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Abstract

Transferring the knowledge to a small model
through distillation has raised great interest in
recent years. Prevailing methods transfer the
knowledge derived from mono-granularity lan-
guage units (e.g., token-level or sample-level),
which is not enough to represent the rich seman-
tics of a text and may lose some vital knowl-
edge. Besides, these methods form the knowl-
edge as individual representations or their sim-
ple dependencies, neglecting abundant struc-
tural relations among intermediate representa-
tions. To overcome the problems, we present
a novel knowledge distillation framework that
gathers intermediate representations from mul-
tiple semantic granularities (e.g., tokens, spans
and samples) and forms the knowledge as more
sophisticated structural relations specified as
the pair-wise interactions and the triplet-wise
geometric angles based on multi-granularity
representations. Moreover, we propose distill-
ing the well-organized multi-granularity struc-
tural knowledge to the student hierarchically
across layers. Experimental results on GLUE
benchmark demonstrate that our method out-
performs advanced distillation methods.

1 Introduction

Recent years have witnessed a surge of pre-trained
language models (Devlin et al., 2019; Lewis et al.,
2020; Clark et al., 2020; Brown et al., 2020). Build-
ing upon the transformer architecture (Vaswani
et al., 2017) and pre-trained on large-scale cor-
pora using self-supervised objectives, these PLMs
have achieved remarkable success in a wide range
of natural language understanding and generation
tasks. Despite their high performance, these PLMs
usually suffer from high computation and memory
costs, which hinders them from being deployed

∗Corresponding authors: Chongyang Tao and Dongyan
Zhao.

into resource-scarce scenarios, e.g., mobile phones
and embedded devices.

Various attempts have been made to compress
the huge PLMs into small ones with minimum
performance degradation. As one of the main
approaches, knowledge distillation (Hinton et al.,
2015) utilizes a large and powerful teacher model
to transfer the knowledge to a small student model.
Based on the teacher-student framework, Jiao et al.
(2020); Wang et al. (2020) distilled the token-level
representations and attention dependencies to the
student, Sanh et al. (2019); Sun et al. (2019) taught
the student to mimic the output logits of the teacher,
Sun et al. (2020) enforced the student’s represen-
tation to be closed to the teacher’s while pushing
negative samples to be far apart. Although proved
effective, existing approaches have some flaws. For
one thing, these distillation methods only adopted
the representations of mono-granularity language
units (i.e., token-level or sample-level), while ne-
glecting other granularity. For another, their distil-
lation objectives either matched the corresponding
representations between the teacher and the stu-
dent or aligned the attention dependencies, failing
to capture more sophisticated structural relations
between the representations.

To address these issues, in this paper we pro-
pose a novel knowledge distillation framework
named Multi-Granularity Structural Knowledge
Distillation (MGSKD) through answering the three
research questions: (1) which granularity should
the knowledge be, (2) what form of knowledge
is effective to transfer and (3) how to teach the
student using the knowledge. For the “which” ques-
tion, given that natural languages have multiple
semantic granularities, we consider the intermedi-
ate representations in three granularities: tokens,
spans and samples. Specifically, we first take the
sub-word tokens as the smallest granularity, then
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select phrases and whole words as spans for they
hold complete meanings, and finally treat the whole
input texts as samples. We use mean-pooling to
obtain the representations of spans and samples
based on token representations. For the “what”
question, we propose to leverage the sophisticated
structural relations between the representations as
the knowledge. Concretely, instead of aligning the
corresponding representations of the teacher and
the student, we propose to form the knowledge as
the pair-wise interactions and the triplet-wise geo-
metric angels of a group of representations. For the
“how” question, following the recent findings that
the bottom layers capture syntactic features while
the upper layers encode semantic features (Jawahar
et al., 2019), we conduct hierarchical distillation
where the bottom layers of the student are taught
token-level and span-level knowledge while the
upper layers learn sample-level knowledge.

We conduct comprehensive experiments on
standard language understanding benchmark
GLUE (Wang et al., 2018). Experimental results
demonstrate that our knowledge distillation frame-
work outperforms strong baselines methods. Sur-
prisingly, MGSKD achieves comparable or better
performance than BERTbase on most of the tasks
on GLUE, while keeping much smaller and faster.
Our contributions in this paper are three folds:
• We are the first to leverage multi-granularity se-

mantic representations in language (i.e., the repre-
sentations of tokens, spans and samples) for knowl-
edge distillation.
• We propose to form the knowledge as sophisti-

cated structural relations specified as the pair-wise
interactions and the triplet-wise geometric angles
based on multi-granularity representations.
• We conduct comprehensive experiments on

GLUE benchmark and MGSKD achieves superior
results over other knowledge distillation baselines.

2 Related Work

Language Model Compression. Pre-trained lan-
guage models (Devlin et al., 2019; Clark et al.,
2020; Brown et al., 2020) perform remarkably well
on various applications but at the cost of high com-
putation and memory usage. To deploy these pow-
erful models into resource-scarce scenarios, var-
ious attempts have been made to compress the
language models into small ones. Quantization
methods (Zafrir et al., 2019; Shen et al., 2020;
Zhang et al., 2020; Bai et al., 2021) convert the

model parameters to lower precision. Pruning ap-
proaches identify then remove unimportant individ-
ual weights or structures (Michel et al., 2019; Fan
et al., 2019; Gordon et al., 2020; Hou et al., 2020).
Weight sharing techniques (Dehghani et al., 2018;
Lan et al., 2019) allow the model to reuse the trans-
former layer multiple times to reduce parameters.

Knowledge Distillation. Knowledge distilla-
tion (Hinton et al., 2015) is another major line of re-
search to do model compression, which is the main
concentration in this paper. Hinton et al. (2015)
first proposed to minimize the KL-divergence be-
tween the predicted distributions of the teacher
and the student. Sanh et al. (2019); Sun et al.
(2019); Liang et al. (2020) adopted this objective
to teach the student on masked language model-
ing or text classification tasks. Romero et al.
(2014) proposed to directly match the feature acti-
vations of the teacher and the student. Jiao et al.
(2020) followed the idea and took the intermedi-
ate representations in each transformer layer of
the teacher as one of the knowledge to be trans-
ferred. Tian et al. (2019) proposed a contrastive
distillation framework where the teacher’s represen-
tations were treated as positives to the correspond-
ing student’s representations. Sun et al. (2020);
Fu et al. (2021) customized this idea to language
model compression and proved its effectiveness.
Researchers also attempted to use the mutual rela-
tions of representations as the knowledge to trans-
fer. In the literature of image classification, Peng
et al. (2019); Tung and Mori (2019); Park et al.
(2019) pointed out that the relations of the image
representations of the teacher should be preserved
in the student’s feature space, and adopted a series
of geometric measurements to model the sample
relations. For distilling transformer models, Park
et al. (2021) enforced the relations across tokens
and layers between the teacher and the student to
be consistent. Jiao et al. (2020); Wang et al. (2020,
2021) used the attention dependencies between to-
kens to teach the student. In this paper, we propose
to transfer the multi-granularity knowledge to the
student. Different from previous works that only
considered a single granularity of representations,
we jointly transfer the token-level, span-level and
sample-level structural knowledge. And compared
with Shao and Chen (2021) which considered the
multi-granularity visual features in an image as the
knowledge, our method works in a different modal-
ity, presents a different definition of granularity,
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Figure 1: The overall framework of MGSKD.

and prepares the multi-granularity knowledge as
the structural relations among representations.

3 Method

We propose Multi-Granularity Structural
Knowledge Distillation, a novel framework to
distill the knowledge from a large transformer
language model to a small one. Different from
previous works that transferred the knowledge
derived from either token-level or sample-level
outputs, we prepare the knowledge in three
semantic granularities: token-level, span-level
and sample-level. Given some granularity of
representations of the teacher model, we form
the knowledge as the structural relations, i.e.,
the pair-wise interactions and the triplet-wise
geometric angles, between the representations. We
then distill the well-organized structural knowledge
to the student hierarchically across layers, where
the token-level and the span-level knowledge
are transferred to the bottom layers to provide
more syntactic guidance while the sample-level
knowledge is transferred to the upper layers to
offer more help of semantic understanding. The
framework of MGSKD is illustrated in Figure 1.

3.1 Multi-granularity Representation
Natural languages have multiple granularities of
conceptual units. In the context of pre-trained
transformers (Devlin et al., 2019), the basic unit is
the tokens produced by sub-word tokenizers (Wu
et al., 2016; Radford et al., 2019). Several consec-

utive tokens become a text span, and the sample
is comprised of all the tokens it contains. Exist-
ing knowledge distillation approaches (Jiao et al.,
2020; Wang et al., 2020; Sun et al., 2020; Fu et al.,
2021) focused on one granularity of representation,
neglecting that texts are built upon language units
from multiple granularities. Intuitively, incorporat-
ing multi-granularity representations in knowledge
distillation may provide more guidance since the
student can be taught how to compose the semantic
concepts from small granularities to larger ones.
Therefore, we propose to gather multi-granularity
representations for knowledge distillation. We con-
struct three granularities of representations: tokens,
spans that hold complete meanings, and samples.

Token Representation. The first granularity is
the sub-word token, which is the foundation of
high-level granularity. Given an input text, a tok-
enizer such as WordPiece (Wu et al., 2016) splits
it into n tokens x = [t1, t2, . . . , tn]. The tokens
are converted to a sequence of continuous repre-
sentations E = [e1, e2, . . . , en] ∈ Rn×d through
the embedding layer. For the sake of clarity, we
treat the embedding layer as the 0-th layer and
set H0 = E. Then the token embeddings H0

are passed to L stacked transformer layers. The
l-th layer takes the output representations H l−1

of the previous layer as its input, and returns the
updated representations H l using multi-head at-
tention (MHA) and position-wise feed-forward net-
work (FFN). Herein, we obtainL+1 layers of token
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representations {H l}Ll=0 where H l ∈ Rn×d.

Span Representation. The second granularity is
the span, which is comprised of several consecu-
tive tokens. Different from SpanBERT (Joshi et al.,
2020) that randomly selects token spans whose start
positions and lengths are sampled from some dis-
tributions for masked language modeling, we pro-
pose to extract spans that have complete meanings.
Widely adopted sub-word tokenizers in pre-trained
transformers split some of the English words into
several sub-word tokens. We consider these whole
words consisting of multiple sub-word tokens, and
phrases, as meaningful spans. Sub-word tokens for
whole words are easy to obtain using WordPiece
tokenizer (Wu et al., 2016). While for phrase iden-
tification, we train a classifier-based English chun-
ker on CoNLL-2000 corpus (Tjong Kim Sang and
Buchholz, 2000) following the instructions1. We
then use the trained chunker to extract noun phrases
(NP), verb phrases (VP), and prepositional phrases
(PP). These identified phrases are tokenized by
WordPiece tokenizer to obtain tokens. Herein, we
can obtain ns token spans xspan = [s1, s2, . . . , sns ],
where si = [tj , tj+1, . . . , tj+nsi−1] denotes the i-
th span that starts at the j-th token and contains nsi
tokens. We then build span representations based
on token representations using mean pooling:

ĥl
i = Pool(H l

j:j+nsi
), (1)

where ĥl
i ∈ Rd is the representation of the i-th

span in layer l. We obtain L + 1 layers of span
representations as {Ĥ l}Ll=0 where Ĥ l ∈ Rns×d.

Sample Representation. The third granularity is
the input text sample itself. Based on token rep-
resentations again, we use mean-pooling to aggre-
gate all the token representations in a text sample
to form sample representation:

h̃l = Pool(H l), (2)

Herein, we get L+ 1 layers of sample representa-
tions as {h̃l}Ll=0 where h̃l ∈ Rd.

3.2 Structural Knowledge Extraction
With multi-granularity representations, we then
need to formulate the specific knowledge we aim
to transfer from the teacher to the student. Con-
sidering that an element holds its meaning only
when it is put into a semantic space where it has

1https://www.nltk.org/book/ch07.html

various relations to other elements, we propose
that the knowledge is better specified as the struc-
tural relations of the representations in a seman-
tic space, instead of the individual representations
themselves. Therefore, instead of directly match-
ing each hidden representation between the teacher
and the student, we propose to extract structural
relations from multi-granularity representations as
the knowledge to teach the student. We first project
the representations into multiple sub-spaces, then
we extract two types of structural knowledge: pair-
wise interactions and triplet-wise geometric angles.

Multi-head Modeling. A recent study by Wang
et al. (2021) pointed out that distilling knowl-
edge with multiple relation heads helps the student
learn better. Therefore, before extracting struc-
tural knowledge for intermediate representations,
we first project them into m sub-spaces, which
we call multi-head modeling. Specifically, given
a set of n representations R ∈ Rn×d, we linearly
project them into m sub-spaces whose dimensions
are d/m. 2 We use R′ ∈ Rm×n×d/m to denote the
multi-head representations which are then used for
extracting structural knowledge.

Pair-wise Interaction. Given two vectors
ri, rj ∈ Rd/m in a sub-space, we calculate their
interaction as their scaled dot product:

φ(ri, rj) =
ri · r⊺j√
d/m

. (3)

Herein, we obtain the multi-head pair-wise inter-
action features for each pair as P ∈ Rm×n×n,
where Ph,i,j denotes the interaction between the
i-th representation and the j-th representation in
the sub-space of the h-th relation head. Note that
P can be considered as the unnormalized self-
attention (Vaswani et al., 2017) scores for the given
representations, the difference lies in that in our
calculation the queries are identical to the keys.

Triplet-wise Geometric Angle. Pair-wise inter-
action features only consider two vectors at once,
which is not enough to represent the complicated
structural relations between representations in the
high-dimensional space. Therefore, we propose
to model the high-order relations as the geometric
angles for triplets of vectors. Specifically, given

2For the student model, its representations are linearly
projected into intermediate states whose dimensions are the
same as the teacher model’s hidden dimensions, so that it can
be split into m sub-spaces as the teacher model.

1004

https://www.nltk.org/book/ch07.html


a triplet of representations ri, rj , rk ∈ Rd/m, we
calculate their geometric angle as:

ψ(ri, rj , rk) = cos∠rirjrk = ⟨rij , rkj⟩

rij =
ri − rj

∥ri − rj∥2
, rkj =

rk − rj
∥rk − rj∥2

.
(4)

We can calculate the geometric angles for all the
triplets, and obtain T ∈ Rm×n×n×n where Th,i,j,k

stands for the angle of ∠rirjrk in the sub-space
of the h-th relation head. As the computation com-
plexity increases cubically with n, such a calcu-
lation is infeasible when the number of represen-
tations is large. Hereby, we propose a two-stage
selection strategy to sequentially select important
representations to form angles. Similar to Goyal
et al. (2020), we assume that the more attention a
representation receives from others, the more im-
portant it is. Therefore, we first calculate the self-
attention distributions A ∈ Rm×n×n by applying
softmax function on the last dimension of P . Then
for the j-th representation, we calculate a global
salient score sj by summing up self-attention dis-
tributions across all heads and all queries. Based
on the score, we pick the top-k1 salient representa-
tions as vertices. Next, if the i-th representation is
selected as vertex, we pick k2 representations with
the highest local salient score to form angles with
the vertex. We define the local salient score si,j
as the attention posed by the i-th representation on
the j-th representation, The salient scores si and
si,j are calculated as follows:

sj =

m∑
h=1

n∑
i=1

Ah,i,j , si,j =

m∑
h=1

Ah,i,j . (5)

Therefore, by sequentially selecting salient repre-
sentations to form angles, we reduce the computa-
tion complexity from O(mn3) to O(mk1k

2
2). By

choosing proper k2 and k2, we can facilitate the
computation of triplet-wise geometric angles for
any number of representations.

3.3 Hierarchical Distillation

We utilize the structural knowledge extraction ap-
proach described in Sec. 3.2 to prepare knowledge
based on three granularities of representations pre-
sented in Sec. 3.1 for distillation. Based on the
findings that the bottom layers capture syntactic
features while the upper layers encode semantic
features (Jawahar et al., 2019), we propose to con-
duct hierarchical distillation for the student where

different granularities of knowledge are transferred
to different layers. For a teacher model with Lt

layers and a student model with Ls layers, we first
define a layer mapping function g(·) that maps each
student layer to a teacher layer that it learns from.
Following previous work (Jiao et al., 2020), we
adopt the “uniform strategy” for g(·). Then we
transfer token-level and span-level knowledge to
the bottom-M layers of the student, while lever-
aging sample-level knowledge to teach its upper
Ls + 1−M layers.

Token- and Span-level. Specifically, given the
token-level and the span-level representations of
the teacher {H l

t, Ĥ
l
t}

Lt
l=0, we use Eq. 3 and Eq. 4

to calculate the pair-wise interactions and the
triplet-wise geometric angles among tokens and
spans within a single sample as {P l

t , P̂
l
t}

Lt
l=0 and

{T l
t , T̂

l
t}

Lt
l=0. Similarly, we can obtain the struc-

tural relations of the students: {P l
s, P̂

l
s}

Ls
l=0 and

{T l
s, T̂

l
s}

Ls
l=0. We then teach the student by mini-

mizing the differences of the structural relations
among their representations between the teacher
and the student:

Ltoken =
∑

0≤l<M

(ℓ1(P
g(l)
t ,P l

s) + ℓ2(T
g(l)
t ,T l

s))

Lspan =
∑

0≤l<M

(ℓ1(P̂
g(l)
t , P̂ l

s) + ℓ2(T̂
g(l)
t , T̂ l

s)).

(6)

Sample-level. Recall that we obtain {h̃l
t}

Lt
l=0 and

{h̃l
s}

Ls
l=0 for the teacher and the student where

h̃l
t, h̃

l
s ∈ Rd. Different from the structural knowl-

edge of tokens and spans which is modeled within
a sample, the sample-level structural relations rely
on a group of sample representations. Although
the choice of samples may make a difference to
the overall performance, here we simply gather
all the sample representations in a mini-batch to
calculate their structural relations as the sample-
level knowledge. Specifically, we only focus on
the triplet-wise relations {T̃ l

t}
Lt
l=0 and {T̃ l

s}Ls
l=0:

Lsample =
∑

M≤l≤Ls

ℓ2(T̃
g(l)
t , T̃ l

s). (7)

ℓ1 and ℓ2 in Eq. 6 and Eq. 7 are loss functions
that measure the distance between the structural
relations of the teacher’s and the student’s repre-
sentations. We empirically choose MSE for ℓ1 and
Huber loss (δ = 1) for ℓ2.
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Model #Params Speedup
SST-2 MRPC RTE STS-B MNLI-(m/mm) QNLI QQP CoLA
(Acc) (F1) (Acc) (Spear) (Acc) (Acc) (Acc) (Mcc)

BERTbase 109M ×1.0 92.8 90.3 65.3 88.4 84.6/84.4 91.3 91.2 56.8
ELECTRAbase 109M ×1.0 95.5 92.7 83.4 91.0 88.8/88.7 93.2 92.0 69.6

DistilBERT 66M ×2.0 91.3 - 59.9 86.9 82.2/ - 89.2 88.5 51.3
MiniLMv2 66M ×2.0 92.4 - 72.1 - 84.2/ - 90.8 91.1 52.5
CKD 66M ×2.0 93.0 89.6 67.3 89.0 83.6/84.1 90.5 91.2 55.1

Studentft 14M ×9.4 89.7 88.0 63.7 84.6 80.2/79.8 86.0 86.9 0.0
Student†MiniLMv2 14M ×9.4 92.9 90.3 67.1 88.7 83.7/83.4 89.5 90.9 43.5
Student†CKD 14M ×9.4 92.8 89.9 66.8 88.7 83.2/82.7 89.3 90.3 46.4
Student†MGSKD 14M ×9.4 93.7 90.7 67.9 89.2 84.7/84.3 89.6 91.6 44.8

Table 1: Evaluation results on the dev set of GLUE benchmark. The results of the models with 66M parameters are
taken from published papers. Our results are averaged for 3 runs with different random seeds. The best results of
the student models are in-bold. † means the method is implemented with the same distillation setting as ours.

Overall Objectives. The overall distillation ob-
jective for multi-granularity structural knowledge
distillation is:

L1 = λ1Lsample + λ2Ltoken + λ3Lspan, (8)

where λ1, λ2 and λ3 are weights of loss functions
of different granularities.

After this, we also teach the student to match the
prediction distributions with the teacher’s for text
classification tasks:

L2 = τ2DKL(zt/τ∥zs/τ), (9)

where zt and zs are the predicted probability distri-
butions of the teacher and the student respectively,
τ denotes the temperature.

4 Experiments

4.1 Datasets and Metrics
We conduct our experiments on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018). Sepcifically, there are 2
single-sentence tasks: SST-2 (Socher et al., 2013),
CoLA (Warstadt et al., 2019), 3 similarity and para-
phrase tasks: MRPC (Dolan and Brockett, 2005),
STS-B (Cer et al., 2017), QQP (Chen et al., 2018),
and 4 inference tasks: MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016), RTE (Ben-
tivogli et al., 2009), WNLI (Levesque et al., 2012).
Following previous work (Jiao et al., 2020; Wang
et al., 2021; Park et al., 2021), we evaluate our
method on 8 datasets except WNLI. We report ac-
curacy on 5 datasets: SST-2, QQP, MNLI, QNLI
and RTE. We report F1 score on MRPC, Matthews
correlation coefficient on CoLA, and Spearman’s
rank correlation coefficient on STS-B.

4.2 Implementation Details

We focus on task-specific distillation. We follow
Jiao et al. (2020) to augment the training sets for
each of the GLUE tasks using the code3 they re-
leased. We fine-tune ELECTRAbase on the origi-
nal training sets as the teacher model, and utilize
TinyBERT-4-3124 which is distilled on general cor-
pora as the initialization of our student model. For
token-level and span-level distillation, we use 64
relation heads for calculating pair-wise interactions,
and 1 relation head for triplet-wise angles due to its
huge computation and memory costs. And we set
k1 = k2 = 20 for calculating angles. For sample-
level distillation, we use 64 relation heads and set
k1 and k2 as the batch size. We distill token-level
and span-level knowledge to the bottom-2 layers
of the student and distill sample-level knowledge
to the other layers. For the structural distillation
objective, we set λ1 = 4, λ2 = λ3 = 1 to maintain
their gradient norms in the same order of magni-
tude. We first distill the student model using Eq. 8
for 50 epochs on CoLA and 20 epochs on other
tasks. The learning rate is 1e-5 and the batch size is
32. Then we use Eq. 9 to distill the predictions for
all tasks except STS-B since we empirically find
that directly fine-tuning after distillation using Eq.
8 yields better performance for it. For QQP and
CoLA, we adopt the original training set and distill
the student for 10 epochs while for other 5 tasks
we use the augmented training sets and distill the
student for 3 epochs. We set τ as 1.0, the learning

3https://github.com/huawei-noah/
Pretrained-Language-Model/blob/master/
TinyBERT/data_augmentation.py

4https://huggingface.co/huawei-noah/
TinyBERT_General_4L_312D
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Method SST-2 MNLI-(m/mm)
MGSKDm=1 92.5 83.6/82.9
MGSKDm=4 92.9 83.9/83.3
MGSKDm=16 93.3 84.3/83.9
MGSKDm=64 93.7 84.7/84.3
MGSKDm=128 93.5 84.8/84.2

Table 2: The impact of relation heads.

rate as 1e-5, and the batch size as 32. We release
our code to facilitate future research.5

4.3 Comparison Methods

Medium-sized Student Models. Most of the
existing knowledge distillation methods are con-
ducted on medium-sized student models which
have 6 transformer layers, 768 hidden neurons, 12
attention heads, and overall 66M parameters. We
adopt 3 of them as baselines: DistilBERT (Sanh
et al., 2019), MiniLMv2 (Wang et al., 2021) and
CKD (Park et al., 2021). Notice that these mod-
els adopted different distillation settings. Dis-
tilBERT and MiniLMv2 were firstly under task-
agnostic distillation then directly fine-tuned on
GLUE, while CKD was under both task-agnostic
and task-specific distillation. The corpora they
adopted for task-agnostic distillation were also not
exactly the same. Nevertheless, we list the results
as they reported on GLUE dev set as baselines, and
we implement MiniLMv2 and CKD, two state-of-
the-art distillation methods under the same distilla-
tion setting as ours for a fair comparison, which is
described in the next paragraph.

Small-sized Student Models. For fair compar-
isons, we implement two state-of-the-art distilla-
tion methods: MiniLMv2 (Wang et al., 2021),
CKD (Park et al., 2021) under the same distilla-
tion setting as ours. All these methods use the
same student model as ours which has 4 trans-
former layers, 312 hidden neurons, 12 attention
heads and overall 14M parameters. We adopt the
fine-tuned ELECTRAbase as the teacher, and con-
duct task-specific distillation using the same distil-
lation schedule and hyperparameters on the same
augmented training sets as ours.

4.4 Main Results

We first evaluate the effectiveness of our pro-
posed distillation framework. The main results
are shown in Table 1. We calculate #Params

5https://github.com/LC97-pku/MGSKD

Method SST-2 MNLI-(m/mm)

MGSKD 93.7 84.7/84.3

MGSKD w/o token 93.0 84.1/83.7
MGSKD w/o span 93.2 84.3/84.0
MGSKD w/o sample 92.8 83.9/83.6

MGSKD w tokenp 92.1 83.4/82.9
MGSKD w tokent 91.7 82.8/82.6
MGSKD w tokenp,t 92.5 83.7/83.2
MGSKD w spanp 91.8 82.5/82.3
MGSKD w spant 91.8 82.3/82.0
MGSKD w spanp,t 92.2 83.0/82.7
MGSKD w samplep 91.9 82.6/82.5
MGSKD w samplet 92.9 83.9/83.5
MGSKD w samplep,t 92.8 83.7/83.6

Table 3: Ablation study of knowledge granularity. The
subscripts p and t denote pair-wise and triplet-wise rela-
tions respectively.

by summing up the number of parameters con-
tained in the embedding layer and all the trans-
former layers. The speed-up ratios are directly
taken from previous works (Jiao et al., 2020; Wang
et al., 2021). It can be observed that under the
same distillation setting (models with † in Table 1),
Student†MGSKD outperforms strong baseline meth-
ods (i.e., Student†MiniLMv2 and Student†CKD) on 7 of
the 8 GLUE tasks. When compared with medium-
sized models from the literature which have more
parameters but under different distillation settings
(e.g., CKD), our method can still beat them on the
majority of the 8 tasks. And surprisingly, with a
stronger teacher model and data augmentation tech-
nique, our method MGSKD enables a 14M student
transformer model to achieve comparable perfor-
mance with BERTbase on most of the GLUE tasks,
while keeping 9.4 times faster. Also, we observe
that although MGSKD performs well on most of
the GLUE tasks, it lags behind some baselines on
CoLA, where the model is asked to judge the gram-
matical acceptability of a sentence. One reason
might be that CoLA requires the model to focus on
syntactic information while paying less attention to
the sample-level semantic meanings, thus reducing
the need for multi-granularity semantic knowledge
that we propose to transfer to the student.

4.5 Discussions
The Impact of Relation Heads. Recall that
when calculating the structural relations between
representations, we project them into m relation
heads. We show how the number of relation heads
impacts the performance on SST-2 and MNLI. As
shown in Table 2, the performance gets better as the
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Figure 2: The accuracy curve of different k1, k2 for calculating angles.
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Figure 3: The accuracy curve of differ-
ent choices of the boundary layer M .

number of relation heads increases, since it eases
the trouble for the student to learn the structural
relations in the very high-dimensional vector space
by providing fine-grained supervision in multiple
relatively low-dimensional spaces. We also find
that when m is large, continuing to increase m is
not worthwhile since the time and memory com-
plexity increase linearly with m. Therefore we
choose m = 64 in our setting.

Ablation Study of Knowledge Granularity. We
transfer the structural knowledge to the student
in three granularities: token-level, span-level, and
sample-level. We extract pair-wise and triplet-wise
structural relations for token- and span-level, while
we adopt triplet-wise relations for sample-level.
To verify the effectiveness of each granularity of
knowledge and each form of structural relations,
we conduct ablation studies and present the results
in Table 3. (1) We first remove each granularity
of knowledge from the objectives of MGSKD indi-
vidually.6 We can conclude that the sample-level
knowledge is most crucial for the overall perfor-
mance, the token-level knowledge provides mod-
erate benefit, and the span-level knowledge con-
tributes the least. We assume the reason why span-
level knowledge distillation performs a little bit
worse than token-level lies in that the average num-
ber of meaningful spans per sample on the 8 tasks
is 7.19, which is 5.2 times fewer than the aver-
age number of tokens. Nevertheless, distillation
with span-level knowledge still yields comparable
performance. Overall, the results prove that each
granularity of knowledge brings a positive effect
to the model performance. (2) Then for each gran-
ularity, we study the effect of each form of struc-
tural knowledge (i.e., pair-wise and triplet-wise

6When the sample-level objective is removed, we use the
remaining objectives for all the student layers instead of only
the bottom layers, as this setting yields better performance.

relations). In this stage, we distill each granularity
of knowledge into all the student layers for a fair
comparison. It can be observed that for token-level
and span-level knowledge, pair-wise relations are
more effective than triplet-wise relations, and the
model performs better when jointly utilizing both.
While for sample-level knowledge, we find that
using triplet-wise relations outperforms using pair-
wise relations by a large margin. Moreover, jointly
utilizing the sample-level pair-wise and triplet-wise
relations can’t further improve the model’s perfor-
mance, therefore we only employ triplet-wise rela-
tions as sample-level knowledge.

The Impact of k1 and k2 for Calculating Angles.
To ease the computation and memory complexity,
we propose to sequentially select important repre-
sentations to form angles, leading to the hyperpa-
rameters k1 and k2. We test different choices of k1
and k2 by adopting token-level and sample-level
triplet-wise relations to teach the student respec-
tively. To reduce the search space, we simply set
k1 = k2. We draw the accuracy curve for different
choices of k1, k2, as shown in Fig. 2. For token-
level objectives, we find that increasing k1, k2 im-
proves the accuracy when they are small and when
k1, k2 ≥ 20, the curves begin to vibrate. Therefore
we choose k1 = k2 = 20 for token-level angle
calculation. While for the triplet-wise relations of
sample-level features, we observe that the accuracy
increases monotonically with k1, k2. Therefore we
just set k1, k2 as the batch size.

The Choice of the Boundary Layer M . We pro-
pose the hierarchical distillation strategy where we
distill the token- and span-level knowledge into the
bottom-M layers of the student and transfer the
sample-level knowledge to the upper layers. To
verify the effectiveness as well as to find the best
choice of the boundary layer M , we conduct exper-
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iments and show the results in Fig. 3. The dashed
lines represent the setting dubbed as “all”, where
we distill token-, span- and sample-level knowl-
edge into all the student layers. And the solid lines
denote our hierarchical distillation setting with dif-
ferent choices of the boundary layer M . When
M = 0 andM = 4, the student learns sample-level
knowledge or token- and span-level knowledge for
all layers. Without the help of other knowledge
granularities, the student yields relatively poor per-
formance on both tasks. As M increases from 0 to
4, we find the model’s performance curves surpass
the dashed lines, which verifies the effectiveness
of our proposed hierarchical distillation strategy
which transfers the knowledge to the proper posi-
tions of the student. We find the model achieves
the highest accuracy when M = 2, i.e., the middle
layer, indicating that both the syntactic knowledge
transferred by token- and span-level features and
the semantic knowledge derived from sample-level
features are indispensable.

5 Conclusion

In this paper, we propose a novel knowledge dis-
tillation framework named MGSKD. We leverage
intermediate representations of multi-granularity
language units (i.e., tokens, spans and samples),
and form the knowledge as the sophisticated struc-
tural relations between the representations rather
than the individual representations themselves. The
well-organized structural knowledge is then dis-
tilled into the student hierarchically across layers.
Evaluation results on GLUE benchmark verify the
effectiveness of our method. In the future, we plan
to explore more forms of structural knowledge.
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