Han et al., 2021). Our experiments show
that training with synergy maximization improves
the result by a significant margin.

2 Preliminaries

In this section, we give an overview of the basic
ideas relevant to this work; primarily mutual in-
formation, and existing work on deep multimodal
fusion and neural synergy.
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2.1 Multimodal Fusion

The problem in the most abstract terms is a super-
vised learning problem. We are provided with a
dataset of N observations D = (xi, yi)

N
i=1. All xi

come from a space X and yi from Y . We are pro-
vided a loss function L : Y × Y → R which is the
task loss. Our goal is to learn a model Fθ : X → Y
such that the total loss L =

∑
i L(F(xi), yi) is

minimized. In multimodal fusion the space of
inputs X naturally decomposes into K different
modalities X =

∏K
j=1Xj . We use Xj to repre-

sent random variables which form the individual
modality specific components of the input random
variable X .

A common way to learn such a multimodal func-
tion is to decompose it into two components: a) an
embedding component E which fuses information
into a high dimensional vector in Rd and b) a pre-
dictive component P which maps vector from Rd

to Y . Furthermore since the different modalities
are often no directly compatible with each other
(for eg text and image), E itself is decomposed into
a) modality specific readers FiXi → Rdi which are
specifically designed for each individual modality
Xi and b) a fusion component F :

∏
iRdi → Rd

which fuses information from eah individual modal-
ity embedding. F is provided with uni-modal rep-
resentations of the inputs Xi = (X1, X2, . . . XK)
obtained through embedding networks fi. F has
to retain both unimodal dependencies (i.e relations
between features that span only one modality) and
multi-modal dependency (i.e relationships between
features across multiple modalities).

This decomposition has two advantages a) the
individual modality reader can be pre-trained on
the task at hand or even from a larger dataset (for
example BERT (Devlin et al., 2018) for language,
Resnet (He et al., 2016) for images ) which allows
us to leverage wider modality specific information
and b) often but not always each individual modal-
ity is in principle enough to correctly predict the
output

2.2 Distributional Divergences

Divergence is a functional which characterizes the
distance or "discrepancy" between two probabil-
ity distributions on the same space. Divergence
however is a different notion than distance because
divergences are not necessarily symmetric. A com-
mon measure of discrepancy between two distribu-
tions is the Kullback-Liebler divergence (KL diver-

gence) (Cover, 1999). The KL divergence of the
density p relative to the density q is given by

d(p; q) = Ex∼p

[
log

p(x)

q(x)

]
This divergence is often also used implicitly for
estimating dependence between two random vari-
ables. Mutual information (MI) is a measures of
dependence between two random variable X and
Y capable of incorporating multiple types of rela-
tionships between them. If we have variables X
and Y , then the mutual information between them
is given by

I(X;Y ) = KL [pXY (x, y)∥pX(x)pY (y)]

where pXY is the joint probability density of the
pair (X,Y ), and pX , pY are the marginal probabil-
ity densities of X,Y respectively.

Estimation of Divergence Estimating entropic
differences between two distributions purely from
their samples is a difficult task (Kinney and Atwal,
2014). As such there have been multiple types of
divergences proposed over the years (Gretton et al.,
2005; Studenỳ and Vejnarová, 1998). Moreover
in recent years, several estimators have been pro-
posed for entropic divergences based on variational
methods (Belghazi et al., 2018; Hjelm et al., 2018;
Amjad and Geiger, 2019). These estimators use
flexible neural networks as a contrast function and
optimize a variational bound. We describe two
such methods which are used in our experiments

• Neural Mutual Information (Belghazi et al.,
2018) is a variational method to estimate
the KL divergence between two distribu-
tions. It is estimated via gradient ascent on
the Donsker-Varadhan bound (Donsker and
Varadhan, 1985). The Donsker Varadhan
bound shows that:

KL(P,Q) ≥ sup
g

EX∼P [g(X)]

− EX∼Q[exp
g(X)]

The Young-Fenchel duality shows that the gap
is zero; i.e. at the optima the right side of
the above expression matches the KL diver-
gence. Instead of a global maximization over
all functions one can instead use a family of
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functions parameterized via neural networks.
The bound obtained thus is necessarily lower
than the actual KL, but now one can use gra-
dient descent to optimize the network.

• Maximum Mean Discrepancy or MMD
(Gretton et al., 2012) is a kernel based es-
timator of divergence between distributions.
Mathematically the MMD between two distri-
butions P and Q is given by the norm of the
difference of the mean embeddings of P and
Q in the RKHS space of the chosen kernel.
Further extensions to MMD have been devel-
oped based on neural networks which provide
non-universal but more powerful kernel based
tests (Liu et al., 2020).

MMD(P,Q) = ||µϕ
P − µϕ

Q||

The above formula can be estimated purely
via samples by using the Kernel matrix
K(xi, xj) = ϕ(xi)

Tϕ(xj) where ϕ repre-
sents the corresponding RKHS embedding
function The final monte carlo estimator is
given by:

MMD(P,Q) =
∑

pi,pj∼P

K(pi, pj)

+
∑

qi,qj∼Q

K(qi, qj)

−
∑

pi,qj∼P,Q

2K(pi, qj)

2.3 Kurtosis
Kurtosis is a statistical measure which is used to
categorize the behavior of the distribution tails. It is
more sensitive to rare events and hence is used for
distributions with "fatter tails". For univariate vari-
ables, kurtosis is the standardized fourth moment
i.e

E[(X − µ)4]

(E[(X − µ)2])2

It is often used to measure deviations from normal-
ity. Mardia (1970) defined a measure of multivari-
ate kurtosis as follows:

E[((X − µ])TΣ−1(X − µ))2]

where X is a p × 1 dimensional random vector
and µ,Σ are the mean and covariance matrix of
X respectively. Multivariate cokurtosis between

random variables is also sometimes used as a mea-
sure of dependence between them. It is one of the
metrics used by Rosas et al. (2019); Barrett and
Seth (2011) to analyze neural complexity and brain
functional connectivity.

2.4 Other works on multimodal fusion

Earlier work on neural fusion models primarily
relied on an early fusion of features. These ap-
proaches simply concatenated inputs of different
modalities and used simple models to combine
requisite information. Despite their simplicity,
such models often perform well and are robust
(Narayanan et al., 2019). More modern methods,
however, deploy fancier methods to induce informa-
tion aggregation. One set of models used gradient
descent to try to force different feature networks
to learn about each other and embed information
jointly. This process can be enhanced by adding
specific forms of regularization such as recon-
struction loss (Mai et al., 2020), or auxiliary task
loss (Chen et al., 2017; Yu et al., 2021). Another
family of models uses linear algebra based methods
to combine unimodal representations. Methods like
those of Liu et al. (2018); Chen and Mitra (2018);
Chachlakis et al. (2019) try to fuse information via
tensor decomposition of high dimensional prod-
uct tensors of individual unimodal representations.
Other methods use subspace alignment (Lee et al.,
2019; Yu et al., 2012) or correlation loss (Sun et al.,
2020; Hazarika et al., 2020) to merge different rep-
resentations. However, in some form or other, these
models rely primarily on architectural changes. We,
on the other hand, do not want to focus on such
changes. Instead, our goal was to use insights from
neuroscience to provide a methodology that can
be deployed atop any standard multimodal fusion
model.

3 Dependency Coding in Multisensory
Processing

A common and vital feature of nervous systems
is the integration of information arriving simul-
taneously from multiple sensory pathways. The
underlying neural structures have been found to be
related in both vertebrates and invertebrates. The
classic understanding of this process is that differ-
ent sensory modalities are processed individually
and then combined in various multimodal conver-
gence zones, including cortical and subcortical re-
gions (Ghazanfar and Schroeder, 2006), as well as
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Figure 1: A general multimodal fusion Architecture. We depict in colour the additional components proposed in
this work viz the proposed cortical network (C-Net) and its connection to individual layers

multimodal association areas (Rauschecker et al.,
1995). Studies in the superior colliculus (Meredith
et al., 1987) showed that multiple sensory modal-
ities are processed in this brain stem region, with
some neurons being exclusively unimodal and oth-
ers being multimodal. Hypotheses of encoding of
multimodal information include changes in neu-
ronal firing rates (Pennartz, 2009) or a combinato-
rial code in population of neurons (Osborne et al.,
2008; Rohe and Noppeney, 2016).

Evidence shows that while multimodal represen-
tations are distinct from unimodal ones, there is
sufficient overlap between the set of neurons that
process different sensory modalities. For example,
Follmann et al. (2018) show that even in a simple
crustacean organism, more than half the neurons in
the commissural ganglion are multimodal. More-
over, they show that in 30% of these multimodal
neurons, responses to one modality were predictive
of responses to other modalities. Both these facts
suggest that the neural representations across dif-
ferent modalities have high information about each
other.

Studies of multisensory collicular neurons sug-
gest that their crossmodal receptive fields (RF) of-
ten overlap (Spence et al., 2004). This pattern is
also found in multisensory neurons present in other
brain regions. As such, a spatiotemporal hypothe-
sis of multisensory integration has been suggested:
superadditive multimodal processing is observed
when information from different modalities comes
from spatiotemporally overlapping receptive fields

(Recanzone, 2003; Wallace et al., 2004; Stanford
et al., 2005). Since multimodal cortical neurons are
generally downstream of modality-specific regions,
the information about RF overlap is present in their
input unimodal neural representations. Moreover,
the sensory-specific nuclei of the thalamus have
been shown to feed multisensory information to
primary sensory specific-cortices (Kayser et al.,
2008). This suggests the existence of explicit feed-
back connection from the multimodal representa-
tions to unimodal representations.

Cortical and subcortical networks often contain
clusters of strongly connected neurons. Function-
ally the existence of such cliques imply highly in-
tegrated pyramidal cells that handle a dispropor-
tionately large amount of traffic (Harriger et al.,
2012). In cortical circuits, around 20% of the neu-
rons account for 80% of the information propa-
gation (Nigam et al., 2016; Van Den Heuvel and
Sporns, 2011). Timme et al. (2016); Faber et al.
(2019) demonstrate that multimodal computation
tends to concentrate in such local cortical clusters.
They also found significantly lower kurtosis in such
clusters and that dependence between oscillations
was proportional to the amount of information flow.
Sherrill et al. (2020) show that highly kurtotic neu-
ral activity positively related when multiple exter-
nal stimuli are provided. Thus, kurtosis in neural fir-
ings is a representation of the dependence between
inputs. This suggests that when input kurtosis is
high there is more significant cognitive processing
and information flow required to extract relevant
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information.

4 Model

For our purposes we will limit ourselves to talk
about tasks similar to the MOSI dataset. In this
setting the input has three modalities viz audio (a),
visual (v), and textual language (l). The fusion
problem involves learning a representation Mf

that combined the uni-modal representations of the
inputs Xa,v,l = (Xa, Xv, Xl).

4.1 Dependency Coding and C-Network

We modify the base neural architecture to incor-
porate the global structure explained in the last
section. We propose a way to incorporate such
changes without major architectural change into
current baseline designs. The key component is
the additional network (colored in red) in Figure 1
which we shall call as C-network. The C-network
takes as input the individual unimodal representa-
tions and the fused representation and attempts to
force a specific form of dependency as explained
below.

C-Network The purpose of the C-Network is
to try to enforce on the model the three primary
characteristics of real neural circuits explained in
the earlier section. We list them here and describe
how we attempt to incorporate those characteristics
in a more standard model.

• Individual uni-modal representations should
be predictive of other uni-modal representa-
tions. We try to achieve this by simply predict-
ing on modality representation by the combi-
nation of others. Qi refers to a modality as-
sociated neural network which attempts to re-
construct the unimodal representation Zi from
the other representations Z−i. The error be-
tween the two is penalized in the form of a
reconstruction loss between modalities i.e. we
add a penalty of the form:

LL2 = ||Qi(Z−i)− Zi||2

• Multimodal representation should be feedback
into input neurons to align and capture infor-
mation between them. Providing feedback
during inference time from the multimodal
representation would be ideal. However this
would make the overall prediction recurrent,
something fundamentally different from most

current architectures. Moreover given current
high dimensional encoders; doing such pro-
cessing would be extremely resource inten-
sive. As such we aim to achieve this feedback
by treating the multimodal representation and
unimodal representation spaces as different
domains and adding a loss of the form:

Ld = d(p(gi(Zi)), p(gi(Z)))

The purpose of the aforementioned loss is to
align the distributions of the features in the
same embedding space of the mapping from
the multimodal and unimodal domains. d rep-
resents a measure that captures the discrep-
ancy between the distributions, gi refers to
neural networks for projecting and aligning
the combined representation Z with unimodal
representations Zi, and p denotes the empiri-
cal/sample distribution of the corresponding
features. In our experiments, for d we use the
MMD discrepancy (Gretton et al., 2012) and
KL divergence as the metric; though other di-
vergences can also be used. Note that this loss
by itself can be minimized by forcing the g
functions to ignore their inputs. We prevent
this by first doing a random projection of the
features1 into a smaller dimensional vector
space and then apply an invertible neural net-
work. Such alignment losses have been used
in works on domain adaptation (Motiian et al.,
2017) under the name semantic loss or con-
fusion loss. We refer the readers to Motiian
et al. (2017); Li et al. (2019) for more details
on semantic losses.

Note that instead of aligning the features via
some kind of embedding based distributional
distance, one could try to maximize mutual
information between the embeddings as well.
We experiment with one such model in our
experiment and as the results show, found it
to be slightly worse than using MMD based
alignment loss.

• Individual unimodal and multimodal represen-
tations should have low kurtosis. To ensure
this condition we estimate the multivariate kur-
tosis by plugging in standard estimators for
the mean and covariates. The final kurtosis
estimator used is given by:

1similar to Johnson Lindenstrauss projections (Landweber
et al., 2016)
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κ =
1

n

n∑
i

[((zi − z̄)TS−1(zi − z̄))2]

where zi here are samples from the Z features
in the model (where Z can be unimodal
features like Za or fused final feature Z). z̄

refers to the empirical mean feature z̄ =

n∑
i
zi

n
and S is the empirical covariance matrix

S =

n∑
i
(zi−z̄)(zi−z̄)T

n .

An important thing to note here is that high
dimensional kurtosis values can be highly sen-
sitive to outliers. As such we regularize the
estimate by doing three things: a) We cap the
max norm of the difference vectors during
estimation. b) We scale up the diagonal of
the covariance matrix to reduce its condition
number c) Finally the covariance matrix itself
is computed via a decaying moving average
over a window of multiple batches to produce
smoother estimates before the inversion oper-
ation.

During training we add the regularization penal-
ties described earlier along with the usual max-
imum likelihood based objective. The different
loss components are weighted with seperate hyper-
parameters. Note that the C-Network is purely a
training time addition, and is not invoked during
inference. Hence the additional network invoke
zero additional time during testing. An algorithmic
description of the full method is presented in the
Appendix D

5 Experiments

5.1 Datasets
We empirically evaluate our methods on two com-
monly used datastes for multimodal training viz
CMU-MOSI and CMU-MOSEI.

CMU-MOSI (Wöllmer et al., 2013) is sentiment
prediction taks on a set of short youtube video
clips. CMU-MOSEI (Zadeh et al., 2018b) is a
similar dataset consisting of around 23k review
videos taken from YouTube. The output in both
cases is a sentiment score in [−3, 3]. For each
dataset, three modalities are available; audio, visual
frames, and language. Preliminary features on each
modality is obtained as follows:

• Audio: Features are extracted from the sund
recordings using the method of Degottex et al.
(2014).

• Language: The video transcripts are converted
to word embeddings using BERT (Devlin
et al., 2018) or Glove (Pennington et al., 2014)

• Visual: Visual features are extracted using
FACET (iMotion) which provides facial ac-
tion units vectors.

5.2 Models
We run our experiments with the following archi-
tectures:

• FLSTM (Narayanan et al., 2019) is the base-
line early fusion LSTM architecture used by
Zadeh et al. (2017)

• Tensor Fusion Network or TFN (Zadeh et al.,
2017) combined information via pooling of
a high dimensional tensor representation of
multimodal features. More specifically it does
a multimodal Hadamard product of the ag-
gregated features with RNN based language
features.

• Memory Fusion Network or MFN (Zadeh
et al., 2018a) incorporate gated memory-units
to store multiview representations. It then per-
forms an attention augmented readout over
the memory units to combine information into
a single representation.

• MAGBERT (Rahman et al., 2020) is a trans-
former based architecture that uses the Wang
gate (Wang et al., 2019). The multimodal
information is send to the multimodal gate
to compute modified embeddings which are
passed to a BERT (Devlin et al., 2018) based
model. This model achieves state-of the-art
results on multimodal sentiment benchmark
MOSI (Wöllmer et al., 2013) and MOSEI
(Zadeh et al., 2018c).

• MIM (Han et al., 2021) is a recent near SOTA
architecture. It combined BERT based text
embeddings with modality specific visual and
acoustic LSTMs (Hazarika et al., 2020).

• Recently Colombo et al. (2021) conducted
experiments introducing a information regu-
larizer on existing architectures. The main
differences between the our method and their
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method are a) our method focuses on synergy
terms whereas their proposal is optimizing
joint mutual information between different
unimodal representations; and b) they experi-
ment with variational measures of information.
We replicate our experiments with their best
performing model and present the results with
the label IWas.

Split CMU-MOSI CMU-MOSEI
Train 1284 16326

Validation 229 1871
Test 686 4659
All 2199 22856

Table 1: Dataset summary

5.3 Evaluation

We report both the Mean Absolute Error (MAE)
and the correlation of model predictions with true
labels. In the literature, the regression task is also
turned into a binary classification task for polarity
prediction. We follow Rahman et al. (2020) Accu-
racy Acc7 denotes accuracy on 7 classes and Acc2
the binary accuracy) of our best performing models.
We also report the Mean Absolute Error (MAE) and
the correlation of model intensity predictions with
true values.

5.4 Results

We present and discuss here the results obtained in
our experiments. Results on MOSI are presented
in Table 2 while Table 3 present results for MOSEI
dataset. We trained each of the models with the
standard cross entropy loss (labeled as NLL); and
with cross entropy loss regularized with the syn-
ergy penalty discussed earlier. On both datasets,
regularization via synergy leads to performance im-
provement. For example, a MFN on CMU-MOSI
trained with MMD based synergy (NLL+SMMD)
outperforms by more than 4 points on Acc7 than
standard likelihood training. On CMU-MOSEI too
the gains are significant when trained with synergy
regularization. In general training via MMD syn-
ergy tends to be better than via KL synergy. This
might be the inherent behavior of the MMD depen-
dency which is always well defined; or it might
reflect the hardness of information estimation. For
example it is well known that good bounds on stan-
dard mutual information are difficult to obtain (Kin-

Acc7 Acc2 MAE CORR
FLSTM

NLL 31.2 75.9 1.01 0.64
NLL+SKL 31.6 76.3 1.01 0.66
NLL+SMMD 33.6 76.4 0.98 0.66

MFN
NLL 31.3 76.6 1.01 0.62
NLL+SKL 32.5 76.6 0.94 0.65
NLL+SMMD 35.9 77.4 0.95 0.66
NLL+IWas 35.1 77.1 0.97 0.63

LFN
NLL 31.9 76.9 1.01 0.64
NLL+SKL 32.6 77.6 0.97 0.64
NLL+SMMD 35.4 77.9 0.97 0.67
NLL+IWas 32.4 77.6 0.97 0.64

MAGBERT
NLL 40.2 83.7 0.79 0.80
NLL+SKL 41.9 84.1 0.76 0.82
NLL+SMMD 41.9 85.6 0.76 0.82
NLL+IWas 41.8 84.2 0.76 0.82

MIM
NLL 46.3 83.7 0.77 0.76
NLL+SKL 46.4 83.7 0.74 0.75
NLL+SMMD 46.7 84.2 0.72 0.79
NLL+IWas 46.6 84.2 0.75 0.79

Table 2: Results on sentiment analysis on CMU-MOSI.
Acc7 denotes accuracy on 7 classes and Acc2 the binary
accuracy. MAE denotes the Mean Absolute Error and
Corr is the Pearson correlation

ney and Atwal, 2014); while MMD estimator are
asymptotically consistent (Gretton et al., 2012)

5.5 Modality Dropout

Zadeh et al. (2018a); Rahman et al. (2020) have
demonstrated that while multimodal fusion does
improve performance, the primary modality con-
tinues to be textual data. Hence in this experi-
ment, we want to assess the effect of corruptions
of text modality in our model. Following Colombo
et al. (2021) we experiment with dropping the text
modality either by itself (T) or with one of the other
modalities (T+V or T+A). The results are presented
in Table 4

Since the C-Networks forces a reconstruction
and distributional divergence loss between the uni-
modal and multimodal representations, one would
expect that models trained using our approach
would be more resistant to modality errors. This
is borne out in the experiments, where we see that
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Acc7 Acc2 MAE CORR
FLSTM

NLL 44.1 75.1 0.72 0.52
NLL+SKL 44.4 75.6 0.70 0.52
NLL+SMMD 45.3 76.0 0.68 0.54

MFN
NLL 44.3 74.7 0.72 0.52
NLL+SKL 44.3 74.8 0.72 0.56
NLL+SMMD 46.2 75.1 0.69 0.56
NLL+IWas 45.1 75.2 0.72 0.54

LFN
NLL 45.2 74.3 0.70 0.54
NLL+SKL 46.1 75.3 0.69 0.56
NLL+SMMD 46.3 75.3 0.67 0.56
NLL+IWas 45.9 75.1 0.69 0.55

MAGBERT
NLL 46.9 83.9 0.59 0.77
NLL+SKL 47.4 85.3 0.59 0.79
NLL+SMMD 47.9 85.4 0.59 0.79
NLL+IWas 47.2 85.0 0.59 0.78

MIM
NLL 53.3 79.6 0.54 0.75
NLL+SKL 53.5 80.3 0.54 0.77
NLL+SMMD 54.3 82.4 0.52 0.77
NLL+IWas 53.5 82.1 0.53 0.77

Table 3: Results on sentiment analysis on CMU-MOSEI.
Acc7 denotes accuracy on 7 classes and Acc2 the binary
accuracy. MAE denotes the Mean Absolute Error and
Corr is the Pearson correlation

training with synergy based loss has better perfor-
mance than training with simple max-likelihood.

Note that the C-network itself is not active at
test time; instead this effect is due to the align-
ment forced by the network during training. An
interesting future direction would be to explicitly
use the C-network outputs to ameliorate modality
corruption.

Drop Modality None T T+V T+A
NLL 83.7 36.4 35.1 34.4
NLL+SMMD 85.6 48.3 46.7 45.9
NLL+SKL 84.1 46.8 45.9 45.5

Table 4: Modality corruptions results on sentiment anal-
ysis on CMU-MOSI. The results are the binary accura-
cies Acccorrupt

2

5.6 Ablation Study

Our overall proposal has multiple components viz
a) the reconstruction loss (also called LL2 loss); b)
the distribution alignment loss (which we call Ld

Loss); and c) the kurtosis loss Lκ. As such we ran
experiments to assess the importance of each com-
ponent. Specifically we trained the model without
each of the three loss components prescribed in our
method, and assessed the test performance. The
results are presented in Appendix A.

First we note the performance improvement by
incorporating kurtosis in the regularization which
shows the efficacy of this term. Second one can
also note that removing any individual component
leads to reduction in performance, suggesting all
components act together in a synergistic way to
improve the results.

6 Concluding Remarks

In this paper, we used the idea of regularizing via a
term which we label neural synergy maximization.
This regularizer is inspired by neural cicruit design
in the vertebral cortex. We experimented with dif-
ferent measures of synergy based on discrepancy
measures such as KL and MMD. We also show that
training with synergy can produce benefit on even
SOTA architectures.

Limitations The most prominent limitation of
this approach, is that it is inherently limited by the
architecture with which it is being used. While our
additional loss did improve performance, one can
observe that the final performance is dependent on
the initial performance. For example, while we
tested on four architectures, the final performance
of each model was in the same range as the initial
performance. An entirely different architecture
can possibly improve over our results. On the other
hand our approach is model agnostic and applicable
on any model trained only via max-likelihood.
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A Ablation Study Results

’
In this section we run ablation experiments to

assess the individual impact of each component
of the overall synergy loss. For this purpose we
use the MIM model on the MOSEI dataset, and
the divergence type was chosen to be MMD. We
activated each of the three loss components viz. (
LL2, Ld/MMD, Lκ ), trained the MIM model, and
report the test accuracies on all the metrics.

Acc7 Acc2 MAE CORR
MIM

MLE 53.3 79.6 0.54 0.75
+ LL2 53.6 80.0 0.55 0.77
+ Ld/MMD 53.1 80.3 0.57 0.73
+ Lκ 53.9 79.9 0.54 0.76
+ SMMD 54.3 82.4 0.52 0.77

Table 5: Ablation results on sentiment analysis on CMU-
MOSEI. Acc7 denotes accuracy on 7 classes and Acc2
the binary accuracy. MAE denotes the Mean Absolute
Error and Corr is the Pearson correlation

We note the performance improvement caused
by adding the Kurtosis loss. We also note that
directly adding the distributional divergence while
mildly helpful can also degrade the performance.
Each component overall has some value to add over
others. We leave the exact nature of interactions
between these terms for future work.

B Additional Experiments

We present results on the UR_FUNNY dataset
which is another common affective sentiment pre-
diction dataset. The model is evaluated on accuracy
so higher numbers are better.

NLL NLL+SKL NLL+SMMD

MISA 68.6 68.9 69.6
MFN 65.2 66.5 67.2
TFN 64.7 67.3 67.8

Table 6: Results on sentiment analysis on UR-FUNNY.
The performance is evaluated in terms of accuracy

C Training details

We perform a grid-search for the best set of hyper-
parameters: batch size in {32, 64}, learning rate
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in {1e-2, 5e-3,1e-3, 5e-4, 1e-4}. We did gradi-
ent clipping with clip value of 5. Model selection
was done following (Zadeh et al., 2017), by select-
ing the model with the best MAE on validation
data. Optimization was done using the AdamW
(Loshchilov and Hutter, 2018) optimizer. For both
the Q and the g function we used a four layer MLP
with LeakyRelu activation. The dataset statistics
are given in Table 1. All our experiments were
conducted on Nvidia Titan X GPUs.

D Algorithm

As a reminder the input the fusion problem in-
volves learning a representation Mf that com-
bined the uni-modal representations Zi of the input
X = (X1, X2, .., Xk) where Xi are individual in-
put modalities. We shall denote observations as
Xj and the fused representations as Zj . Qi, gi are
multi-layer perceptrons.

Dataset D = {(Xi), Y }, decay α, learning rates ηMI , ηtask,
hyper-parameters weights γL2, γd, γκ Prediction Ŷ

for each training epoch do
for minibatch B = {(Xj

i , Y
j)}Nj=1 sampled from D do

Encode Xj
i to Zj

i

Compute fused vector Zj from Zj
i

Compute LL2 =
∑

j ||Qi(Z
j
−i)− Zj

i ||
2

Compute Ld = d(p(gi(Z
j
i )), p(gi(Z

j))) (d is a distribution
divergence like MMD, and p refers just to the empirical
distribution of these vectors)

Compute Zj
diff = clip(Zj − Z̄)

Update S = α ∗ S +

N∑
j
(Z

j
diff

)(Z
j
diff

)T

N

Compute Lκ =
1

N

∑N
j [((Zj − Z̄)T (S+diag(c))−1(Zj −

Z̄))2]
Compute Lreg = γL2LL2 + γdLd + γκLκ

Update C − Network parameters : θC ← θC −
ηMI∇θCLreg

Compute predictions Ŷ j

Compute Ltask (cross entropy, least square) from Ŷ j , Y j

Update all parameters in the model except θC : θ ← θ −
ηtask∇θ[Ltask + βLreg]]
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