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Abstract

The recent success of reinforcement learning
(RL) in solving complex tasks is often at-
tributed to its capacity to explore and exploit
an environment. Sample efficiency is usually
not an issue for tasks with cheap simulators to
sample data online. On the other hand, Task-
oriented Dialogues (ToD) are usually learnt
from offline data collected using human demon-
strations. Collecting diverse demonstrations
and annotating them is expensive. Unfortu-
nately, RL policy trained on off-policy data
are prone to issues of bias and generalization,
which are further exacerbated by stochasticity
in human response and non-markovian nature
of annotated belief state of a dialogue man-
agement system. To this end, we propose
a batch-RL framework for ToD policy learn-
ing: Causal-aware Safe Policy Improvement
(CASPI). CASPI includes a mechanism to learn
fine-grained reward that captures intention be-
hind human response and also offers guaran-
tee on dialogue policy’s performance against a
baseline. We demonstrate the effectiveness of
this framework on end-to-end dialogue task of
the Multiwoz2.0 dataset. The proposed method
outperforms the current state of the art. Fur-
ther more we demonstrate sample efficiency,
where our method trained only on 20% of the
data, are comparable to current state of the art
method trained on 100% data on two out of
there evaluation metrics.

1 Introduction

Offline task-oriented dialogue (ToD) systems in-
volves solving disparate tasks of belief states track-
ing, dialogue policy management, and response
generation. Of these tasks, in this work we focus
on dialogue policy management to improve the end-
to-end performance of ToD. The need for sample
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efficiency is key for learning offline task-oriented
dialogue system, as access to data are finite and
expensive. Recent advancements in off-policy rein-
forcement learning methods that uses offline data
as against a simulator has proven to be sample effi-
cient (Thomas and Brunskill, 2016). The effective
use of these techniques are hindered by the nature
of ToD. For instance, bias correction in off-policy
based methods usually requires estimation of be-
haviour policy for a given state of Markov Deci-
sion Process (MDP). In ToD, per-turn annotated
belief-state does not capture the true state of the
MDP. Example of such annotated belief-state are
shown in Fig:1. Latent state information such as
prosody, richness of natural language and among
others induces stochasticity in the agents response.
In addition to these short comings, the direct use
of automatic evaluation metric as reward for pol-
icy learning is not desirable, since these automatic
evaluation metrics are often for the entire dialogue
and not per turn. Hence such rewards are sparse
and under-specified (Wang et al., 2020). Use of
under-specified reward will often lead to policy that
suffers from high variance (Agarwal et al., 2019).
Alternatively use of imitation learning based meth-
ods falls short of reasoning on the outcome. This is
demonstrated in Fig:1. Turns#3 and #2 are rich in
semantic information and Turn#3 is key to success
of the booking process. While Turn#4 contributes
least to successful outcome. Though the turns have
varying levels of importance, each of the turns are
treated equally in imitation learning. In worst case,
turns like Turn#4 will appear more often than turns
Turn#2 and #3 in a ToD dataset, there by taking
greater share of the gradient budget.

We address aforementioned shortcomings with
following key contributions:

1.We introduce pairwise causal reward learning
to learn fine grained per turn reward that reason the
intention of human utterance.

2.We propose a safe policy improvement method
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Figure 1: A typical Task oriented dialogue conversation
in MultiWoz2.0 dataset

for task oriented dialogue setting that guarantees
performance against a baseline.

By use of these two methods, we demonstrate
performance and sample efficiency.

2 Related Works
With the release of multi-domain, multi-turn Multi-
Woz2.0 dataset (Budzianowski et al., 2018a), there
has been flurry of recent works, of which Zhang
et al. (2019) uses data augmentation. Rastogi et al.
(2019) and Hosseini-Asl et al. (2020) frame dia-
logue policy learning as language modeling task.
Among the works that uses reinforcement learn-
ing. Mehri et al. (2019) uses supervised learning
to bootstrap followed by RL fine tuning, whereas
Zhao et al. (2019) uses policy gradient on latent
action space as against handcrafted ones. Jaques
et al. (2019) and Wang et al. (2020) uses Batch-RL
for dialogue policy learning. (Wang et al., 2020) is
first to argue the use of automated evaluation met-
rics directly as reward is under-specified for ToD
policy learning. Recently there’s has been prolif-
eration in use of large pretrained language model
based systems like Hosseini-Asl et al. (2020), Lin
et al. (2020), Chen et al. (2019) etc. More details
on contrasting the merits and limitations of these
methods can be found in Sec:A.1

The line of inverse RL used in this work can be
traced back to Ziebart et al. (2008), which proposes
roll-outs from expert demonstration should have
rewards exponentially higher than any other arbi-

trary roll-outs. This method requires a normalizing
constant that integrates across rollouts, which is
challenging. Christiano et al. (2017) and Thanan-
jeyan et al. (2020) propose to do relative compari-
son of two roll-outs there by eliminating the need
for normalization constant and they demonstrate in
online setting.

3 Method

3.1 Preliminaries

We model task-oriented dialogue as a Markov de-
cision process (MDP) (Sutton and Barto, 2018)
with set of states S and actions A. The agent
at time step t with state st performs a compos-
ite action at as per a target policy πe(at|st) on
the environment. The environment is defined by
transition probabilities P (st+1|st, at), a latent re-
ward function, R(st, at, g), discount factor γ ∈
[0, 1] and goal of dialogue g. Then the objective
of the target policy πe, is to maximizes the dis-
counted sum of future reward on the MDP, given
by the state-action value function Qπe(at, st) =

Eat∼πe,st∼P [
∑T

t′=t γ
t−t′R(st′ , at′ , g)].

In offline Batch-RL. The agent does not get to
interact with the environment, instead we are pro-
vided with offline data D logged by human agents
performing actions based on a latent stochastic be-
haviour policy πb. Rollout of a dialogue τ i ∈ D
is composed of τ i = ((oi0, a

i
0), ..., (o

i
T−1, a

i
T−1)).

Here ot is the observation at turn t, composing of
ot = (bt, u

u
t , u

a
t−1), where bt is the belief state of

the agent at turn t, uut and uat−1 are the user and
agent utterance at time t and t− 1 respectively.

3.2 Safe policy improvement

Batch-RL entails training target policy πe on roll-
out generated by a latent behaviour policy πb. Di-
rectly optimizing on the rollouts generated by pol-
icy other than the target policy, will lead to large
bias in the value function estimation, poor gen-
eralization characteristic, and sample inefficiency
(Thomas and Brunskill, 2016). Safe policy im-
provement ensures the new policy performance is
bounded by performance against a baseline policy.
This is expressed as:

Pr(V πe ≥ V πb − ζ) ≥ 1− δ,

where V πe and V πb are value functions of the target
and behaviour policy respectively. Here 1− δ and
ζ are the high probability and approximation meta-
parameters respectively. Schulman et al. (2015)
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Figure 2: Shows stochacity i.e number of different dia-
logue act against each delexicalized belief state in Mul-
tiWoz2.0 dataset

provide such update mechanism, (1), whose errors
are bounded as long as the constraints of (1) are
met, where DKL(.||.) is the KL divergence and η
is a hyper-parameter.

Lsto(θ) = min
st∼Pπbs

at∼πbs

−E
[
πe(at|st; θ)
πbs(at|st)

Qπbs(st, at)

]
s.t. E

st∼Pπbs

[DKL(πbs(.|st)||πe(.|st))] ≤ η

(1)

(Schulman et al., 2015) originally formulated (1)
for online learning as trust region for policy updates
and uses policy before gradient update as the base-
line policy, πbs(at|bt; θold). In this work we adapt
it to offline setting and use behaviour policy πb as
the baseline policy. Use of this update rule requires
access to the behavior policy πb(at|st) which is in-
tractable to estimate and the learnt ones might have
bias. Use of such behavior policy to perform bias
correction by Important Sampling (Precup, 2000)
might lead to worse policy. Instead we estimate
the behaviour policy conditioned only the anno-
tated belief-state bt as against true state st in (1),
which result in a stochastic behavior policy. This
stochasticity of dialogue act vis-à-vis annotated be-
lief state can observed in Fig:2. We also estimate
the Q-function of the behavior policy, Qπb(bt, at)
using learnt reward R(st, at, g). More on learnt
reward in Sec: 3.3.

The belief state bt is part of the observation ot,
hence we purport that, on availability of more evi-

dence of the observation ot, (beside bt) the mode
of the policy collapse to a near deterministic action.
To factor this into the policy learning, we have an
additional loss:

Ldet(θ) = min− E
(ot,at)∼D

[G(τ, t) log πe(at|ot; θ)]

(2)
where return G(τ, t) =

∑T
t′=t γ

t′−tR(st′ , at′ , g) is
the discounted sum of future reward for rollout τ
with goal g. Hence policy optimization loss func-
tion is given by:

L(θ) = αLsto(θ) + (1− α)Ldet(θ) (3)

We achieve this by doing two forward passes of
the policy network πe(at|ot; θ), first with only the
belief state, bt as the input and second pass with
entire observation i,e ot := (bt, u

u
t , u

a
t ) as input to

the policy network. We then use the corresponding
action distribution πe(at|bt; θ) and πe(at|ot; θ) in
loss functions (1) and (2) respectively.

3.3 Pairwise causal reward learning

Algorithm 1 CASPI
Input: Dialogue dataset D and evaluation metric
M(.)
Sub-sample K-folds of train and val set
{(DT , DV )1, ..., (DT , DV )k|(DT , DV ) ∼ D}

for ∀(DT , DV ) do
Learn ToD in supervised setting by optimizing
for objective:
−minEat,st∼DT

log(πm(at|st))
for ∀ epoch do

Using πm(at|st) predict actions on the
valset DV and add it to the dataset, DP

along with corresponding metric score
M(τ) for pairwise causal reward learning
DP = DP ∪ (τ,M(τ))|τ ∼ πm

end for
end for
repeat

Sample pair of rollouts (τ1, τ2) ∼ DP

Learn for R(.) by optimizing for objective (4)
until Convergence using data DP

repeat
Optimize for policy πe using objective (3)

until Convergence using data D

The policy optimization objective introduced in
the previous section requires access to per time-
step reward R(st, at, g). To this end, we provide a
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Figure 3: Process flow of pairwise causal reward learning

mechanism to learn a reward that is causally rea-
soned on the intention of the human demonstra-
tor. Usually ToD are evaluated using dialogue
level automatic evaluation metrics M(.). Given
the large state-action space of the dialogue man-
agement system, these dialogue level feedback are
under-specified for for effective policy learning
(Wang et al., 2020). Details about the the choice of
evaluation metric M(.) are covered in Sec:4.4.2.

To address this under-specified feedback, we
adapt preference learning introduced by (Chris-
tiano et al., 2017) from an online to an offline
setting, to learn fine grained per dialogue turn
(ie. per timestep t) reward, R(st, at, g). Given
a pair of rollouts τ1, τ2 ∈ D with actions for
each state in the rollout is sampled from a pair
of different policies π1

m and π2
m respectively. Let

τ1 ≻ τ2 represent preference of rollout τ1 over
rollout τ2. This preference is true when sum of
rewards of each dialogue turn of the two roll-
outs satisfies:

∑T
t=0R(st, at, g|(st, at) ∈ τ1) >∑T

t=0R(st, at, g|(st, at) ∈ τ2). For brevity,
henceforth we refer

∑T
t=0R(st, at, g|(sT , at) ∈ τ)

as R(τ) . Then preferential probability of one roll-
out over an another, can be represented by:

P [τ1 ≻ τ2] =
ϕ(R(τ1))

ϕ(R(τ1)) + ϕ(R(τ2))

Here ϕ(.) could either be exp(.) or identity 1(.).
In our experiments, the later works best. We opti-
mize for reward, R(st, at, g) by minimizing binary
cross-entropy loss between the preference probabil-
ity and the normalized metrics score, µ(τ) between
a pair of rollout.

L(θ) = min− E
τ1∼π1

m,τ2∼π2
m

[µ(τ1) logP [τ1 ≻ τ2]

+µ(τ2) logP [τ2 ≻ τ1]]

(4)

where,

µ(τ1) =
M(τ1)

M(τ1) +M(τ2)
(5)

We observe that the dialogue roll-outs are gen-
erated by expert latent policy. The data (dialogue
rollouts) are distributed as per the optimal latent
policy and transition probability. We propose that
predictions made by a policy while in the process
of learning to maximize the likelihood of the data
is a good curriculum for exploring the state-action
space for pairwise reward learning. This is a key
insight of this work.

We formalize this insight into a method depicted
in Fig:3 and Algo:1. The (train) dataset is subsam-
pled into K-fold train & val sets. K-baseline poli-
cies are trained to fit the data distribution generated
by experts using cross entropy loss, i.e supervised
learning. During the process of fitting the data dis-
tribution, the still learning K-policies are used to
predict on their corresponding K-fold valset at ev-
ery epoch of the training. Each of these predictions
are the scored by a chosen dialogue level metric,
M(.). On convergence of this supervised learning
process, pairs of dialogue predictions generated
by the above process, along with their correspond-
ing metric score are used to train for fine grained
reward R(at, st, g) using objective (4).

The use of K-fold subsampling, K-baseline poli-
cies, π.

m and actions sampled from these K-policies
that are still in the process of learning help gener-
ate counter factual examples in the action space.
These counter factual actions close to optimal pol-
icy, along with the goal of the dialogue helps us
to learn subtle nuance of fine grained reward func-
tion R(at, st, g) in the region of action space that
matters the most.
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4 Experimental Settings

4.1 Model

4.1.1 CASPI(.)

The learnt reward using CASPI R(st, at, g) is akin
to sample weights for each dialogue turn, that helps
to redistribute the gradient budget among dialogue
turns based of their contribution to the overall suc-
cess of the ToD.

θ := θ −R(st, at, g)∇πblackbox(at|st; θ) (6)

Hence we believe our pairwise casual reward learn-
ing and associated improvement in sample effi-
ciency are independent of model architecture. To
this end we choose two ToD methods that are at the
extremes of model architecture spectrum 1) One
uses a light weight custom model and 2) Other uses
a large standard pre-trained out-of-the box univer-
sal language model.

4.1.2 CASPI(DAMD)

In this setting , we use the neural model proposed
by Zhang et al. (2019). DAMD is composed of
three seq2seq generative model using GRUs. The
three seq2seq models are one each for belief state,
dialogue act and response generation modules. An
attention layers is used to attend the outputs of the
seq2seq models with the context vector of previ-
ous turn for copy over mechanism. The outputs of
these attention layer are used as representation for
predicting series of tokens for their respective mod-
ules. For more details on the model architecture
and parameter setting refer Zhang et al. (2019). In
this setting we use both stochastic, Lsto and deter-
ministic, Ldet loss functions on dialogue act. For
DST and response generation, we retain the cross
entropy loss as is from DAMD (Zhang et al., 2019).

4.1.3 CASPI(MinTL)

On the other extreme of model complexity, we
use the Task oriented Dialogue model, MinTL(Lin
et al., 2020). MinTL uses a large pretrained lan-
guage model BART (Lewis et al., 2019). BART
use as a standard encoder decoder transformer ar-
chitecture with a bidirectional encoder and an auto-
regressive decoder. It is pre-trained on the task of
denoising corrupt documents. BART is trained us-
ing cross-entropy loss between the decoder output
and the original document. For more details of
the model architecture and parameter setting, we
suggest referring to (Lin et al., 2020) (Lewis et al.,
2019).

MinTL doesn’t explicitly predict dialogue act.
Hence we only use the deterministic loss, Ldet di-
rectly on the generated response and for DST we
retain the loss as is from MintTL (Lin et al., 2020).

4.1.4 Pairwise Causal Learning Network

For k-model training of pairwise casual reward
learning illustrated in Fig:3, we chose DAMD
(Zhang et al., 2019) model for it’s light weight
model architecture. In all our experiments, we use
K = 10.

For the pairwise casual reward learning network,
we use three single bi-LSTM layers, one each to
encode goal, belief state and either dialogue act
or response sequences at each dialogue turn on
each of the sampled roll-outs pairs, τ1 and τ2.
The three encoded representations are concatenate
and are fed through a couple of feed-forward lay-
ers before making a bounded reward prediction
R(st, at, g) ∈ [0, 1] for each turn using a sigmoid
function. The per turn rewards are summed to form
a global reward R(τ) for the roll-out τ . Using
a pair of dialogue rewards R(τ1) and R(τ2), we
compute the probabilistic preference between the
roll-outs P [τ1 ≻ τ2] either by standard normal-
ization or a softmax function. The output of this
optimized using binary crossentopy loss described
in Eqn:4. The above described architecture is illus-
trated in Fig:10 .

4.2 Dataset

To evaluate our proposed method on Multi-domain
Wizard-of-Oz (MultiWoz) (Budzianowski et al.,
2018a) dataset. It is a large scale multidomain, task
oriented dataset generated by human-to-human con-
versation , where one participant plays the role of
a user while the other plays the agent.The con-
versations are between a tourist and a clerk at an
information center. The conversations span across
7 domains including attraction, hospital, hotel, po-
lice, restaurant, taxi and train. Each dialogue is
generated by users with a defined goal which may
cover 1-5 domains with a maximum of 13 turns in
a conversation. The dataset has 10438 dialogues
split into 8438 dialogues for training set and 1000
dialogues each for validation and test set.

4.3 Prepossessing

We represent DB results as one-hot vectors as
proposed by Budzianowski et al. (2018b). To re-
duce surface-level variability in the responses, we
use domain-adaptive delexicalization preprocess-
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ing proposed in Wen et al. (2016). As proposed
in Zhang et al. (2019), We generate delexicalized
responses with placeholders for specific values
which can be filled with information in DST and
database.

4.4 Metrics

4.4.1 Evaluation

We evaluate performance of our method on
end-to-end dialogue modeling task of Multi-
woz2.0 (Budzianowski et al., 2018a). We uses three
evaluations metrics proposed by (Budzianowski
et al., 2018a). These include: 1) inform rate -
measures the fraction of dialogue, the system has
provided the correct entity, 2) success rate - frac-
tion of dialogues, the system has answered all
the requested information and 3) BLEU (Papineni
et al., 2002) - measures the fluency of the gener-
ated response. We also report the combined score
(Inform + Success) × 0.5 + BLEU proposed
by Mehri et al. (2019). All the numbers of CASPI
reported in this work are median of 5 runs with
different seeds.

4.4.2 Training

For the metric M used in pairwise causal reward
learning , we use the following:

M := Inform+ Success+ λ×BLEU (7)

This is very similar to combined score used in
evaluation and both are equivalent when λ = 2.
We introduced hyperparamter λ to normalize the
achievable scale of BLEU . We observe that suc-
cess rate, if used as is, will result in non-markovian
and stochastic per turn reward function. This is be-
cause the reward of current state will depend on the
performance of future states. Hence, we also use a
soft version of the metric Msoft, where the success
rate measures a fraction of requested information
provided in a dialogue. We refer the original met-
ric that uses the discrete variant of success rate as
Mhard. The choice of action in reward function
R(st, at, g) can either be dialogue act or generate
response, we refer corresponding variants of met-
rics as M(act) and M(resp). To demonstrate the
versatility of our method to adapt to different met-
rics, we use all the discussed variants of the metric.

5 Result
We compare both adaptation of our methods
CASPI(DAMD) and CASPI(MinTL) on the end-
to-end dialogue tasks defined by MultiWoz2.0

(Budzianowski et al., 2018a). The results are tab-
ulated at Table:1. CASPI(DAMD) with its light
weight model architecture and no pretraining on
any external corpus, except for (Lubis et al., 2020),
out perform all other previous methods, these in-
cludes methods that use large pretrained language
models such as Hosseini-Asl et al. (2020), Peng
et al. (2020) and Lin et al. (2020). This show us-
ing CASPI to shepard the gradient update process
as sample weights for each dialogue turn leads to
a model that’s well aligned with true objective of
the task. CASPI(MinTL) with its robust pretrained
model out performs CASPI(DAMD) and LAVA
(Lubis et al., 2020) by a large margin. This demon-
strates the ease of adaptation of existing methods
with CASPI.

5.1 Sample Efficiency

Inverse reinforcement learning, coupled with off-
policy policy learning and evaluation are proven to
be sample efficient (Thomas and Brunskill, 2016)
. We argue CASPI is competitive with other sam-
ple efficiency techniques, such as data augmenta-
tion and transfer learning as performed by Zhang
et al. (2019) and Lin et al. (2020) respectively. To
demonstrate the hypothesis, we test our method
against baseline in a low sample complexity regime.
For experimental setup, we adopt the low resource
testing strategy from Lin et al. (2020). We train
our model on 5%, 10%, and 20% of the train-
ing data and compared with other baselines on
end-to-end dialogue task, Table 2 list the results.
CASPI(MinTL) trained only on 20% of data was
able to out perform previous state of the art method,
LAVA (Lubis et al., 2020) and MINTL (Lin et al.,
2020) trained on 100% data on two of the three per-
formance metrics. This goes to show that having
the right reward function to guide the budget of the
gradient update process to reach the true objective
is important in extremely low resource setting.

5.2 Human Evaluation

Automatic evaluation metrics have their own bi-
ases. True objective of ToD is human experience
while interacting with the dialogue systems, which
automatic evaluation metrics might fall short to
capture. To this end we conduct human evaluation
on the quality of the generated response. We define
quality by the following criterias:

1) Appropriateness: Are the generated responses
appropriate for the given context in the dialogue
turn?
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Model Pre-trained Inform Success BLEU Combined
model % % Score

DAMD No 72.79 60.45 16.93 83.55

DAMD + multi-action No 76.33 64.35 17.96 88.30

SimpleTOD Yes 84.4 70.10 15.01 92.26

SOLOIST Yes 85.5 72.90 16.54 95.74

MinTL-BART Yes 84.88 74.91 17.89 97.79

LAVA Yes 91.80 81.80 12.03 98.47

CASPI(DAMD), Msoft(act) No 89.1 76.1 18.08 100.68

CASPI(MinTL), Msoft(act) Yes 94.59 85.59 17.96 108.05
CASPI(MinTL), Mhard(act) Yes 93.79 84.88 17.47 106.81

Table 1: Comparison of results for end-to-end task of Multiwoz2.0.

Model 5% 10% 20%
Inform Success BLEU Inform Success BLEU Inform Success BLEU

MD-Sequicity 49.40 19.70 10.30 58.10 34.70 11.40 64.40 42.10 13.00

DAMD 56.60 24.50 10.60 62.00 39.40 14.50 68.30 42.90 11.80

MinTL 75.48 60.96 13.98 78.08 66.87 15.46 82.48 68.57 13.00

CASPI(MinTL),
Msoft(resp) 87.69 71.17 13.51 82.08 72.27 14.10 89.39 78.58 15.16
CASPI(MinTL),
Mhard(resp) 89.69 69.47 13.33 92.59 78.58 14.48 94.19 83.28 13.65

Table 2: Comparison of results for end-to-end of Multiwoz2.0. in low resource setting

2) Fluency: Are the generated responses coher-
ent and comprehensible?

A dialogue turn in the test set is randomly picked.
The human evaluators were shown context leading
up to the turn. The predictions for the turn by differ-
ent methods were anonymized and displayed to the
evaluators. This is illustrated in Fig:4. The human
evaluators were asked to give a score between 1 and
5 for appropriateness and fluency, with score of 5
being best and 1 being the worst. 100 randomly
selected dialogue turns were presented to 10 par-
ticipants .We report the mean and variance of the
score. We compare our model performance against
MinTL (Lin et al., 2020), SimpleTOD (Hosseini-
Asl et al., 2020), LAVA (Lubis et al., 2020) and
DAMD (Zhang et al., 2019). Fig:5 shows the re-
sults of the evaluation. CASPI(MinTL) outper-
forms all other models in appropriateness score.
While fluency score of CASPI(MinTL), MinTL
and SimpleTOD are comparable to each other. It is
worth noting that though LAVA (Lubis et al., 2020)
performs well on automatic evaluation metrics, it
performs poorly on human evaluation. We suspect
the policy learnt by (Lubis et al., 2020) exploits
gaps in the reward function. In case of LAVA (Lu-
bis et al., 2020), success rate is used as the reward

function. In our analysis, low BLEU score is good
indicator if the learnt policy indulges in reward
hacking, which LAVA (Lubis et al., 2020) exhibits.
More on reward hacking in Sec:5.4.2.

5.3 Human in the loop training

In the previous section we argued that automatic
dialogue evaluation metrics are biased and doesn’t
truly reflect the human objective, but in our method
we use these very same dialogue evaluation met-
rics to learn reward R(st, at, g). To bridge this
gap, we performed the following human-in-the-
loop (HITL) experiment. We first trained a pair
CASPI(MINTL) models with different seeds, on
5% of Multiwoz2.0 dataset. We then used these
pair of models to predict on 0.5% of Multiwoz2.0
train data (40 dialogues) and had a human score
these pairs of generated response relative to each
other. We then trained for reward R(st, at, g) us-
ing pairwise causal reward learning as described
in Sec:3.3, where examples of the mini batch are
randomly sampled either from human scored exam-
ples or the ones scored by the automatic evaluation
metric as show in Fig:6. We then trained a fresh
CASPI(MINTL) model on the original 5% of data
and the learnt R(st, at, g). We perform human eval-
uation on 24 dialogues using 3 participants. Fig:7
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Figure 4: Example of generated responses by different
ToD models

Figure 5: Human evaluation on crite-
rias:Appropriateness and Fluency

shows the performance.
Though CASPI(MINTL) using just 5% of the

data outperforms DAMD trained on 100% of data
in 2 out of the 3 automatic evaluation metrics
shown in Table:1 and 2, performs poorly in hu-
man appropriateness score. With the HITL score in
the reward learning, we see a boost in performance
in both the human evaluation criteria: appropriate-
ness and fluency. The 5% data CASPI(MINTL)’s
human approriateness score is now comparable to
100% data DAMD. This goes to show the versa-
tility of the pairwise causal reward learning. With
enough expressiveness of the neural network used,
the pairwise causal reward learning can generalize
to unknown dialogue evaluation criteria.

5.4 Analysis

5.4.1 Rewards

In this section we qualitatively analyze the results
of pairwise causal reward learning. Fig:8 is the
same conversation between a tourist and informa-
tion center agents that we introduced earlier, now
we have learnt reward R(st, at, g), against each
turn. We observe that Turn#3 has received the
highest reward, retrospectively we realize the trans-

Figure 6: Mixed Human-in-the-loop and automatic eval-
uation metric scores for pairwise causal reward learning

Figure 7: Human evaluation of Human in the loop train-
ing of CASPI(MinTL) on 5% of Multiwoz2.0 dataset

action happens in this turn, which is crucial and
has to be risk averse for the success of the dia-
logue. Turn#2 gets the next best reward which
captures crucial information needed for transaction
to happen in Turn#3. Turn#4 gets reward an order
lower than Turn#3 & 2 because other than nicety,
it doesn’t contribute much to the success of the
conversation. It should be noted that responses like
Turn#4 will appear in almost all conversations and
in supervised learning, these turns will be receiving
the highest share of the gradient budget. The learnt
reward redistributes the gradient budget based on
the turns contribution to the success of the dialogue
objective.

5.4.2 Type of agents

In this section we analyze the type of behaviour
CASPI agents sometime exhibit, especially when
trained in low sample regime.

Greedy agent: In certain domains, the agents has
a tendency to book a service before it has gathered
all the required information or before the user re-
quested or agreed for booking a service. The first
example in Fig:9 demonstrate this behaviour. Here
the user has requested for a taxi, before enough in-
formation such as destination or time of departure
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Figure 8: Example of learnt reward

Figure 9: Example of agent behaviour in low sample
regime.

are gathered, the agent books the taxi. This hap-
pens because there are gaps in automatic evaluation
metrics. A low BLEU score and relatively high in-
form and success rate might indicate greedy agent
behaviour. Other reasons for low BLEU score in-
cludes: lack of diversity in the responses or malfor-
mation of response.

Cautious agent: The agent tends to be cautious
by providing long winded replies packed with more
information than needed. Agent tend to do this
to prevent the risk of loosing rewards by missing
out any requested information. This behaviour is
demonstrated in the second example in Fig:9

These subtle behaviour demonstrates gap in au-
tomatic evaluation metrics, which could be weeded
out using Human in the loop learning described in
Sec:5.3.

6 Conclusion
In this work we introduced a fine grained reward
learning process using an under-specified metrics
and expert demonstrations for efficiently learn task
oriented dialogue. We demonstrated the efficacy
of our method on MultiWoz2.0 dataset with results
comparable to the existing state of the art method
with only 20% of data. We believe the methods is

generic and can be extend to other NLP tasks.
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A Appendix

A.1 Baselines

DAMD: Introduced by (Zhang et al., 2019)is a
domain-aware multi-decoder network. The method
also exploits stochastic nature of the dialogue act
by using a data-augmentation technique called the
multi-action data augmentation. DAMD with data
augmentation is denoted here as DAMD + multiac-
tion.

HDSA by (Chen et al., 2019) proposes to use
hierarchical graph representation for dialogue act.
It uses a pre-trained 12-layer BERT model (Devlin
et al., 2019) to represent dialogue act. The pre-
dicted dialogue act is transformed to the hierarchi-
cal graph structure using disentangled self-attention
model, a 3-layer self-attention model (Vaswani et
al., 2017)

SOLOIST (Peng et al., 2020) and SimpleTOD
(Hosseini-Asl et al., 2020) uses pretrained GPT-
2-based methods. These method are trained on
turn-level data without generated belief state and
system act in dialog history.

MinTL-BART (Lin et al., 2020), introduced Lev-
enshtein belief spans framework that predicts only
the incremental change in dialogue state per turn.
It leverages the pretrained T5 and BART (Lewis
et al., 2019) as backbone for model architecture.

LAVA (Lubis et al., 2020), reduces the action
space of policy in end-to-end ToD, by using the
latent space of a variational model with an informed
prior. The work use variable distribution: via pre-
training, to obtain an informed prior, and uses auto-
encoding as the auxiliary task, to capture generative
factors of dialogue responses.

HDNO proposed by (Wang et al., 2020) is
a dialogue policy learning method to solve
context-to-response generation task of Multi-
woz2.0 (Budzianowski et al., 2018a). It exploits
the hierarchical nature of dialogue act and re-
sponse generation task by proposing an option
based framework of Hierarchical RL and varia-
tional model to learn a latent dialogue act that cor-
responds to natural language response. Unlike our
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method, HDNO though highlights the risk of spar-
sity of metric function such as success rate as re-
ward function, resorts to shaping a proxy reward
function. It uses markov language model as a proxy
reward function. The language model is learnt in-
dependent of the metric function. Our method re-
frains from reward shaping and is independent of
the nature of any underspecified metric function.
Since we learn fine grained turn specific credit as-
signment, our solution can adapt to other metric
function as long as the pairwise reward network is
rich enough to factorize them.

A.2 Pairwise causal reward learning network
architecture

Figure 10: Pairwise causal reward learning network
architecture
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