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Abstract

Supervised parsing models have achieved im-
pressive results on in-domain texts. However,
their performances drop drastically on out-of-
domain texts due to the data distribution shift.
The shared-private model has shown its promis-
ing advantages for alleviating this problem via
feature separation, whereas prior works pay
more attention to enhancing shared features
but neglect the in-depth relevance of specific
ones. To address this issue, we for the first
time apply a dynamic matching network on the
shared-private model for semi-supervised cross-
domain dependency parsing. Meanwhile, con-
sidering the scarcity of target-domain labeled
data, we leverage unlabeled data from two as-
pects, i.e., designing a new training strategy to
improve the capability of the dynamic match-
ing network and fine-tuning BERT to obtain
domain-related contextualized representations.
Experiments on benchmark datasets show that
our proposed model consistently outperforms
various baselines, leading to new state-of-the-
art results on all domains. Detailed analysis on
different matching strategies demonstrates that
it is essential to learn suitable matching weights
to emphasize useful features and ignore useless
or even harmful ones. Besides, our proposed
model can be directly extended to multi-source
domain adaptation and achieves best perfor-
mances among various baselines, further veri-
fying the effectiveness and robustness.

1 Introduction

Dependency parsing aims to capture syntactic and
semantic information over input words via a de-
pendency tree. As depicted in Figure 1, given an
input sentence s = w0w1 . . . wn, a dependency
tree is defined as d = {(h,m, l), 0 ≤ h ≤ n, 1 ≤
m ≤ n, l ∈ L}, where (h,m, l) is a dependency
from the head word wh to the modifier word wm

with the relation label l ∈ L. Recently, supervised
neural models have achieved significant improve-
ments in dependency parsing (Chen and Manning,

$ 好 萌 ， 好 可爱 ！

$ very cute , very lovely !

root
adv punc

sasubj

adv punc

Figure 1: An example of a dependency tree which is
from the target-domain product comment (PC) data.

2014; Andor et al., 2016; Kiperwasser and Gold-
berg, 2016; Dozat and Manning, 2017; Li et al.,
2019a). Particularly, Dozat and Manning (2017)
propose a BiAffine parser and achieve good results
on various languages.

In order to obtain better performance, supervised
parsing models rely on sufficient in-domain train-
ing data. However, the parsing accuracy degrades
significantly when the training data is from out-of-
domain that has a large gap between the in-domain
data.The main reason can be attributed to differ-
ent feature distributions between source and target
domains. Thus modeling the relevance of these
distributions becomes the key challenge for cross-
domain dependency parsing.

In the past few years, semi-supervised depen-
dency parsing has attracted more attention with the
surge of labeled web data that are user-generated
non-canonical texts (Yu et al., 2013; Peng et al.,
2019; Li et al., 2019b; Dakota et al., 2021). As
shown in Figure 2, these approaches for model-
ing the similarity and discrepancy among differ-
ent domains can be classified into three categories.
The fully-shared model treats source and target
domains equally and shares all model parame-
ters, which may extract domain-invariant features
but fail to capture domain-specific ones. In con-
trast, the fully-private model exploits completely
independent encoders for each domain, which can
better capture domain-specific features but ignore
domain-invariant ones. To combine the advantages
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Figure 2: Three basic frameworks for semi-supervised dependency parsing where the red solid lines represent the
target domain information stream and the blue dashed lines are the source domain information stream.

of fully-shared and fully-private models, the shared-
private model naturally separates domain-invariant
and domain-specific features via shared and pri-
vate encoders (Daumé III, 2007; Kim et al., 2016).
However, this model still has two issues, i.e., ne-
glecting the in-depth relevance of specific ones and
failing to utilize unlabeled data effectively.

For the first issue, we investigate feature trans-
fer approaches that encourage the target feature
space to learn useful knowledge from source do-
main (Zagoruyko and Komodakis, 2017; Jang et al.,
2019; Wright and Augenstein, 2020; Li et al.,
2020a). Particularly, Jang et al. (2019) successfully
use meta-learning to learn transfer weights between
heterogeneous architectures and tasks. Motivated
by this work, we propose a dynamic matching net-
work based on the shared-private model for semi-
supervised dependency parsing. Concretely, our
model automatically generates matching weights
to emphasize useful information and filter useless
or even harmful features, thus further improving
the power of target feature space.

For the second issue, considering that manu-
ally annotating samples for a new domain is time-
consuming and expensive, we endeavour to effec-
tively utilize target-domain unlabeled data. We de-
sign a new training strategy to use unlabeled data to
enhance the power of matching network, thus mod-
eling more effective specific features for the target
domain. Meanwhile, we fine-tune BERT model
with language model loss to obtain more reliable
domain-related contextualized representations.

Experiments on benchmark datasets show that
our proposed model outperforms the top submitted
system in the NLPCC-2019 shared task (Li et al.,
2019c), leading to new state-of-the-art results on
all domains. In addition, detailed analysis on differ-

ent matching settings reveals insights on the effect
of intermediate source features. The extension on
multi-source domain adaptation further verifies the
effectiveness and robustness of our model. The
code is released at https://github.com/
suda-yingli/ACL2022-match to facilitate
future research.

2 BiAffine Parser

In this work, we use the simple yet effective Bi-
Affine parser (Dozat and Manning, 2017) as our
basic model, which consists of four components,
i.e., Input Layer, BiLSTM Encoder, MLPs (multi-
layer perceptron), and BiAffines.

Inputs. Each input word wi is mapped into a
dense vector xi. The vector is the concatenation
of pre-trained word embedding embwordi and its
Chinese character representation repchari ,

xi = embwordi ⊕ repchari (1)

where repchari is generated by using one-layer
BiLSTM to encode the characters of word wi (Lam-
ple et al., 2016). In addition, we also use BERT
representations to enhance our baseline where
embwordi is substituted by repBERTi simply.

BiLSTM. A three-layer BiLSTM is applied to
sequentially encode the input vectors x0x1 . . .xn

in two independent directions (forward and back-
ward), and generates context-aware word represen-
tations h

′
0h

′
1 . . .h

′
n via combining the outputs of

both directions.
MLPs. Two separate MLPs are used to obtain

syntax-related lower-dimensional vectors.

rH
i , r

D
i = MLPH(h

′
i),MLPD(h

′
i) (2)

where MLPH(∗) and MLPD(∗) have a single hid-
den layer with the ReLU activation function. rH

i
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and rD
i are vector representations of wi as a head

or a dependent word.
BiAffines. The score of a dependency i← j is

obtained via BiAffine attention,

score(i← j) = rH
j U

1rD
i + r H

j U2 (3)

where U1 and U2 are parameters. After obtaining
the scores, the parser finds the highest-scoring tree
with the dynamic programming algorithm known
as maximum spanning tree (McDonald et al., 2005).
Then, the classification of dependency labels is
treated as a separate task, and the arc-factorization
score is computed as follows:

score(i
l←− j) = r H

j U3rD
i +(rH

j ⊕rD
i )U

4+b (4)

where U3, U4, and b are parameters, and l is the
relation label.

Parsing loss. During training, the parser com-
putes two independent cross-entropy losses for
each position, i.e., maximizing the probability of
its correct head and the correct label between them.

Lpar(i
l←− j) =− log

escore(i←j)∑
0≤k≤n,k ̸=i

escore(i←k)

− log
escore(i

l←−j)∑
l′∈L e

score(i
l′←−j)

(5)

where wj is the gold-standard head of wi, and l is
the corresponding gold relation label.

3 Our Approach

Semi-supervised dependency parsing aims at learn-
ing a parser that generalizes well to the target do-
main. Although supervised parser has achieved
good results on in-domain data, the parsing perfor-
mance drops dramatically when the training data is
mainly from the out-of-domain. The shared-private
model has been proven effective for alleviating this
problem. However, the model ignores the in-depth
relevance of specific ones and fails to directly use
unlabeled data for model training. To address these
problems, we for the first time apply a dynamic
matching network on the shared-private model to
learn appropriate matching weights automatically
via mimicking well-trained source features. As
shown in Figure 3, our model mainly contains two
components, i.e., a shared-private schema for fea-
ture separation and a dynamic matching network

BiLSTM (sha)BiLSTM (tgt)BiLSTM (src)

xtgt xsrcxtgtxtgt xsrc

MLP

BiAffine

Dynamic Matching

Matching Loss

Figure 3: The framework of our proposed model.

for capturing the relevance of domain-specific fea-
tures. In addition, we propose a new strategy for
our model training to make full use of all labeled
and unlabeled data.

3.1 Shared-private Schema
The framework of vanilla shared-private model is
shown in Figure 2(c). First, each input word is
encoded by the shared BiLSTM and its private
BiLSTM to obtain domain-invariant and domain-
specific representations. Then, the two represen-
tations are combined as the final context-aware
representation h

′
i, which is fed into shared MLPs

to obtain syntax-related information. Next, we ob-
tain the scores of dependency arcs and labels via
shared BiAffines. Finally, all model parameters are
updated via minimizing the parsing loss.

Orthogonality constraints. Although the
shared-private model has separated domain-
invariant and domain-specific features via the
shared and private encoders, the two type features
may interfere with each other. To alleviate this
problem, we apply orthogonality constraints to en-
courage the domain-specific features to be mutually
exclusive with the shared ones. Following Bous-
malis et al. (2016), we define the loss of orthogo-
nality constraints as follows:

Lort =

{∑n
i=0

∥∥(hi)
Tsi

∥∥ , if wi ∈ {src}∑n
i=0

∥∥(hi)
Tti

∥∥ , if wi ∈ {tgt}
(6)

where hi is the output of shared BiLSTM, si and ti
are the outputs of source-domain and target-domain
private BiLSTMs.

3.2 Dynamic Matching Network
In practical application, some source features are
more important than others while some are irrel-
evant or even harmful depending on the domain
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Figure 4: The framework of dynamic matching network.

differences. Hence, directly neglecting source fea-
tures seems especially profligate. Motivated by
Jang et al. (2019), we for the first time apply a
dynamic matching network on the shared-private
model to learn matching weights automatically.
Thus the model is able to pay more attention on
useful source features and ignore the useless ones.
Considering the source features are well-trained
with sufficient labeled data, mimicking these fea-
tures may be helpful for enhancing the power of
the target feature representational space. Hence,
we minimize l2 objection to transfer the knowledge
from source features to the target ones:

||fθ(tmi )− sni ||22 (7)

where fθ(∗) is a linear transformation, tmi is the
mth-layer output of target-domain private BiLSTM,
and sni is the nth-layer output of source-domain pri-
vate BiLSTM. As shown in Figure 4, the key of
dynamic matching network is learning layer match-
ing weights W and element matching weights Q.

Layer matching weights W. Intuitively, each
intermediate feature of source domain has a com-
pletely different effect on the target domain. When
we exploit the matching network to learn useful in-
formation from the source domain, a key problem
is to decide the layer matching pair (n,m). Previ-
ous works select the matching pair based on prior
knowledge of architectures or semantic similarities
between tasks (Romero et al., 2015; Zagoruyko and
Komodakis, 2017). To reduce the complexities of
matching pair selection, we use a learnable layer
matching weight W(n,m) ≥ 0 for each pair (n,m)
which can decide the amount of feature matching
between the nth-layer outputs of source-domain pri-
vate BiLSTM and the mth-layer outputs of target-
domain private BiLSTM.

Wn,m = gn,mϕ (sni ) (8)

where the Relu function is used to ensure non-
negativeness of W.

Element matching weights Q. After obtaining
layer matching weight Wn,m, we need to learn
element matching weight Qn,m

d to emphasize the
useful intermediate elements according to their util-
ity on the target domain. The matching loss of
matching pair (n,m) is

Ln,mmat = Wn,m 1

D

D∑
d=1

Qn,m
d (fθ(t

m
i )− sni )

2
d (9)

where D is the dimension of the BiLSTM output.
Qn,m

d is the non-negative weight of element d with∑D
d=1Q

n,m
d = 1. Since the important elements to

transfer can vary for each input word wi, we set
element transfer weights as follows:

Qn,m
d = softmax

(
rn,mϕ (sni )

)
d

(10)

where rn,mϕ (∗) is the linear transformation.
After obtaining the element and layer matching

weights, the combined matching loss is

Lmat =
1

K

∑
n,m

Ln,m
mat

=
1

KD

∑
n,m

Wn,m
D∑

d=1

Qn,m
d (fθ(t

m
i )− sni )

2
d

(11)

where n,m ∈ {1, 2, 3} are the layer number of
BiLSTM, and K = 3 ∗ 3 = 9 is the number of
matching pairs.

3.3 Joint Training Method
In order to make full use of all available training
data, our model adopts a joint training strategy as
shown in Algorithm 1. Here we split parameters in
the model into two groups: 1) parsing parameters θ
include all parameters of shared-private model and
the linear function fθ(∗); 2) matching parameters
ϕ include the parameters of all functions that gen-
erate matching weights. To balance the parsing and
matching tasks, we give them different loss weights
and update the dynamic matching parameters with
a smaller learning rate.

In the joint training process, minibatches of
source domain and target domain take turns to train
(lines 3-5 and 6-11, respectively). When the mini-
batch is from the source domain, we update the
parsing parameters θ with parsing and orthogonal-
ity losses. When the minibatch comes from target
domain, if the data is annotated, the total model
(θ & ϕ) is jointly trained with parsing, orthogonal-
ity and matching losses; otherwise only matching
parameters ϕ are updated with the matching loss.
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Algorithm 1 Joint Training Procedure
Input: source-domain labeled data Sl, target-domain

labeled data Tl and target-domain unlabeled
data Tu.

Hyper-parameters: loss weights α and β.
1: Repeat
2: Take turns to sample a mini-batch x from Sl

or Tl/Tu.
3: if x ∈ Sl:
4: Accumulate loss L = Lpar + αLsrc

ort
5: Updating parameters θ via minimizing L.
6: if x ∈ Tl:
7: Accumulate loss L = Lpar + αLtgt

ort + βLmat
8: Updating all parameters via minimizing L.
9: if x ∈ Tu:
10: Accumulate loss L = αLtgt

ort + βLmat
11: Updating parameters ϕ via minimizing L.
12: until convergence

BC PC PB ZX
train 16,339 6,885 5,129 1,645
dev 997 1,300 1,300 500
test 1,992 2,600 2,600 1,100

unlabeled - 349,922 291,481 33,792

Table 1: Data statistics in sentence number

4 Experiments

4.1 Experimental Settings
Datasets. We use the Chinese multi-domain de-
pendency parsing datasets released at the NLPCC-
2019 shared task1, containing four domains: one
source domain which is a balanced corpus (BC)
from news-wire, three target domains which are
the product comments (PC) data from Taobao, the
product blog (PB) data from Taobao headline, and
a web fiction data named “ZhuXian” (ZX). Table 1
shows the detailed data statistics.

Evaluation. We use unlabeled attachment score
(UAS) and labeled attachment score (LAS) to two-
evaluate the dependency parsing accuracy (Hajic
et al., 2009). Each model is trained for at most
1, 000 iterations, and the performance is evaluated
on the dev data after each iteration for model selec-
tion. We stop the training if the peak performance
does not increase in 100 consecutive iterations.

Hyper-parameters. We set the dimension
of char embedding to 100. We train word2vec
(Mikolov et al., 2013) on Chinese Gigaword Third
Edition to obtain pre-trained word embeddings. To
see the effect of contextualized representations, we
use the released Chinese BERT-Base model2 to

1http://hlt.suda.edu.cn/index.php/
Nlpcc-2019-shared-task

2https://github.com/google-research/
bert

yield BERT representations for each word. The av-
eraged sum of the top four layer outputs is reduced
into a dimension of 100 via an MLP. The learning
rate for feature matching network and loss weights
α and β are set as 10−4, 0.01, and 0.01. For other
hyper-parameters, we keep the default configura-
tion in BiAffine parser (Dozat and Manning, 2017).

Baseline models. To verify the effectiveness
of our proposed model, we select the following
models as our strong baselines.

• FulSha (Fully-shared). The FulSha model,
shown as Figure 2(a), directly trains the Bi-
Affine parser with all labeled data from source
and target domains.

• FulPri (Fully-private). The FulPri model,
shown as Figure 2(b), exploits two indepen-
dent BiLSTMs to separate source and target
features absolutely.

• ShaPri (Shared-private). As shown in Fig-
ure 2(c), the ShaPri model can combine the
advantages of fully-shared and fully-private
models. It captures domain-invariant and
domain-specific features simultaneously via
utilizing two private and one shared BiL-
STMs.

• DoEmb (Domain Embedding). The DoEmb
model, proposed by Li et al. (2019b), has been
proven effective for semi-supervised depen-
dency parsing. The key idea is to use an extra
domain embedding to indicate which domain
the input sentence comes from.

• ADE (Adversarial Domain Embedding). Li
et al. (2020b) successfully apply adversarial
learning on the Doemb model and achieve
good performances on semi-supervised depen-
dency parsing. They leverage an extra domain
embedding to capture domain-related informa-
tion and adversarial network to extract more
shared knowledge across different domains.

4.2 Analysis on Different Datasets
To gain more insights on the data distribution of dif-
ferent domains, we give a detailed analysis on our
benchmark datasets from both lexical and syntactic
aspects. On the one hand, we calculate word dis-
tributions for each domain. Figure 5 clearly shows
that the same word appearing in different domains
has completely different distributional probabili-
ties. For example, the distributional probabilities
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Figure 5: Word distributional probabilities of different
domains.
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Figure 6: Sentence distributional probabilities of differ-
ent domains.

of word “的” are 0.46 in BC domain, 0.43 in PC do-
main, 0.35 in PB domain, and 0.26 in ZX domain.
Thus, it may inevitably lead to the shift of data dis-
tributions between different domains. On the other
hand, we count sentence distributions for each do-
main based on the punctuation of input sentences.
As shown in Figure 6, we find that the sentence dis-
tribution of source domain (BC) is similar to target
domains (PB and ZX), but it is much different from
the PC domain. The main reason is that the data
of PC domain is non-canonical and contains a lot
of ellipsis phenomena. Hence, not all source do-
main knowledge is equally important for the target
domain, and it is necessary to automatically select
the useful information from the source domain to
enhance the performance on the target domain.

4.3 Utilization of Unlabeled Data

In this work, we leverage unlabeled data from
two aspects: 1) learning more appropriate match-
ing weights via enhancing the power of the dy-

77
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77
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None 1/4 1/2 3/4 1 2 4 8 16

62

63

Ratio of target-domain unlabeled data size to source-domain labeled data size

PC data

Figure 7: Influence of utilizing different amount of
unlabeled data on our proposed model.

PC PB ZX AVG
UAS LAS UAS LAS UAS LAS UAS LAS

Models with BERT
FulPri 71.58 64.15 83.53 79.26 84.25 80.00 79.79 74.47
FulSha 72.71 64.75 84.44 80.40 85.73 81.73 80.96 75.63
ShaPri 73.34 65.68 84.59 80.57 85.77 82.08 81.23 76.11
Our 74.29 67.09 85.49 81.24 85.69 82.76 81.82 77.03

Models with Fine-tuned BERT
FulPri 73.55 65.88 83.89 79.62 83.17 79.04 80.20 74.85
FulSha 74.12 66.44 84.66 80.60 86.65 82.73 81.81 76.59
ShaPri 73.97 66.72 84.53 80.32 86.49 82.85 81.66 76.63
Our 75.66 68.59 86.33 82.45 86.85 82.89 82.95 77.98

Table 2: Results of different models on dev data regard-
ing the utilization of BERT.

namic matching network; 2) obtaining more reli-
able domain-related word representations by fine-
tuning BERT.

Since the amount of labeled data on target do-
main is much smaller than the source domain, we
attempt to utilize target-domain unlabeled data to
help the model to learn matching weights. Figure 7
illustrates the influence of unlabeled data sizes on
dev data. In each curve, we fix the size of source-
domain labeled data and incrementally add a ran-
dom subset of target-domain unlabeled data. On
the one hand, enlarging the size of unlabeled data
leads to consistent improvements when the ratio is
less than 3/4. This shows that the unlabeled data
plays an important role in the matching weights
learning. On the other hand, we can see that the
parsing performance slightly degrades when the
ratio increases larger than 1, indicating that the
usefulness of the unlabeled data becomes limited
when the size is too large.

Additionally, we leverage large-scale target-
domain unlabeled data to fine-tune BERT model
parameters, and detailed comparative experimental
results are shown in Table 2. First, we observe
that the model with fine-tuned BERT consistently
outperforms the one with primary BERT represen-
tations, demonstrating that fine-tuning BERT is
able to learn domain-related knowledge. Second,
even the accuracy gap between different models re-
duces, our proposed model still achieves better per-
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PC PB ZX AVG
UAS LAS UAS LAS UAS LAS UAS LAS

Results of previous works
Yu (19)* 72.18 64.12 82.57 77.83 80.53 75.84 78.43 72.60
Peng (19)FE 73.16 64.33 83.05 78.57 82.09 77.08 79.43 73.33
Li (19)FB* 75.25 67.77 85.53 81.51 86.14 81.65 82.30 76.98
Li (20)FB 75.93 68.34 85.07 80.99 85.94 81.45 82.31 76.93

Compare with baseline models
FulPri 70.02 61.43 79.60 74.74 76.56 71.05 75.39 69.07
FulSha 69.66 61.21 80.03 75.26 79.42 74.55 76.37 70.34
ShaPri 70.47 62.06 80.14 75.10 79.27 74.21 76.63 70.46
DoEmb 70.31 61.45 79.71 74.67 79.65 74.61 76.56 70.24
ADE 71.41 63.16 80.35 75.55 80.26 75.30 77.34 71.33
Our 71.91 63.88 81.24 76.61 80.44 75.58 77.86 72.03

Enhance models with BERT representations
FulPri 72.75 65.08 83.96 79.64 83.08 78.48 79.93 74.40
FulSha 73.87 66.12 84.21 79.98 84.75 80.23 80.94 75.44
ShaPri 73.88 66.35 84.50 80.15 84.73 80.29 81.03 75.59
DoEmb 74.10 66.39 84.10 79.79 84.93 80.46 81.04 75.55
ADE 74.61 66.81 84.77 80.62 85.06 80.60 81.48 76.01
Our 75.24 67.36 85.38 81.21 85.87 81.54 82.16 76.71
OurFB 76.73 69.38 86.06 81.63 86.56 82.49 83.12 77.83

Table 3: Final results on test data where “FE” denotes
“model with fine-tuned ELMo”, “FB” denotes “model
with fine-tuned BERT”, and “*” denotes “model ensam-
ble”.

formance than the ShaPri model, which further ver-
ifies the effectiveness of feature matching network.
Overall, unlabeled data is extremely helpful to en-
hance the feature representations that contribute
for semi-supervised dependency parsing via fine-
tuning BERT or enhancing the power of feature
matching network.

4.4 Final Results

Table 3 shows the final results on test data and
makes a comparison with previous works. First, we
can see that the ShaPri model achieves better per-
formance than FulPri and FulSha models, demon-
strating that both domain-invariant and domain-
specific features are helpful for semi-supervised
dependency parsing. More specially, the FulSha
model outperforms the FulPri one on PB and ZX
domains but slightly declines on PC domain, pos-
sibly because the huge divergence between source
and target domains leads to the interference for
shared features learning. Although the ShaPri
model already achieves better parsing accuracy, our
model still outperforms it by 1.5% improvement in
averaged LAS, indicating that the dynamic match-
ing network is useful for enhancing the capability
of target feature representational space via learning
information from source domain. Second, the uti-
lization of BERT boosts all model performances by
a large margin. Fine-tuning BERT with unlabeled
data can further enhance the model performance.
Even the baseline models with BERT become much
stronger, our proposed model still achieves the best
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Figure 8: Accuracy curves regarding matching pairs.

PC PB ZX AVG
UAS LAS UAS LAS UAS LAS UAS LAS

None 70.06 61.59 81.10 76.24 81.52 76.79 77.56 71.54
One 71.07 62.64 81.40 77.10 82.53 78.24 78.33 72.66
All 70.16 62.13 81.51 76.80 82.29 77.68 77.99 72.20
Learned 70.86 62.93 81.96 77.76 82.81 78.32 78.54 73.00

Table 4: Results of our proposed model on dev data with
different matching settings.

performance, which further demonstrates the ef-
fectiveness of our proposed model. Finally, we
present the remarkable results of previous works
in the top block. Yu et al. (2019) combine self-
training and model ensemble approaches to im-
prove the model performance. Peng et al. (2019)
re-implement the DoEmb model with fine-tuned
ELMo using the codes released by Li et al. (2019b).
The top system submitted by Li et al. (2019c) joints
the advantages of tri-training, model ensemble, and
BERT for the model training. (Li et al., 2020b) pro-
pose the ADE model and utilize fine-tuned BERT
for semi-supervised dependency parsing, achieving
competitive performances with the top system. Our
proposed single model outperforms all these base-
line models, leading to new state-of-the-art results
on all domains.

4.5 Effect on Different Matching Settings
Because there still lacks related studies of feature
transfer on semi-supervised dependency parsing,
we for the first time design detailed comparative
experiments to gain more insight on the impact of
migrating the intermediate features from source to
target domain. Here, “One-to-one” means only se-
lecting a matching pair with the matching weight
1; “All-to-all” means that all matching pairs are
used with matching weights 1; “Learned matching”
means that all matching pairs are used with gener-
ated matching weights by our matching network.

Figure 8 shows results of different “One-to-one”
models where “1to3” means learning information
from the 1th-layer outputs of source-domain private
BiLSTM to the 3th-layer outputs of target-domain
private BiLSTM. First, we can see that almost all
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PC PB ZX AVG
UAS LAS UAS LAS UAS LAS UAS LAS

FulPri 68.44 59.96 79.35 74.60 74.43 70.22 74.07 68.26
FulSha 70.19 62.11 81.42 76.62 81.84 76.87 77.82 71.81
ShaPri 69.87 61.87 81.33 76.71 82.20 77.15 77.80 71.91
DoEmb 70.26 62.00 81.19 76.75 82.37 77.52 77.91 72.09
ADE 70.80 62.69 81.57 76.92 82.57 77.84 78.31 72.48
Our 71.36 63.67 82.00 77.53 82.45 78.16 78.61 73.12

Table 5: Results of multi-source domain adaptation on
dev data.

“One-to-one” models outperform the “None” one,
demonstrating that the model can learn some useful
information from source domain to target domain
via a simple feature matching process. Second,
the model achieves a slight improvement when
we transform features from the source domain to
the higher layer outputs of target private BiLSTM.
The reason may be that the higher layer outputs of
BiLSTM contain much syntax-related information
which has a higher domain relevance. Finally, we
find that different domains have different trends
in the curves, so it is difficult to select an explicit
matching setting that adapts all domains.

Table 4 presents that the best “One-to-one”
model achieves better performances than “All-to-
all”. We suspect the reason may be that “All-to-
all” model treats all matching pairs equally, thus
may lead to potential conflicts between different
matching pairs. Additionally, “Learned matching”
boosts the “All-to-all” performance by a large mar-
gin, indicating that our model is extremely useful
for learning matching weights and alleviating the
conflicts of feature transfer. Overall, the results
can clearly demonstrate that modeling appropriate
matching weights to emphasize useful information
and filter out harmful knowledge is crucial to im-
prove the capability of domain adaptation.

4.6 Applications on Multi-source Domain
Adaptation

Table 5 presents the parsing accuracy on dev data
where each model is trained with multi-source do-
main training data. For example, if the target do-
main is PC, its training data comes from BC, PB,
and ZX domains. On the one hand, we observe
that the same model trained with multi-source do-
mains slightly outperforms it trained with only one
source domain. The reason may be that although
multi-source domains can provide more knowledge
for the target domain, the data distribution shift
leads to the negative transfer. Therefore, using
all source domains simultaneously always requires

more sophisticated hand-crafted configurations of
the feature transfer. On the other hand, we can
see that our proposed model achieves the best per-
formance over various baselines. It demonstrates
that the learned matching weights are helpful for
constructing the relationships between target and
multiply source domains, thus further boosting the
parsing accuracy of the target domain.

5 Related Work

Domain adaptation generally falls into two cate-
gories: semi-supervised where large-scale labeled
data for the source and small-scale labeled data
for the target are available and unsupervised where
only the labeled data for the source domain is given.

5.1 Unsupervised Domain Adaptation

Due to the lack of target-domain labeled data, pre-
vious works focus on unsupervised domain adap-
tation. One stream of work attempts to create
pseudo training samples for the target domain via
self-training, co-training, or tri-training processes
(Yarowsky, 1995; Blum and Mitchell, 1998; Clark
et al., 2003; Søgaard and Rishøj, 2010; Yu et al.,
2015; Li et al., 2019c; Saito et al., 2020). As a coin
has two sides, self-training has been proven ef-
fective on cross-domain constituency parsing (Mc-
Closky et al., 2006) and dependency parsing (Yu
et al., 2015), but Charniak (1997) reports either mi-
nor improvements or significant damage for parsing
by self-training. Clark et al. (2003) show the same
findings on POS-tagging. Both Sarkar (2001) and
Steedman et al. (2003) demonstrate that co-training
is helpful for cross-domain dependency parsing.
Li et al. (2019c) successfully use tri-training and
fine-tuned BERT to improve the parsing accuracy.
However, these approaches often require both cau-
tion and experience for selecting the appropriate
pseudo samples. Another stream of work focuses
on learning the feature representations from mul-
tiple source domain via mixture of experts. Kim
et al. (2017) combine the predictions of domain
experts via attention. Guo et al. (2018) propose a
mixture of experts which uses a point to set metric.
(Wright and Augenstein, 2020) extend the mixture
of experts method on large pre-trained transformer
models, leading to significant improvements. Mo-
tivated by these works, our work attempts to learn
the relationship between different domain-specific
representations.
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5.2 Semi-supervised domain adaptation

In the past few years, semi-supervised domain
adaptation for dependency parsing has achieved
great improvements with the development of pars-
ing communities (Chen et al., 2013; Yu et al., 2013;
Li et al., 2019b; Peng et al., 2019). Feature sep-
aration, as a strand work of semi-supervised do-
main adaptation, is first proposed by Daumé III
(2007) and achieves good results on sequence label-
ing tasks. Finkel and Manning (2009) extend this
method by using a hierarchical Bayesian prior. Kim
et al. (2016) apply it on neural-based model which
uses a shared and multiple private BiLSTMs to
separate domain-invariant and domain-specific fea-
tures. Adversarial learning is a common method to
encourage the shared encoder to extract more pure
domain-invariant features via cheating the domain
classifier (Ganin and Lempitsky, 2015; Bousmalis
et al., 2016; Cao et al., 2018). Most relatively,
Sato et al. (2017) apply adversarial learning on
shared-private model but find slight improvements
for semi-supervised dependency parsing. Li et al.
(2020b) also exploit adversarial learning on the
shared-private and domain embedding models with
two strategies and achieves better performances
than no-adversarial ones. Another strand work is
feature transformation. Ando and Zhang (2005) de-
sign a variety of auxiliary problems to learn various
aspects of the target problem from unlabeled data.
Chen et al. (2013) propose the traditional feature
transformation for dependency parsing which is
similar as a way of doing feature smoothing. Jang
et al. (2019) utilize the meta-learning to learn trans-
fer weights of heterogeneous networks and tasks,
leading to great improvements. Hu et al. (2021)
propose a multi-view framework which combines
multiple source models into an aggregated source
view at language, sentence, or sub-structure levels.
However, there still lacks related researches on the
neural-based model for cross-domain dependency
parsing.

6 Conclusion

This work proposes a feature matching shared-
private model for semi-supervised dependency
parsing. Meanwhile, we utilize unlabeled data to
enhance the power of feature matching network
and the BERT representations. Our proposed ap-
proach achieves consistent improvements among
various baseline models, leading to new state-of-
the-art results on all domains. The detailed analysis

shows that compared with manual matching setting,
the automatically learned matching weights by our
designed dynamic matching network can improve
the parsing accuracy. Furthermore, our proposed
model can be directly extended to multi-source do-
main adaptation and achieves the best performance
among various baselines, further demonstrating
the effectiveness and robustness of our proposed
method.
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