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Abstract

Tables store rich numerical data, but numerical
reasoning over tables is still a challenge. In this
paper, we find that the spreadsheet formula, a
commonly used language to perform computa-
tions on numerical values in spreadsheets, is
valuable supervision for numerical reasoning
in tables. Considering large amounts of
spreadsheets available on the web, we propose
FORTAP , the first exploration to leverage
spreadsheet formulas for table pretraining.
Two novel self-supervised pretraining objec-
tives are derived from formulas, numerical
reference prediction (NRP) and numerical
calculation prediction (NCP). While our
proposed objectives are generic for encoders,
to better capture spreadsheet table layouts and
structures, we build FORTAP upon TUTA,
the first transformer-based method for spread-
sheet&web table pretraining with tree attention.
FORTAP outperforms state-of-the-art methods
by large margins on three representative
datasets of formula prediction, question an-
swering, and cell type classification, showing
the great potential of leveraging formulas for
table pretraining. The code will be released at
https://github.com/microsoft/TUTA_

table_understanding.

1 Introduction

Tables store rich numerical data, so a wide range
of tasks require numerical reasoning over (semi-
)structured tabular context, such as question an-
swering over tables (Chen et al., 2021b; Zhu et al.,
2021; Cheng et al., 2021), table-to-text (Suadaa
et al., 2021; Moosavi et al., 2021; Cheng et al.,
2021), spreadsheet formula prediction (Chen et al.,
2021a), and table structure understanding (Koci et
al., 2019). Take Table#2 in Figure 1 as an example,
both suggesting the formula (C4-B4)/B4 for cell
D4 and answering “0.61%” to the question require

∗The first two authors contribute equally.
†Corresponding authors.

=(D3 – C3) / C3

% Increase references corresponding numerical values in 2016 and 2021.
% Increase involves compositional calculations of subtraction and division.

Large scale pretraining

FORTAP: FORmula-driven TAble Pretraining

Formula suggestion:

• D4=(C4-B4)/B4

Table#1 with formulae for self-supervised pretraining

Table#2 with/without formula

Table structure understanding:
• Matrix table with a derived %Change

column and a derived Country row.

Table-to-text:

• Belgium's population increased by 
0.61% in 2020 compared to 2019. 

Downstream task finetuning

Question answering:

• What percentage of Belgium's 
population has increased in 2020
compared to 2019?      -- 0.61%

Figure 1: It’s desirable to learn numerical reasoning via
formula pretraining and generalize it to various tasks.

numerical reasoning capabilities of (1) understand-
ing the contextual meaning of individual numerical
cells, e.g., “11.49” at B4 and “11.56” at C4 are
“population”s of “Belgium” in “2019” and “2020”;
(2) inferring calculational relationships of numeri-
cal cells, e.g., percentage change from “11.49” to
“11.56”. As Figure 1 shows, same capabilities also
benefit table structure recognition and table-to-text.
So it’s a fundamental need to empower table model-
ing with stronger numerical reasoning capabilities.

However, it is challenging to endow a tabular
model with robust numerical reasoning capabili-
ties. First, understanding a local numerical cell
needs dimension inference (Chambers and Erwig,
2008), unit inference (Shbita et al., 2019), and in-
dex inference (Dong et al., 2019a), e.g., “popula-
tion” (dimension), “million” (unit), “2020” (index),
and “Belgium” (index) jointly describe “11.56” in
Figure 1. It is non-trivial concerning the great flex-
ibility of table semantic structures (Wang et al.,
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2021b). Second, calculational relationships among
two or more numerical cells are various and of-
ten compositional, e.g., “F1 Score = 2 × (Recall
× Precision) / (Recall + Precision)” in machine
learning papers and “Profit Margin = Net Income /
Sales” in financial reports. To make matters more
challenging, human labeling for numerical reason-
ing in relevant tasks (Chen et al., 2020; Suadaa et
al., 2021; Koci et al., 2019) is labor-intensive and
error-prone, largely restricting the generalization
ability of large models that are rather data-hungry.

Recently, table pretraining on large amount of
unlabeled tables shows promising results on ta-
ble understanding and reasoning. Self-supervised
objectives are derived from tables and text such
as Masked Language Models (MLM) (Herzig
et al., 2020), masked column prediction (Yin et
al., 2020), masked entity recovery (Deng et al.,
2020b), cell cloze and corrupt detection (Wang et
al., 2021b; Tang et al., 2020; Iida et al., 2021),
table-text matching and alignment (Wang et al.,
2021a,b; Deng et al., 2020a). However, numerical
and calculational relationships of cells lack suffi-
cient attention. Then (Yoran et al., 2021) and (Liu
et al., 2021; Yu et al., 2020) synthesize questions
and SQL queries, respectively, as training corpus
for reasoning purpose, but SQL is only applicable
to database-like relational tables, and importantly,
it’s challenging to ensure synthesized questions and
SQLs be realistic, meaningful, and diverse.

Gladly, tens of millions of real spreadsheet for-
mulas are publicly available on the web and can
be valuable for numerical reasoning in tables. The
spreadsheet formula is an expressive yet simple lan-
guage consisting of operators (e.g., +,/,%), func-
tions (e.g., SUM,MAX,COUNT), referenced cells
(e.g., B4), and constant values (e.g., 100) (Aival-
oglou et al., 2015). Since writing the formula does
not require formal programming education, it’s
widely used by non-programmers such as business
professionals or other kinds of domain specialists
whose jobs involve computational tasks. So spread-
sheet formulas cover real numerical calculations in
a great variety of domains.

To this end, we propose FORmula-driven TA-
ble Pretraining (FORTAP ) for numerical reasoning.
One should master two basic concepts to use the
formula language: cells as variables and opera-
tors/functions as relationships between variables.
So we explicitly decompose information in formu-
las into numerical reference and numerical calcu-

lation and devise two complementary tasks. Given
a table as well as a formula cell in it, we mask the
formula and then (1) the model classifies whether
“header A references header B” (we consider that
“header A references header B” if the formula cell
belonging to header A references a numerical cell
belonging to header B, as illustrated in Figure 2);
(2) the model predicts the operator/function of two
or more referenced numerical cells. Furthermore,
to better encode and represent formulas, we also
apply MLM to the token sequence of formulas.

Considering the flexibility of table structures in
spreadsheets, we base FORTAP on TUTA (Wang et
al., 2021b), the first transformer-based method for
spreadsheet tables with carefully-designed textual,
numerical, positional, and formatting embedding
layers. Importantly, its tree-based position encod-
ing and attention are highly effective in represent-
ing generally structured tables. TUTA is pretrained
with MLM, cell cloze, and table-text matching.

Experiment results on three tasks demonstrate
that the significance of leveraging formulas for
table pretraining. For formula prediction, FOR-
TAP achieves 55.8% top-1 accuracy, significantly
surpassing TUTA (48.5%), TaPEx (43.2%), and
SpreadsheetCoder (40.4%) on Enron. For table
question answering, TUTA achieves comparable
accuracy with the best system on HiTab. After pre-
training with formulas, FORTAP delivers a huge
improvement of +6.3% as over previous SOTA,
comparable to TaPEx. For cell type classification,
on dataset DeEx, FORTAP largely improves TUTA
by +6.6% on derived type and +3.2% on overall
Macro-F1.

2 Preliminaries

2.1 TUTA as Encoder
TUTA (Wang et al., 2021b) is the first pretraining
architecture for spreadsheet tables. It is effective
in capturing table semantic structures, achieving
SOTA results on cell type and table type classifi-
cation. As mentioned in Section 1, understanding
table semantic structures is critical to numerical
reasoning, so we choose TUTA to be the encoder
of FORTAP . Since our pretraining tasks are generic
for encoders of tables, future works can also ex-
plore other encoders such as (Herzig et al., 2020).

Header Recognition. Headers usually provide
short yet informative descriptions of table contents
in Natural Language (NL), so TUTA leverages the
detected header regions and hierarchies, as pre-
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sented in Section 2.2. (Chen et al., 2021a) also
shows that using headers (even without considering
hierarchies) greatly helps formula prediction. FOR-
TAP follows to place detected headers in inputs.

Architecture. TUTA bases on BERT (Devlin et al.,
2019) with several enhancements: (1) a positional
encoding layer based on a unified bi-dimensional
coordinate tree to describe both the spatial and hi-
erarchical information of cells; (2) a number encod-
ing layer to encode magnitude, precision, the first
digit, and the last digit; (3) a tree-based attention
mechanism that enables local cells to aggregate
their structurally neighbouring contexts within a
tree-based distance threshold.

Model Input/Output. The input consists of a table
T and optional NL texts C. By traversing the cell
matrix of a table from left to right and from top
to bottom, the input is linearized to “[CLS], C0,
..., CK−1, [SEP], T(0,0), [SEP], T(0,1), ..., [SEP],
T(M−1,N−1)”, where K is the token length of NL
texts, and M and N are the numbers of rows and
columns of the table, respectively. Note that T(i,j)

refers to the token sequence of the cell string in
the (i+ 1)th row and (j + 1)th column, and each
token has token, number, position, and format input
embeddings. The output of the encoder contains
token-level, cell-level, and table-level embeddings.
FORTAP follows these input/output settings except
when inputting formula token sequence.

2.2 Pretraining Corpus

Spreadsheet Source and Preprocessing. We use
the same spreadsheet table corpus as TUTA: (1)
13.5 million public spreadsheet files are crawled
from 1.75 million websites; (2) table ranges and
headers are detected using TableSense (Dong et
al., 2019b,a); (3) header hierarchies are extracted
with effective heuristics; (4) extreme size tables are
filtered out; (5) duplicated tables are discarded. In
the end, 4.5 million spreadsheet tables are left.

Formula Preprocessing. Spreadsheet Formula is
a widely-used end-user language for table organi-
zation and calculation. A formula consists of four
types of formula tokens: operator (e.g., +,/,%),
functions (e.g., SUM), referenced cells (e.g., B4)
and constant values (e.g., 100), which we denote as
OP, FUNC, CELL and CONST in the rest part of the
paper. We use XLParser (Aivaloglou et al., 2015),
a highly-compatible formula parser with compact
grammar, to analyze formula. In this way, we de-
rive the AST of each formula (an example AST

in Figure 2) and the type of each formula token.
Since we focus on single table setting, we discard
the cross-table, cross-sheet, and cross-file formulas.
Formulas with Array or User-Defined-Function are
also discarded. The absolute reference sign “$”
is deleted from formula strings, without changing
their meanings. We only keep the first five occur-
rences of formulas in the same row/column because
some spreadsheets contain hundreds of duplicated
or dragged formulas in one row/column, which are
inefficient for training. Formulas are linearized as
formula token sequences in prefix representation
of AST following SpreadsheetCoder (Chen et al.,
2021a). Finally, 10.8 million formulas are derived.

3 Pretraining Tasks

As mentioned in Section 1, empowering table mod-
eling with stronger numerical reasoning capabili-
ties is a fundamental need. Spreadsheet formulas
naturally contain information of numerical refer-
ences (CELL) and calculations (OP/FUNC), moti-
vating us to devise effective tasks to leverage them
for numerical-reasoning-aware pretraining.

Based on information parsed from the for-
mula expression, we carefully devise two com-
plementary objectives, Numerical Reference Pre-
diction (NRP) and Numerical Calculation Predic-
tion (NCP), to exploit the reasoning process behind
referencing local cells (as operands) and applying
calculations (on operands), respectively. Mean-
while, to get better representations of the spread-
sheet formula, which could be further used in
downstream applications like formula error detec-
tion (Cheung et al., 2016), we extend MLM (De-
vlin et al., 2019) from NL contexts to formulas.
Figure 2 gives an illustration of these tasks.

Numerical Reference Predication (NRP) We con-
sider “header A references header B” in a table if:
in a formula, the formula cell (cell with formula) be-
longing to header A references a cell belonging to
header B. Take the table in Figure 2 as an example,
the header “%Increase” references headers “2016”
and “2021” since E3 in column “%Increase” refer-
ences C3 and D3 in columns “2016” and “2021”.
We let the model learn header reference relation-
ship since a cell belonging to a referenced header
is more likely to be involved in the calculation. It
is important but usually unknown as a priori, espe-
cially when tables are from diverse or unfamiliar
domains. Note that we use header cells instead of
data cells in this task since headers provide high-
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(D3-C3)/C3

Numerical Reference Prediction

Numerical Calculation Prediction

Formula MLM

(   %Increase  ,     2016                           )  

(   %Increase  ,     Vegetable                  )  

D3 C3

/

C3

Predict 
Calculation

(D3 C3) /  (D3-C3)/C3

(   %Increase  ,     2021                           )  

+

……

Example table

Formula-based Prompt:  

Symphony %Increase  passages cheer Onion over.

Cell-wise 
Classification

Table-only Setting

Table-text Setting

• Formula Header:  %Increase , Onion 

• Formula Cell: 

• Reference Header:  2016  , 2021

• Others:  Potato , Kale , 57 , …

Formula Header
Reference Header
Formula Cell

-

Recover
[MASK] [MASK]

✓

×

*
/

SUM

MAX

42.1%

Positive Pairs

Negative Pairs

42.1%

(   %Increase  ,     Weight (per bushel))  

%Increase OnionInsert Insert

random vocab tokens

Figure 2: An illustration of formula pretraining tasks.

level descriptions of the data (Chen et al., 2021a)
and thus header reference relationships have more
generic semantics across tables.

Given extracted header regions and hierarchies
in corpus preprocessing, we first formulate NRP
as a binary classification task over header pairs:
given a formula cell tf and its referenced cells
{t(i)p }, we first find their non-shared headers hf

(for tf ) and {h(i)p } (for {t(i)p }), then we group them
as positive pairs {(hf , h

(i)
p )}. Usually a formula

cell shares a header with referenced cells in the
same row/column (e.g., in Figure 2, “Onion” is
the shared header for E3, C3, D3). As it does
not reflect header reference relationships, we ex-
clude the shared header in this task. The negative
pairs {(hf , h

(i)
n )} are sampled among those unref-

erenced headers on the same direction (either on
top or left headers) of hf . Number of negative
samples is at most 3:1 to positive ones to balance
samples. The binary classification probability of

the ith pair p(i) = f(hf ,h
(i)
p/n), where h is the

header cell embedding derived by the encoder and
f(·) is a two-layer binary classification module.

To inject table-text joint reasoning skills into
FORTAP , which TUTA does not excel at, we fur-
ther extend NRP task to table-text setting. Given
a table with a formula cell, we first construct a
formula-based prompt as context by picking 1 to
10 tokens randomly from the vocabulary as a noisy
sentence and then inserting the row and column
header of formula cell into it at random positions.
Next, we jointly input the formula-based prompt
and the table, and the task is to classify (1) formula
header cell, (2) formula cell, (3) reference header
cell, (4) other cells from the table. To precisely
classify these cells, model needs to first align for-
mula header cells in table with prompt (alignment
skill), then infer the intersection cell of formula
header cells as formula cell (spatial reasoning). Fi-
nally, it has to identify referenced cells (numerical
reasoning) by the formula headers.

The NRP loss Lnr is calculated as the sum of
binary cross entropy loss and multi-class cross en-
tropy loss under table-only and table-text setting.

Numerical Calculation Prediction (NCP) Given
data cells as operands, a model then needs to find
out which operators/functions should be applied.
For example, in Figure 2, subtraction and divi-
sion are applied on C3 and D3 in the formula.
We hope the model can speculate the target op-
erator/function based on the semantics, numeracy,
and positions of given operands (data cells). Thus,
we design the task to predict the operator/function
for a group of data cells with their contextual cell
embeddings produced by the encoder.

We formulate it as a multi-class classification
task: given a formula and its AST parsed in pre-
rpocessing, we select the operators/functions {o(i)}
satisfying that all direct children nodes {d(j)}(i) on
the formula AST of o(i) are in CELL type with
integer or float data. The probability of predict-
ing the operator/function of these data cells is
p(i) = f(POOL({d(j)}(i))), where d is the out-
put cell embedding by the encoder, f(·) is a two-
layer classification module, and POOL is a mean-
pooling layer. Note that we only include the op-
erator/function o whose all direct children nodes
are in CELL type in this task, because otherwise
some descendant data cells will first be calculated
via other operators/functions and thus have indi-
rect connections with o (e.g., in Figure 2, “/” is
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not a target operator since its left child is an op-
erator “−”). We include 17 common calculation
operators/functions (see Appendix A) covered in
spreadsheet formulas in this task. The NCP objec-
tive Lnc is the multi-class cross entropy loss.

Formula MLM To encode formulas, we expand
41 tokens in the vocabulary for all four formula
token types, covering 99.1% formulas in corpus.
Added tokens are listed in Appendix A. Note that a
special case is the CELL type, like D4, because it
references another cell. Since referenced cells can
be anywhere in a large table, it is infeasible to ex-
plicitly insert all cell positions into the vocabulary.
Thus, for CELL type token in formula, we use a
[RANGE] tag as input token and copy all cell-level
embeddings (position, format, numeric, ...) from
the referenced cell to this CELL type token.

We then apply MLM to formula tokens. Masking
and recovering operators/functions is straightfor-
ward. When masking or recovering a referenced
cell in a formula, we need to avoid label leakage
from embeddings of the referenced cell. Thus, to
mask a referenced cell, besides using the [MASK]
token embedding, the number embedding is set to
default to mask the number, and the position and
format embeddings are set to the same as the for-
mula cell. To recover a masked referenced cell tr,
the cell t(i) in input sequence with the highest prob-
ability p(i) = Softmax(f(tr, t(i))) is selected as
the predicted cell, where t is output cell embedding
of the encoder and f(·) is a two-layer classification
module. The objective Lfmlm is calculated as the
sum of cross entropy loss over operator/function
recovery and referenced cell recovery.

Finally, the total pretraining objective is

L = Lnr + Lnc + Lfmlm (1)

4 Experiments

In this section, we describe the pretraining details
and validate the effectiveness of FORTAP on three
downstream tasks: formula prediction, question an-
swering, and cell type classification. The statistics
of datasets we use are listed in Table 1.

4.1 Pretrain Implementation

We initialize FORTAP with parameters of the pre-
trained TUTA. The input is linearized following
TUTA by concatenating the text (the prompt built
in NRP pretraining task) and the flattened table tra-
versed in row order. Due to memory limit, we only

Dataset Enron HiTab DeEx

# samples (train/dev/test) 125k 10.6k 711k
(formulas) (questions) (cells)

% hierarchical tables 51.0% 98.1% 43.7%
Avg. rows per table 25.7 17.1 220.2
Avg. columns per table 12.4 8.2 12.7

Avg. formula sketch length 4.13 -
Avg. op/func per formula 1.62 -

Table 1: Statistics of downstream datasets.

place (1) header cells, (2) data cells on the same
row/column of the formula cell, into the input se-
quence and skip the other cells. Our input pattern is
reasonable as a tradeoff between performance and
memory since we find that more than 89% formulas
only reference cells on the same row/column. To
match different downstream tasks, for the cell with
formula, we input its formula token sequence (e.g.
(C4-B4)/B4) with 40% probability, formula tag
[FORMULA] with 30% (the number embedding
is set to default) and cell literal value with 30%
(e.g. number 42.1). In experiments, we find it is
more effective in Formula MLM to mask either
all operators/functions or all referenced cells, so
we implement it this way. We first pretrain 400K
steps on sequence length 256 with batch size 32,
and 250K steps on sequence length 512 with batch
size 8. The whole pretraining phase takes about 4
days on 4 Tesla V100 GPUs.

4.2 Formula Prediction

Formula prediction (Chen et al., 2021a) facilitates
spreadsheet end-users by recommending formulas
since writing formulas could be time-consuming
and error-prone. Given a table and a target cell
in table, the task is to predict a formula for the
target cell. Formula prediction requires complex
in-table numerical reasoning capabilities to predict
both referenced cells and involved calculations.

Datasets. Enron (Hermans and Murphy-Hill) is
a massive database of public Excel Spreadsheet,
containing over 17K spreadsheets with rich table
structures and formula types. We exclude En-
ron from our pretraining corpus to prevent data
leakage. Tables and formulas are preprocessed
in the same way as the pretraining corpus. We
divide Enron by sheet and the final dataset con-
tains 100.3K/12.3K/12.9K table-formula pairs
for train/dev/test. The formula cell in table is re-
garded as the target cell and the formula is seen
as the ground truth in formula prediction task.
We follow the evaluation metrics in Spreadsheet-
Coder (Chen et al., 2021a): (1) Formula Accu-
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racy, (2) Sketch Accuracy, (3) Range Accuracy
measuring the percentage of correctly predicted
formulas, formula sketches (formula using place-
holder [RANGE] as referenced cells), and formula
ranges (only the referenced cells of formula).

Previous to our work, SpreadsheetCoder evalu-
ates formula prediction on collected Google Sheets
and Enron. However, we do not directly use its
datasets for three reasons: (1) The Google Sheet
corpus is not released, and for Enron, Spread-
sheetCoder only adopts formulas referencing cells
within a limited rectangular neighborhood region
(21 × 20) of the formula cell, while we argue in
real tables the referenced cells can be easily be-
yond this region. (2) A large proportion of table
headers are not properly detected (mentioned in its
paper), while we adopt ranges and headers detected
by TableSense (Dong et al., 2019b) and extract
table header hierarchies. (3) Despite the incon-
sistencies above, we try to backtrack the original
file to align with SpreadsheetCoder and apply our
preprocessing. However, the document IDs of ta-
bles in SpreadsheetCoder are mostly empty. Thus,
we build our dataset based on Enron and evaluate
SpreadsheetCoder on it for a fair comparison.

Baselines. We adopt SpreadsheetCoder (Chen et
al., 2021a), TaPEx (Liu et al., 2021), and TUTA
as our baselines. SpreadsheetCoder is a BERT-
based model for formula prediction, incorporat-
ing headers and contextual information of neigh-
bouring cells of the target cell. TaPEx is a BART-
based (Lewis et al.) table pretraining model, which
implicitly learns a SQL executor.

Fine-tune. FORTAP consumes all header cells
in the table and data cells lying on the same
row/column of the target cell just like the manner in
pretraining, with a max sequence length, 512. The
[FORMULA] tag is placed at the target cell posi-
tion in input, whose number embedding is set to de-
fault. A two-stage LSTM formula decoder (Dong
and Lapata, 2018; Chen et al., 2021a) accepts the
formula cell embedding as input, and generates
the formula by first generating formula sketches
and then selecting referenced cells. All models in
experiments are fine-tuned 800K steps on Enron.
The beam size is 5 for generating formula. Since
SpreadsheetCoder only published part of its code,
we re-implement it in PyTorch (Paszke et al., 2019)
based on its paper. Appendix B presents details
about SpreadsheetCoder. TaPEx is built on BART
model and thus naturally supports generation task.

(%) Formula Sketch Range
20% Train Set

TUTA 29.8 50.5 59.0

FORTAP 40.0 57.6 69.5

100% Train Set
SpreadsheetCoder 40.4 59.6 67.7
TaPEx 43.2 - -
TUTA 48.5 65.3 75.3

FORTAP 55.8 70.8 78.8

Table 2: Formula prediction accuracy on Enron.

We follow the TaPEx table linearization strategy, as-
sign the formula position in the source, and modify
the target vocabulary as SpreadsheetCoder (Chen
et al., 2021a) to support generating referenced cells.
We use the TaPEx-base model. It is fine-tuned for
30K steps (converge at about 25K) and evaluated
on the checkpoint with the best dev performance.

Results. Table 2 summarizes the results of formula
prediction on the test set. As shown, FORTAP de-
livers a big improvement over SpreadsheetCoder by
+15.4% and TaPEx by +12.6% on formula accu-
racy. We deduce that TaPEx falls behind TUTA and
FORTAP because (1) the learnt executor may not
be suitable for formula prediction, (2) it doesn’t
leverage hierarchical table structures. FORTAP
also outperforms TUTA by +7.3%, showing for-
mula pretraining effectively assists formula predic-
tion. We also experiment under a low-resource
setting (20% training data), and the improvements
of FORTAP are more significant, surpassing TUTA
by +10.2%. Since Enron is not included in our
pretraining corpus, this result well indicates for-
mula pretraining can largely benefit formula pre-
diction after seeing large numbers of real formulas.
Moreover, we conjecture that formula pretraining
potentially improves numerical reasoning capabili-
ties of the model, because the two-stage prediction
of formula sketches and ranges relies on numerical
calculation and reference capabilities, respectively.

4.3 Table Question Answering

Table QA (Pasupat and Liang, 2015; Cheng et al.,
2021) contains a table and an NL question over
the table as the model input. Its output can be
cell value(s) or number(s) calculated over numeri-
cal cell value(s). Table QA calls for both in-table
numerical reasoning and table-text joint reasoning.

Datasets. There are several datasets (Pasupat
and Liang, 2015; Cheng et al., 2021; Zhu et al.,
2021; Chen et al., 2021b) focusing on Table QA
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or Table-text hybrid QA. We choose to evaluate
on HiTab (Cheng et al., 2021), a hierarchical web
table dataset for question answering and data-to-
text. First, tables in HiTab contain rich table struc-
tures (98.1% tables are hierarchical) from 29 do-
mains, posing a challenge to numerical reasoning.
Second, a large proportion of questions (∼ 40%)
from Statistical Reports demands complex numeri-
cal inference over table and text. Moreover, ques-
tions in HiTab are revised from sentences written
by professional analysts to ensure naturalness and
meaningfulness. The QA evaluation metric is Exe-
cution Accuracy measuring the percentage of cor-
rectly predicted answers.

Baselines. We employ TaPas (Herzig et al., 2020),
HiTab model (Cheng et al., 2021), TaPEx (Liu et
al., 2021), and TUTA as our baselines. TaPas is
an end-to-end table parsing model without gener-
ating logical forms, which enjoys pretraining on
the large-scale table-text corpus from Wikipedia.
HiTab devises a hierarchy-aware logical form for
hierarchical tables, and predicts the answer using a
weakly supervised semantic parser MAPO (Liang
et al., 2018), which is a reinforcement learning
framework to systematically explore and generate
programs. The question and table are encoded by
BERT and the logical forms are generated by an
LSTM decoder. TaPEx is introduced in Section 4.2.

Fine-tune. We replace the BERT encoder of HiTab
model with TUTA and FORTAP , and follow the
fine-tuning settings of HiTab. We find that NRP
pretrain task under table-text setting mentioned in
Section 3 is quite essential for QA performance and
thus pretrain 80, 000 steps more with it on FORTAP
in QA before fine-tuning. For TaPEx, we adopt the
same table QA strategy in its paper by inputting
the table and text as source, and generating the
answer as target. The TaPEx-base model is trained
for 20, 000 steps on HiTab.

Results. Table 3 summarizes QA results on HiTab.
FORTAP achieves SOTA (47.0%) using MAPO as
the semantic parser, surpassing the best system in
HiTab paper with +6.3%. Meanwhile, replacing
BERT with TUTA does not see a significant per-
formance gain. We conjecture one of the reasons
is that TUTA may be not skilled at table-text joint
reasoning, and FORTAP enhances this skill by the
table-text setting of the NRP task. Finally, FOR-
TAP performs comparatively with TaPEx, a recent
pretraining tabular model as a powerful neural SQL
executor targeting table reasoning. Note that this

(%) Development Test

TaPas 39.7 38.9
BERT (MAPO) 43.5 40.7
TUTA (MAPO) 43.5 41.3
TaPEx 48.8 45.6

FORTAP (MAPO) 47.1 47.0

Table 3: QA execution accuracy on HiTab. MAPO
means using MAPO+hierarchical-aware logical forms.

(%) M N Data LA TA Derived Avg.

CNNBERT 76.3 1.5 95.2 59.0 75.4 57.6 60.8
RNNC+S 62.7 40.8 98.6 56.9 73.5 48.8 63.6
TaBERT 66.6 5.4 94.3 29.2 59.2 45.1 50.0
TaPas 80.6 20.3 96.5 56.9 90.1 56.6 66.8
TUTA 86.0 41.6 99.1 76.7 82.0 73.1 76.4

FORTAP 85.2 49.1 99.3 78.0 86.4 79.7 79.6

Table 4: F1 scores of cell type classification on
DeEx: M(metadata), N(notes), Data, LA(left
attribute), TA(top attribute) , and Derived.

result is inspiring since FORTAP is pretrained on
spreadsheet tables and can generalize to web table
domain (HiTab) with SOTA performance, indicat-
ing that the numerical reasoning skills learnt by
FORTAP are robust to distinct scenarios.

4.4 Cell Type Classification
Cell type classification (CTC) (Koci et al., 2019;
Gol et al., 2019; Gonsior et al., 2020) aims to in-
terpret tabular data layouts automatically via classi-
fying table cells by their roles in data layouts (e.g.,
top attribute, data, derived). It requires understand-
ing of table semantics, structures, and numerical
relationships considering diverse table layouts.

Datasets. DeEx (Koci et al., 2019) is a widely-
studied CTC dataset with tables of various struc-
tures and semantics. DeEx includes tables from
various domains by mixing three public corpora:
Enron (Hermans and Murphy-Hill), Euses (Fisher
and Rothermel, 2005), and Fuse(Barik et al.,
2015). Cells in DeEx are categorized into six fine-
grained types: metadata, notes, data, left

attribute, top attribute, and derived. The
evaluation metric is the Macro-F1 score over all
cell types.

Baselines. We compare FORTAP with two
learning-based methods CNNBERT(Dong et al.,
2019a) and Bi-LSTM (Gol et al., 2019), and three
table-pretraining methods TaBERT (Yin et al.,
2020), TaPas (Herzig et al., 2020), and TUTA.

Fine-tune. To handle large tables in DeEx, we
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split tables into chunks with a max input sequence
length (512) and distribute headers to each chunk.
For cells with formulas, [FORMULA] tags are used
as input tokens. We fine-tune 100 epochs on five
folds and report the average scores. All these set-
tings are the same as TUTA.

Table 4 lists the CTC results on DeEx. FORTAP
achieves a SOTA Macro-F1 of 79.6%. Specifi-
cally, FORTAP largely improves the performance
on type derived and notes, surpassing TUTA by
6.6% and 7.5%. The improvement on derived in-
dicates formula pretraining helps identifying cells
derived by calculations over some other cells. Note
that derived in DeEx not only includes cells with
explicit formulas, but also those cells with hid-
den (missing) formulas (Koci et al., 2019), which
poses a great challenge to existing methods since
it requires discovery of numerical relationships be-
tween cells. Thus, this is a strong signal that for-
mula pretraining endows the model with better nu-
merical reasoning capabilities. We think that the
improvement on notes mainly benefits from the
NRP pretraining task with formula-based prompts
as the context, enhancing FORTAP ’s capability on
table-text joint modeling.

4.5 Analysis

In this section, we analyze our method in terms
of (1) the effects of different pretraining tasks, (2)
whether and to what extent our model learns nu-
merical reasoning skills.

Effects of pretraining tasks. We conduct ablation
studies on different pretraining tasks on the formula
prediction task. Here we pretrain TUTA with each
pretraining task and fine-tune on Enron dataset, as
summarized in Table 5. We can see that combining
all pretraining tasks brings the most gain on for-
mula accuracy. NRP and NCP improve more on
range accuracy and sketch accuracy, respectively.
This aligns with our design motivation that NRP
targets on how to reference and NCP learns how
to calculate. To our surprise, Formula MLM alone
also largely benefits formula prediction. We deduce
the reason is that both MLM and formula predic-
tion requires encoding and recovering/generating
capabilities of the formula token sequence.

Numerical reasoning skills. We have shown our
model learns numerical reasoning skills by two
facts: (1) NRP and NCP improve more on the
range and sketch accuracy on the formula predic-
tion task, respectively; (2) our model boosts the

(%) Formula Sketch Range
TUTA 48.5 65.3 75.3
TUTA + NRP 54.3 69.0 78.7
TUTA + NCP 54.7 71.2 76.8
TUTA + FormulaMLM 54.6 70.2 77.7
All (FORTAP ) 55.8 70.8 78.8

Table 5: Ablation study on formula prediction.

Operation BERT FORTAP
Complex Cell Selection 48.4% 56.4% (+8.0%)
Arithmetic 6.0% 13.3% (+7.3%)
Superlative 22.7% 26.8% (+4.1%)
Comparative 27.5% 30.5% (+3.0%)

Table 6: Accuracy on HiTab of different operations.

performance of derived cell type on cell type clas-
sification. Here we further decompose QA accu-
racy of different operations on HiTab. The compari-
son between previous SOTA system BERT(MAPO)
and our FORTAP (MAPO) is shown in Table 6. As
shown, our model improves most on complex cell
selection (cell indexed by ≥ 3 headers) and arith-
metic (e.g., difference, sum) problems. Note that
complex cell selection not only requires table-text
alignment, but also the references between head-
ers considering that mentions of headers in ques-
tion could be implicit or missing. Meanwhile, our
model also handles superlative (e.g., argmax) and
comparative (e.g., less than) problems better than
BERT, despite these types are relatively infrequent
in our formula pretraining corpus. To summarize,
our model mainly improves numerical skills regard-
ing cell reference and arithmetic, as well as other
aspects like comparing and ranking.

5 Related Works

Table Pretraining. Table pretraining has been
widely studied in recent years. Some works
mine large-scale table-text pairs as pretraining cor-
pus (Deng et al., 2020b; Yin et al., 2020; Herzig
et al., 2020; Wang et al., 2021b), some leverage
annotated table-text datasets (Deng et al., 2021;
Yu et al., 2020), and some synthesize a table-text
corpus by templates (Yu et al., 2020; Eisensch-
los et al., 2020). Regarding pretraining tasks,
they either train the model to recover masked to-
kens/column/cell/entity (Yin et al., 2020; Herzig et
al., 2020; Wang et al., 2021b; Deng et al., 2020b),
or explicitly learn table-text alignments (Deng et
al., 2021; Yu et al., 2020). Recently, TaPEx (Liu et
al., 2021) adopts BART (Lewis et al.) as a neural
executor for synthesized SQLs to improve table rea-
soning. Whereas, our method explores to use real
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spreadsheet formulas to guide table pretraining.

Numerical reasoning over Natural Language.
Numerical reasoning is important in NL do-
main (Dua et al., 2019). Numbers even ac-
count for 6.15% of all unique tokens in English
Wikipedia (Thawani et al., 2021). Various works
target improving numerical reasoning skills on
NL (Andor et al., 2019; Geva et al., 2020; Jin et al.,
2021). Except using pure NL, MathBERT (Peng et
al., 2021) pretrains NL documents with mathemat-
ical formulas. In this paper, we target numerical
reasoning over (semi-) structured tables.

6 Conclusion

In this paper, we present FORTAP , a numerical-
reasoning-aware table pretraining model that learns
numerical reasoning capabilities from spreadsheet
formulas. Specifically, we design two pretraining
tasks to capture numerical reasoning capabilities by
explicitly predicting cell reference and calculation
relations. Experiments show that FORTAP achieves
new SOTA on formula prediction, question answer-
ing, and cell type classification. Further analyses
indicate that formula pretraining indeed improves
numerical reasoning skills of the model. One limi-
tation of FORTAP is that we haven’t fully exploit
spreadsheet formulas beyond numerical reasoning.
For example, logic functions like VLOOKUP and
text functions like LEN can be leveraged to guide
complex logic and text reasoning, which will be a
promising direction in the future.

7 Ethical Considerations

In this work, we present a table pretraining method
leveraging spreadsheet formulas.
Dataset. Our pretraing corpus is built upon public
English spreadsheet files crawled from webs via the
search engine (Wang et al., 2021b), covers various
domains, and has been checked by a compliance
team in a company to ensure that does not contain
sensitive names or uniquely identifies individual
people or offensive content. All datasets used for
evaluation are licensed public datasets, e.g., for
formula prediction, Enron (Hermans and Murphy-
Hill) is a public spreadsheet dataset consisting of
over 17K spreadsheet files, and we re-purpose it for
formula prediction following (Chen et al., 2021a).
Application. Our model shows its effectiveness in
three representative table-related tasks. Formula
prediction helps spreadsheet end-users to write for-
mulas which could be tedious and error-prone. Ta-

ble QA enables users to query on the table without
the need of domain background knowledge. Cell
type classification assists interpreting fine-grained
table semantic structures, which help users to bet-
ter understand table structures and contents. There
may be risks that crooks use tabular models to au-
tomatically parse tables/forms to obtain private per-
sonal or company data in bulk, which should be
prevented.
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A Involved Operators/Functions of
Formula

We include 17 common operators/functions in Nu-
merical Calculation Prediction pretraining task,
which consists of all the operators and four most
commonly used aggregation functions in spread-
sheet formula. The operators/functions are: +,
−, ∗, /, ∧, %, &, =, <>, >, <, ≥, ≤, SUM,
AVERAGE, MAX, MIN.

To encode formula token sequence, we expand
41 tokens in vocabulary for all four formula
token types OP, FUNC, CELL, CONST,
covering 99.1% formulas in corpus. Here we
list these tokens: (1) 1 token for CELL token
type: [RANGE]. (2) 3 tokens for CONST token
type: [C-STR], [C-NUM], [C-BOOL]. All
constant tokens are categorized according to
“string”, “number”, and “bool”. And they are
replaced with these three tokens when encoding
the formula. (3) 34 tokens for OP/FUNC token
type: [+](32.1%), [SUM](20.6%), [−](17.8%),
[/](6.7%), [IF](2.6%), [ROUND](1.2%),
[AVERAGE](1.2%), [VLOOKUP](1.0%),
[>](0.98%), [=](0.79%), [<](0.57%),
[ABS](<0.5%), [OFFSET], [SUBTOTAL],
[MAX], [<>], [∧], [LN], [COUNTA], [SQRT],
[MIN], [ISERROR], [EOMONTH], [COUNT],
[AND], [%], [INDEX], [YEAR], [MONTH],
[MATCH], [≥], [MATCH], [≤], [&], [UNKOP].
The number in parentheses is the ratio of OP/FUNC
to the total number of OP/FUNC in corpus. Here
UNKOP stands for unknown operator/function,
similar to [UNK] in NL vocabulary. To distinguish
formula OP/FUNC with some eponymous tokens in
vocabulary (e.g., “sum”, “+”), we enclose formula
OP/FUNC with square brackets. (4) special tokens
[START], [END], [:].

B Implementation Details

More on Hyperparameters. For pretraining, we
first pretrain 400K steps with max sequence length
256, batch size 32, then pretrain 250K steps with
max sequence length 512, batch size 8. The whole
pretraining phase is estimated to 3 epochs, i.e., sam-
ples in the corpus are seen 3 times in pretraining.
The optimizer is Adam with learning rate 2e-5.

For formula prediction, we set max sequence
length 512 and fine-tune 800K steps with batch
size 2 on single GPU. The tokens beyond 512 are
truncated. If the formula cell is truncated (rare
case), we input the [CLS] embedding to the for-

mula decoder. The two-stage decoder is first
trained 100K for generating sketches, and then
trained to generate sketches and ranges together.
The optimizer is Adam with learning rate 2e-5.

For table question answering, we follow HiTab
hyperparameters except that we find it is unneces-
sary to freeze encoder parameters at the first 5, 000
steps, so we train the encoder-decoder model to-
gether.

For cell type classification, since some tables are
extremely large in DeEx, we truncate the tables
into sequences of max length 512 by preserving
the header cells (both top and left) and traversing
the data cells to fill the max sequence length. We
fine-tune 100 epochs on five folds with batch size
12. The optimizer is Adam with learning rate 8e-6.

SpreasheetCoder We implement Spreadsheet-
Coder mainly following its paper including the
BERT-based table context (row/column) encoder,
two-stage decoder. One difference is that we did
not implement the convolution layers for row and
columns which is rather complicated . Instead,
since SpreadsheetCoder uses convolution layer aim-
ing to incorporate contextual information from dif-
ferent positions (row/column), we explicitly add
row embeddings and column embeddings (Herzig
et al., 2020) for input table tokens, which derives
the similar accuracy gain of convolution layers (4%
according to its paper), from 35.6% to 40.4% on
Enron dataset. Furthermore, SpreadsheetCoder can
only decode referenced cells in a rectangle win-
dow ([−10, 10]) of the target cell since it only keeps
the formulas of this kind in dataset. We enable
SpreadsheetCoder to predict referenced cells in a
larger window which it can not solve by extend-
ing the vocabulary of range tokens from [−10, 10]
to [−256, 256]. Different from SpreadsheetCoder,
FORTAP predicts ranges by selecting from input ta-
ble cells instead of from a fixed cell vocabulary. In
this way, theoretically (without memory limit) our
model can potentially predict referenced cells in
an arbitrarily large table. Detailed error analysis of
FORTAP on formula prediction is in Appendix C.

C Error Analysis of Formula Prediction

Figure 3 presents the proportion and accuracy re-
garding different formula sketch lengths in prefix
order (parentheses excluded). As shown, sketch
length 3 and 4 account for two-thirds of formulas,
since length 3 is typical for binary operations like
C4-B4, and length 4 is a common pattern for ag-
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Figure 3: Proportion and accuracy of samples with dif-
ferent formula sketch lengths in formula prediction task.

gregation functions like SUM(B4:C5). Thus, the
accuracy of length 3/4 is higher than shorter sketch
length 1/2 since more samples in its length are seen
in training. And for longer formulas (>6), a sig-
nificant performance drop occurs because complex
nested references and calculations may be involved
when the sketch gets longer.

To further analyze the errors in formula predic-
tion, we randomly pick 100 false generation results
in dev set and divide these errors into three groups:
(i) sketch failure (54%): a wrong sketch is gen-
erated, which occurs more frequently when the
formula gets longer and nested. A typical case is
the formula with function IF, involving multiple
arguments and nested calculations; (ii) reference
unreachable (27%): referenced cells are not in the
sequence since we only consider the cells on the
same row/column of the target cell as input; (iii)
reference failure (19%): wrong referenced cells are
selected, which often occurs at the start or end of
a cell range. Future works may improve formula
prediction in these directions: handling long nested
formulas, inputting more cells of table matrix as
reference candidates conquering memory issues,
and designing a module to match generated sketch
with input table cells more accurately.

D Real examples of spreadsheet tables
with formulas

Here we show several real examples for spread-
sheet tables in Figure [4-6].

E Real examples of formula prediction on
Enron

We also developed an Excel plug-in to run formula
prediction powered by ForTaP. We simulate that
ForTap suggests formulas for a user when she is
editing a spreadsheet. Here we show several for-

mula prediction demonstrations on Enron test set
in Figure [7-11]. For the fist case, we tried different
column names, and the results are promising and
robust.
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Figure 4: Example 1 with a substraction column.

Figure 5: Example 2 with a total row.

Figure 6: Example 3 with a total row and a proportion column.
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Figure 7: Example 1 modified on Enron test set for formula prediction.

Figure 8: Example 2 modified on Enron test set for formula prediction.
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Figure 9: Example 3 modified on Enron test set for formula prediction.

Figure 10: Example 4 modified on Enron test set for formula prediction.
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Figure 11: Example 5 on Enron test set for formula prediction.
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