
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 921 - 931

May 22-27, 2022 c©2022 Association for Computational Linguistics

RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining

Hui Su1∗, Weiwei Shi1∗, Xiaoyu Shen2∗

Xiao Zhou1, Tuo Ji1, Jiarui Fang1, and Jie Zhou1

1Pattern Recognition Center, Wechat AI, Tencent Inc, China
2Saarland Informatics Campus
aaronsu@tencent.com

Abstract

Large-scale pretrained language models have
achieved SOTA results on NLP tasks. How-
ever, they have been shown vulnerable to ad-
versarial attacks especially for logographic lan-
guages like Chinese. In this work, we propose
ROCBERT: a pretrained Chinese Bert that is
robust to various forms of adversarial attacks
like word perturbation, synonyms, typos, etc.
It is pretrained with the contrastive learning ob-
jective which maximizes the label consistency
under different synthesized adversarial exam-
ples. The model takes as input multimodal
information including the semantic, phonetic
and visual features. We show all these features
are important to the model robustness since the
attack can be performed in all the three forms.
Across 5 Chinese NLU tasks, ROCBERT out-
performs strong baselines under three black-
box adversarial algorithms without sacrificing
the performance on clean testset. It also per-
forms the best in the toxic content detection
task under human-made attacks.

1 Introduction

Large-scale pretrained models, by finetuning on
sufficient annotated data, have been able to ap-
proach or even surpass human performance on
many benchmark testsets (Peters et al., 2018; Rad-
ford et al.; Devlin et al., 2019; Liu et al., 2019;
Brown et al., 2020). However, even pretrained
with huge amounts of text, the models are still vul-
nerable under adversarial attacks like synonyms,
word deletion/swapping, misspelling, etc (Li et al.,
2019a; Jin et al., 2020; Sun et al., 2020a; Eger and
Benz, 2020). These adversarial examples occur
frequently in the real-world scenario and can be
made either naturally (e.g., typos) or maliciously
(e.g., to avoid auto detection of toxic content) 1.

∗Equal contribution.
1The concept of adversarial examples is quite wide. In this

paper, we focus on adversarial examples that do NOT change
the original semantics (Mozes et al., 2021)

Attacker Text
phonetic 克(kè)比的精神值得永远学习
visual 科此的精神值得永远学习
character split 禾斗匕匕的精神值得永远学习
synonym 我(wǒ)科(kē)的精神值得永远学习
synonym + phonetic 蜗(wō)壳(ké)的精神值得永远学习
to pinyin kebi的精神值得永远学习
to pinyin + unicode keb1的精神值得学习永远
swap 科比的精神值得永远习学
insertion 科比的精神九值得永远学习
deletion 科比的神值得永远学习
Original: 科(kē)比(bı̌)的精神值得永远学习
Translation: Kobe’s spirit is worth studying forever.

Table 1: Examples of various attackers. Contents in the
brackets are corresponding pinyins of Chinese characters.

The lack of robustness with them can easily lead to
large performance drop when testing in the noisy
real-world traffic. The issue is particularly out-
standing for logographic languages like Chinese
since the attack can be either with the glyph charac-
ter, pinyin (the romanized phonetic representations)
or a combination of them (Wang et al., 2020; Li
et al., 2020d; Zhang et al., 2020; Nuo et al., 2020).
We show some examples in Table 1. The word “科
比(Kobe)” can be replaced with synonyms, phonet-
ically or visually similar words. The attacker can
also replace the character with its pinyin then con-
tinue the attack in the alphabet-level (“keb1” in the
table). The isolation of semantics and phonetics,
and the rich set of glyph characters in written Chi-
nese makes the attacking forms much more diverse
than in alphabetic languages like English.

Current research works usually adopt two ways
to defend adversarial attacks: (1) Run spell check-
ing to correct the written errors before feeding to
the prediction model (Pruthi et al., 2019; Li et al.,
2020b; Mozes et al., 2021), and (2) Adversarial
training, which adds adversarial example to the
training data (Zang et al., 2020; Li et al., 2020a;
Liu et al., 2020). For the former, Chinese spell
checking itself is even a more difficult task because
it requires the model to accurately recover the orig-
inal text. Any tiny errors of the spell checking can

921

lead to unpredicted model behaviors. For the latter,
it is hard for the model to adapt to all adversar-
ial variants only in the finetuning stage, especially
when the training data is sparse (Meng et al., 2021).

To address the above challenges, we propose
ROCBERT, a Robust Chinese BERT pretrained
with the contrastive learning objective by maximiz-
ing the label consistency under various adversarial
examples. The adversarial examples are synthe-
sized from an algorithm that encapsulates common
types of attacks. We also consider combinatorial at-
tacks where multiple types of attacks can be added
on top of each other, which has never been consid-
ered in previous research. To defend attacks in all
levels, we incorporate multimodal information into
the encoder. The phonetic and visual features are
inserted into one self-attention layer then dynami-
cally fused in later layers. Across 5 standard NLU
tasks and one toxic content detection task, we show
the pretrained model achieves new SOTAs under
various adversarial attackers.

In short, our contribution are (1) We propose
pretraining a robust Chinese Bert with adversarial
contrastive learning, such that the model can per-
form well on not only clean testbeds, but also adver-
sarial examples. (2) The model is pretrained with
synthesized adversarial examples covering combi-
nations of semantic, phonetic and visual attacks.
It takes as input multimodal features to handle all
levels of possible attacks. (3) The pretrained model
outperforms strong baselines across 5 NLU tasks
and 1 toxic content detection task under various
adversarial attackers. (4) We perform an extensive
ablation studies for pretraining options and have a
wide comparison with popular defending methods,
which we hope will benefit future research.

2 Related Work

Adversarial attack There have been a lot of works
showing the vulnerability of NLP models under
adversarial examples (Li et al., 2020c; Garg and
Ramakrishnan, 2020; Zang et al., 2020), which
are understandable by humans yet lead to signif-
icant model prediction drops. There are usually
two types of attacks: (1) semantic equivalent re-
placement, which can be synthesized by replacing
words based on vector similarity (Jin et al., 2020;
Wang et al., 2020), WordNet synonyms (Zang et al.,
2020), masked prediction from pretrained mod-
els (Li et al., 2020c; Garg and Ramakrishnan, 2020;
Li et al., 2020d), etc. (2) noise injection, which

can be synthesized by adding/deleting/swapping
words (Li et al., 2019a; Gil et al., 2019; Sun et al.,
2020a), replacing words with phonetically or visu-
ally similar ones (Eger et al., 2019; Eger and Benz,
2020). For logographic languages like Chinese,
the noise can be much more complex as it can be
injected on both the glyph characters or romanized
pinyins (Zhang et al., 2020; Nuo et al., 2020).
Adversarial defense The most common way of
adversarial defense is adversarial training, which
simply appends synthesized adversarial examples
into the training data (Zang et al., 2020; Li et al.,
2020a). Nonetheless, it relies only on the limited
labeled training data. In contrast, the proposed
ROCBERT is pretrained on billions of text and can
better adapted to diverse adversarial variants. An-
other popular way is to first remove the noise with
off-the-shelf spell checkers, then feed the corrected
text into the model (Li et al., 2020b). However, Chi-
nese spell checking requires fully recovering the
correct text and current model performances are far
from satisfactory (Liu et al., 2021; Xu et al., 2021;
Wang et al., 2021a). Any tiny error in the spell
checking process can lead to unpredicted model be-
haviors. It also incurs significant latency to model
prediction. ROCBERT does not add additional la-
tency and can perform well even if fully recovery
is difficult due to its consistency-maximization pre-
training objective. There have also been works on
pretraining more robust models through virtual ad-
versarial training and noise regularization (Yoo and
Qi, 2021; Wang et al., 2021b; Meng et al., 2021),
but they perform poorly on man-made attacks.

3 Adversarial Example Synthesis

3.1 Attacking Chinese Characters

As we focus on Chinese in this paper and Chinese
characters are much more diverse than in alphabet-
ical languages, we design the following 5 Chinese-
specific attacking algorithms first.
phonetic: Replace a Chinese character with a ran-
dom homonym (ignoring diacritics). For poly-
phones, we consider the 2 most common pinyins 2.
Visual: Replace Chinese characters with their vi-
sually similar characters (with the similarity table
in the Kanji Database Project) 3.
Character Split: Split one character into two parts
with every part still being (or visually similar to)
a valid Chinese character. We follow the Chinese

2https://unicode.org/charts/unihan.html
3http://kanji-database.sourceforge.net/

922

Figure 1: Adversarial example synthesis process.

splitting dictionary 4, which contains 17,803 split-
ting ways for Chinese characters in total.
Synonym: Segment Chinese characters into words
with the jieba tokenizer 5, then randomly replace
the word with one of its synonyms. Two words
are treated as synonym if they share a similarity
score of over 0.75 6. We only replace adjectives
or nouns as we find other words can be hardly
replaced without changing the semantics.
Character to Pinyin: Replaces the character into
its pinyin representation (without diacritics).

3.2 Attacking Other Characters

Apart from Chinese characters, there are often other
characters like the pinyin, numbers, punctuations
and foreign words in the Chinese corpus. The fol-
lowing 4 types of attacks apply to not only Chinese
characters, but also all other characters.
Unicode: Randomly sample one of the visually
similar unicodes as a replacement 7.
Random Insertion: Sample one character from
the vocabulary set, then randomly insert the char-
acter to the left or right of the current character.
Swap: Swap the character with its neighbor.
Deletion: Delete the character directly.
Examples of all types of attacks are in Table 1.

3.3 Synthesis Process

The synthesis process of adversarial examples is as
follow: Given one sentence, we first select several

4https://github.com/kfcd/chaizi
5https://github.com/fxsjy/jieba
6https://github.com/chatopera/Synonyms
7http://www.unicode.org/Public/security/revision-

03/confusablesSummary.txt

characters to attack. For each selected character,
we then combine the above mentioned character-
level attacking algorithms 8 to get its attacked form.
Attack Ratio: The attack ratio γ decides how
many characters we will attack. Let nc be the num-
ber of characters in the sentence, we define γ as:

γ = min(max(int(ε), 1), nc)

ε ∼ N (max(1, 0.15nc), 1)
(1)

where the int function rounds ε into the closest
integer. The intuition is that we want to attack
15% of the characters on average 9. If the sentence
is short, we will make sure to attack at least one
character. We insert normal Gaussian noise on top
of the average ratio to add some randomness.

Character Selection: There have been many re-
search works showing that attacking informative
words is more effective than random words (Li
et al., 2019a; Sun et al., 2020a). Therefore, we de-
cide the chance of one character ci being selected
based on its informativeness in the sentence. Let
w(ci) denote the word ci belongs to, the informa-
tive score for ci is counted as the difference of the
language model loss after deleting w(ci) (denoted
as L(Ow(ci)) (Li et al., 2016) 10. The chance that
ci will be selected to be attacked is:

p(ci) =
eL(Ow(ci))

|w(ci)|
∑nw

j=1 e
L(Owj)

(2)

where nw is the number of words in the sentence.
|w(ci)| means the number of characters in w(ci)
such that characters in the same word have equal
chances to be selected.
Attack Combination: There can be combinations
of attacks for one character. For example, we can
transfer one Chinese character into its pinyin then
continue to attack it in the alphabet level (“to pinyin
+ unicode” in Table 1). We define it as a sequential
process where a new attack can be added on top at
each step. Specifically, the new character c̃ after all
the attack combinations applied to c is:

c̃ = AS(c) ◦ · · · ◦A2 ◦A1(c)

p(S(c) = k) = q(1− q)k−1
(3)

8For synonym replacement which applies in the word level,
we apply it on the word that the selected character belongs to.

9The ratio is chosen by manual annotation. 15% is the
highest ratio we can attack without hurting human reading.

10We use ChineseGPT (Zhang et al., 2021) as the language
model, so “word” here means the subword token defined in
the vocabulary of ChineseGPT.

923

wher ◦ means applying a new attacking algorithm
A to the output of the last step. At each step i,
the attacking algorithm Ai is randomly selected
from all algorithms that are applicable to the output
from step i − 1. S(c) is the number of attacking
steps applied to c, which follows an exponentially
decay function. We set q = 0.7 empirically. The
full process of adversarial example synthesis is
illustreated in Figure 1.

4 Multimodal Contrastive Pretraining

With the above-mentioned algorithm to sample ad-
versarial examples, we can pretrain the model with
the multimodal contrastive learning objective.

4.1 Multimodal Features

We follow the standard Bert architecture (Devlin
et al., 2019) as our backbone, based on which we
integrate phonetic and visual features for input text.

Feature Representation: For every character c
in our vocabulary, apart from the standard semantic
embedding Se(c), we include two more vectors
Ph(c) and V i(c) to encode its phonetic and visual
features respectively. If c is not a Chinese character,
it has its own phonetic vector. Otherwise, Ph(c) =∑

k∈pinyin(c) Ph(k) where pinyin(c) is its pinyin
sequence. V i(c) is extracted from its 32×32 image
I(c). The image is in simsun (宋体) for Chinese
characters and arial for others, the default fonts for
most online text. V i(c) is defined as:

V i(c) = LayerNorm(MTResNet18(I(c))) (4)

M is a learnable matrix and we utilize
Resnet18 (He et al., 2016) to map I(c) into a one-
dimentional vector (freezed during training).
Visual Representation Pretrain: To get an rea-
sonable initialization, we add another pretraining
stage only for the visual representation. Phonetic
representations are randomly initialized 11. M in
Eq 4 is pretrained with the same contrastive loss
as in Eq 5. The positive sample for the charac-
ter c is its visually adversarial form c̃ = A(c).
A ∼ U(visual, character split, unicode), which
means uniform sampling from the three visual
attacking algorithms mentioned in §3. If c is
split into two characters c1 and c2, we sum the
visual representation of the two split characters
V i(c̃) = V i(c1) + V i(c2). The negative samples

11We show in Section 5.3 that pretraining is necessary for
visual features not but for phonetic features.

are all other characters in the same batch. After
training, visually similar characters will be close in
their representation space.
Feature Integration: A straightforward way to in-
tegrate these multimodal features is to fuse them
before fed to the encoder (Sun et al., 2021; Liu
et al., 2021). However, three features will be given
equal weights and the model cannot dynamically
attend to only useful features. Another way is a two-
step encoding which first decides the weight, then
encode with selective attention (Xu et al., 2021),
but it will significantly slow down the system. We
propose a lightweight fusion method layer-insert,
which insert multimodal features in only one en-
coder layer. Let Hk(i) denote the representation
of the ith word in the kth layer, we insert by:

W1 = KT
1 H

k(i)Hk(i)V1

W2 = KT
2 H

k(i)Ph(i)V2

W3 = KT
3 H

k(i)V i(i)V3

Hk(i) =
W1H

k(i) +W2Ph(i) +W3V i(i)

W1 +W2 +W3

where Ph(i) and V i(i) are the phonetic and visual
representations and Kj/Vj are learnable matrices.
Intuitively we can use the layer 0 to k−1 to decide
the weights of three multimodal representations
and use the rest layers for sentence representation
learning. It allows dynamic fusion according to
sentence context yet adds marginal complexity.

4.2 Model Loss

The model loss has two components: the con-
trastive learning loss and the standard masked lan-
guage model (MLM) loss.
Contrastive Learning: The idea of contrastive
learning (Chen et al., 2020; Kim et al., 2021) is that
the representation space should be made closer for
similar (positive) samples and farther for dissimilar
(negative) samples. For each sentence, we treat
its adversarial form (obtained from the algorithm
in §3) as positive and all the other sentences in
the same batch as negative. Given a batch with N
sentences, the loss to the ith sentence si is:

Lc(i) = − log
esim(si,s̃i)/τ∑N
j=1 e

sim(si,sj)/τ
, (5)

where τ is a temperature hyperparameter and s̃i is
the adversarial example synthesized from si. We
set τ = 0.01 based on our pilot experiments and

924

define sim(si, s̃i) as h>i h̃i
‖hi‖·‖h̃i‖

, which is the cosine

similarity in their representation space hi and h̃i.
Mix with MLM: We mix the contrastive learn-
ing loss with the standard masked language model
(MLM) loss (Devlin et al., 2019) to enable both sen-
tence and word level representation learning. We
use a character-based tokenizer because (1) Chi-
nese characters as themselves stand for individual
semantic units (Li et al., 2019b) and (2) char-based
models are much more robust under noisy and ad-
versarial scenarios (El Boukkouri et al., 2020). For
Chinese characters, we use two masking strategies –
Whole Word Masking (WWM) and Char Masking
(CM) because a large number of words in Chinese
consist of multiple characters (Cui et al., 2019; Sun
et al., 2021). The contrastive learning loss and the
MLM loss are equally weighted.

5 Experiments

5.1 Experiment Setup

Model Details We use a vocabulary size of 16224,
out of which 14642 are Chinese characters. We
provide two versions of ROCBERT: base and large.
The base version has 12 layers/heads with 768 hid-
den neurons. It is trained for 600k steps with a
batch size of 4k, learning rate of 1e-4 and warmup
rate of 25k steps. The large version has 48 layers
and 24 attention heads with 1024 hidden neurons.
It is trained for 500K steps with a learning rate of
3e-4, warmup of 70K steps and batch size of 8k.
Pretraining Details Following the common prac-
tice, we pretrain our model on 2TB text extracted
from a mixture of THUCTC 12, Chinese Wikipedia
and Common Crawl. Models are trained on 64
NVIDIA V100 (32GB) GPUs with FP16 and
ZERO-stage-1 optimization (Rasley et al., 2020).
To make better use of the GPU, we train our model
with PatricStar 13 which applies a dynamic memory
scheduling with a chunk-based memory manage-
ment module (Fang et al., 2021). The memory
management offloads everything but the current
computing part of the model to CPUs. This results
in training a much larger model within the same
hardware environment. The chunk-based memory
management takes advantage of the linear struc-
ture of the transformer-based model, so that it will
inherently prefetch the upcoming layers to GPUs.

12https://github.com/thunlp/THUCTC
13https://github.com/Tencent/PatrickStar

Baseline Models We compare our model with
SOTA pretrained Chinese models: (1) MBert-
Chinese (Devlin et al., 2019), (2) Bert-wwm (Cui
et al., 2019), (3) MacBert (Cui et al., 2020), (4)
Ernie-gram (Sun et al., 2019, 2020b) and (5) Chi-
neseBert (Sun et al., 2021). BERT-wwm continues
pretraining from MBert-Chinese with the Whole
Word Masking pretraining strategy. MacBERT ap-
plies the MLM-As-Correlation (MAC) pretrain-
ing strategy as well as the sentence-order pre-
diction (SOP) task. ERNIE-gram adopts various
masking strategies including token-level, phrase-
level and entity-level masking to pretrain BERT
on largescale heterogeneous data. Chinese-Bert is
pretrained with the glyph and phonetic features.

Tasks We test our model on 5 standard Chinese
NLU tasks and one toxic detection tasks. The 5
NLU tasks are: (1) ChnSentiCorp, Chinese sen-
timent classification with 2k training data 14, (2)
TNEWS: news title classification with 50k train-
ing data, (3) AFQMC: question matching with 34k
training data, (4) CSL, keyword recognition from
paper abstracts with 20k training data ChnSenti-
Corp: 2k (Xu et al., 2020) and (5) CMNLI, Chi-
nese Multi-Genre NLI with 390k data (Conneau
et al., 2018). Toxic detection can server as a task
with “human-made" attacks in contrast with the
synthesized ones. It is collected from user interac-
tions (written) with a popular online conversational
platform, where users sometimes use various man-
made attacks to avoid automatic system filtering of
junk ads, porn and abusive information. We manu-
ally annotate 50k user inputs and identify 2k toxic
contents (positive), out of which 90% are in adver-
sarial forms. We randomly sample 2k negative text
then split the whole into train/dev/test with 8:1:1.

Attacker We test the model performance under
three different attackers (all untargeted as we do not
need restrictions to the target class): (1) ADV, our
own attacking algorithm, (2) TextFooler (Jin et al.,
2020), a black-box algorithm replacing important
words with semantically similar ones and (3) Ar-
got (Zhang et al., 2020), a black-box attacking al-
gorithm considering Chinese-specific features. We
set the maximum attacking ratio for all the three al-
gorithms as 20%. TextFooler is originally designed
for English, we reimplement it with corresponding
pretrained Chinese-version models.

14We use the small version of training data to test the few-
shot capability of models.

925

Model Clean ADV TextFooler Argot

Base
MBert 91.16 58.57 62.29 46.65
Bert-wwm 91.27 59.28 63.22 44.52
MacBert 91.33 59.72 63.18 44.34
Ernie-gram 90.76 57.81 60.20 42.71
ChineseBert 91.01 60.07 65.73 47.78
RoCBert 91.45 81.62 83.11 68.40

Large
MacBert 92.05 55.92 45.75 41.83
RoCBert 92.58 83.17 85.74 69.40

Table 2: Performance on ChnSentiCorp

5.2 Experiment Results

Chinese NLU Results We show the results on 5
Chinese NLU tasks in tables 2 to 6. For every task,
we report the model accuracy measured in the clean
testset and the adversarial testsets under 3 adver-
sarial algorithms ADV, TextFooler and Argot. We
report the performance of all base-version models
for a fair comparison. We select the best-performed
base-version model to test its large-version perfor-
mance and compare it with ROCBERT. As can be
seen, our attacking algorithm ADV do not affect
much on TNEWS, AFQMC and CSL because they
rely more on the global sentence structure instead
of individual words. On tasks like sentiment classi-
fication and NLI, single words contribute mostly to
the model decision and therefore the attacking can
lead to significant performance drop. Argot and
TextFooler lead to more drop compared with ADV
because they explicitly select words that affect the
model decisions most while ADV selects words
to attack based on the general language model
scores. Argot is more effective than TextFooler
because it tailors its character replacement to con-
sider Chinese-specific features. Overall ROCBERT

outperforms other models over all attacking algo-
rithms on all the 5 tasks. Even in the clean dataset,
it performs the best on 4 out of the 5 tasks. Chine-
seBert performs the second under various attacks
because it also considers multimodal features dur-
ing its pretraining same as ROCBERT, which fur-
ther confirms the importance of using mulimodal
features in Chinese language pretraining.

Toxic Content Detection Results We train all
models in the toxic content detection task. As
can be seen in Table 7, ROCBERT outperforms
all other models over 4 metrics. This confirms
the its effectiveness at capturing the true semantics
regardless of its adversarial form. The difference

Model Clean ADV TextFooler Argot

Base
MBert 56.84 53.76 42.05 40.18
Bert-wwm 57.44 54.12 45.25 40.76
MacBert 57.53 54.41 45.10 41.94
Ernie-gram 57.30 52.58 43.02 41.16
ChineseBert 57.65 55.74 51.01 50.27
RoCBert 58.64 57.14 52.05 52.21

Large
ChineseBert 59.65 55.92 50.75 51.83
RoCBert 59.98 59.17 54.74 54.46

Table 3: Performance on TNEWS

Model Clean ADV TextFooler Argot

Base
MBert 74.07 72.04 57.69 51.24
Bert-wwm 75.07 72.40 57.58 51.05
MacBert 74.79 72.08 57.37 50.78
Ernie-gram 75.42 71.07 56.81 50.34
ChineseBert 73.77 72.59 57.92 52.41
RoCBert 75.48 74.11 62.95 62.16

Large
Ernie-gram 76.35 70.92 58.04 50.64
RoCBert 77.48 76.43 65.85 64.97

Table 4: Performance on AFQMC

among models is smaller because they have all
been finetuned on this task. All models can get
adapted to different forms of attacks in the train-
ing process while the tables 2 to 6 are testing the
zeroshot generalization to unknown attacks.

T A CL CI CP

0.6

0.7

0.8

ADV

A
cc

ur
ac

y

T A CL CI CP

0.5

0.6

0.7

0.8

Textfooler
T A CL CI CP

0.4

0.5

0.6

Argot

best-other + spell-checker RoCBert

A CL CI CP T

0.6

0.7

0.8

ADV

A
cc

ur
ac

y

A CL CI CP T

0.6

0.8

Textfooler
A CL CI CP T

0.4

0.5

0.6

0.7

Argot

best-other + advtrain RoCBert + advtrain

Figure 2: Defending Method Comparison on CI(CMNLI)
CP(ChnSentiCorp), T(TNEWS), A(AFQMC) and CL(CSL).

Defending Method Comparison We further
compare ROCBERT with two other popular ways
of defending adversarial attack: (1) run a spell-
checker before fed to the model and (2) adversarial
training (advtrain) which augments training data
with adversarial examples. We add these two de-

926

Model Clean ADV TextFooler Argot

Base
MBert 81.83 78.28 61.06 52.40
Bert-wwm 81.50 79.08 61.68 53.41
MacBert 81.97 78.34 61.75 52.35
Ernie-gram 82.70 79.53 63.54 53.66
ChineseBert 81.77 78.69 61.27 53.79
RoCBert 83.83 82.56 69.29 63.07

Large
Ernie-gram 83.05 79.42 61.85 57.43
RoCBert 85.28 83.59 70.13 66.38

Table 5: Performance on CSL

Model Clean ADV TextFooler Argot

Base
MBert 80.53 69.57 50.21 45.52
Bert-wwm 80.79 68.54 50.46 44.26
MacBert 81.01 69.94 49.86 42.07
Ernie-gram 82.22 68.83 50.77 44.69
ChineseBert 81.42 72.27 52.85 47.15
RoCBert 81.27 74.14 59.95 55.17

Large
Ernie-gram 82.36 70.11 52.45 45.82
RoCBert 82.38 76.83 60.26 56.64

Table 6: Performance on CMNLI

fending methods on top of the best-performed base
model (on clean testsets) in different tasks: Chine-
seBert for TNEWS, Ernie-gram for AFQMC, CSL
and CMNLI, MacBert for ChnSentiCorp. We ap-
ply the spell-checker in Cheng et al. (2020). The
results are visualized in Figure 2. We can see
that spell checking improves the performance only
marginally and sometimes even hurt the perfor-
mance (best-other under ADV in CI). The reason
could be that the spell checker performs poorly for
out-of-domain adversarial examples. The errors
could be propagated and further reduce the perfor-
mance. advtrain can significantly benefit the per-
formance, but note that it explicitly “peeps" at the
adversarial algorithm applied in the testset while
ROCBERT is not aware of the testing adversarial al-
gorithm. Nevertheless, it is still comparable and in
some cases even outperforms advtrain. By combin-
ing ROCBERT and advtrain, the model robustness
can be further improved.

5.3 Ablation Study

We perform a set of ablation studies to understand
the choice of different components in ROCBERT.
All models in this section are pretrained with the
same base architecture and hyperparameters for
one epoch on 1M sampled training text then tested
in TNEWS. The results are shown in Table 8.

Model Acc Precision Recall F1

Base
MBert 85.11 87.12 81.35 84.13
Bert-wwm 85.70 87.30 81.37 84.23
MacBert 85.26 87.24 81.35 84.19
Ernie-gram 85.94 87.43 81.38 84.29
ChineseBert 85.52 87.29 81.36 84.22
RoCBert 87.10 89.26 83.14 86.42

Large
Ernie-gram 87.30 88.96 82.57 85.64
RoCBert 88.49 90.36 84.25 87.20

Table 7: Performance on Toxic Detection

Setting Clean ADV Textfooler Argot

Best 55.38 52.23 47.72 44.59
Model Loss

MLM 54.63 48.58 38.63 33.75
Contrastive 54.97 50.73 41.80 39.25

Tokenization
bpe 55.40 48.64 38.19 35.67
char-cnn 53.23 49.45 44.37 41.44

Multimodal
- vis-pretrain 53.29 51.18 44.42 40.08
- vis 53.35 51.20 45.45 41.86
- pho 54.71 51.18 46.02 42.08
+ pho-pretrain 54.96 51.95 47.03 43.56

Architecture
Sum 54.63 52.06 46.57 43.27
Concatenate 55.13 52.14 46.69 43.84
Two-step 55.09 51.81 45.39 42.67

Insert Layer
Layer 0 55.10 52.02 47.46 44.27
Layer 4 54.63 51.95 47.35 44.33
Layer 7 54.43 51.76 46.83 44.08
Layer 10 54.25 50.98 46.20 43.56

Table 8: Ablation studies on TNEWS with different settings.
Best indicates the best setting used in ROCBERT.

Loss To study the effects of the loss function used
in the pretraining stage. We tried two other settings:
(1) contrastive only, where the model is pretrained
only with the contrastive learning loss in Eq 5 and
(2) MLM-only, where the model is pretrained only
with the MLM objective as in standard Bert. We
can see that both options lowers down the model
performance. By combining both loss, the model
can be robust under adversarial attacks without
affecting the performance in clean data.

Tokenization It has been widely demonstrated
that char-based tokenization is preferred for Chi-
nese characters (Li et al., 2019b), but it is rather
unclear how we should model pinyins and non-
Chinese words. We try different tokenization meth-
ods for non-Chinese characters: (1) bpe (Sennrich
et al., 2016). We set the vocabulary as 20k and
train the split on the training data (after convert-

927

5% 10% 15% 20% 25%

0.89

0.9

0.91

Clean

A
cc

ur
ac

y

5% 10% 15% 20% 25%

0.6

0.65

0.7

0.75

ADV

5% 10% 15% 20% 25%

0.65

0.7

0.75

0.8

Argot

A
cc

ur
ac

y

5% 10% 15% 20% 25%

0.45

0.5

0.55

0.6

0.65

Textfooler

RoCBert w/o noise w/o CS SimCSE

Figure 3: Ablation study with varying attacking ratio, w/o
Gaussian noise, w/o character selection (CS) and SimCSE.

ing all Chinese characters into pinyin). (2) char-
cnn (Zhang et al., 2015), which process each char-
acter individually but get the pinyin embedding
with a char-cnn. The best setting in ROCBERT

used char-sum which processes each character in-
dividually and set the pinyin embedding as the sum
of its character embeddings. We can see that bpe
hurt the performance. This might be because the
bpe split is trained on clean data only. For adver-
sarial examples, the letters in pinyins can be easily
perturbed and break its vocabulary. Char-based
tokenization is more robust under adversarial at-
tacks. Char-cnn does not lead to improvement here,
probably because there are a limited combination
of letters in Chinese pinyins (∼ 400), each pinyin
can usually be uniquely identified by its bag of
characters without the need of order information.

Multimodal feature We tried removing the vi-
sual feature pretraining as mentioned in §4 and
observe the performance drop (-vis-pretrain). It is
even worse than removing the visual feature com-
pletely (-vis), suggesting the pretraining for visual
features is essential, without which the model can
be hard to learn meaningful visual features. The
phonetic feature is less crucial than visual features
but also brings positive improvement. By adding
a pretraining stage for the phonetic features too
(+pho-pretrain), the improvement is very marginal.
As the phonetic features are also based on charac-
ter embeddings, it might be easier for the model to
automatically learn the phonetic features compared
with the visual features.

Multimodal integration We compare our pro-
posed layer-insert with three other ways of inte-
grating multimodal features: (1) sum (Liu et al.,
2021), which sums the multimodal embeddings,
(2) concatenation, which concatenate(Sun et al.,
2021), which concatenate the multimodal embed-
dings then fuse with an MLP layer, (3) two-step (Xu
et al., 2021), which first determine the weight of
different embeddings then fuse to the encoder. We
can see that ROCBERT performs best with only
marginal computational overhead by updating the
encoder representation in one layer.

Insert Layer We further analyze the effects of
the insertion layer. Our best setting inserts the
multimodal features in layer 1 for the base model
and layer 3 for the large model. From Table 8,
we can see that when inserting them in the upper
layer 4,7 and 10, the performance gradually drops,
suggesting an earlier insert is helpful for the model
to incorporate these features in-depth. However,
inserting them in layer 0 is also worse since the
model can only learn weight among multimodal
features solely from bag of words.

Attacking Algorithm We change the settings in
our attacking algorithm to see the effects in Fig-
ure 3. We can see the attacking ratio can neither
be too small nor too large. 15% is a sweet spot for
pretraining. The Gaussian noise added in Eq 1 also
brings positive effects consistently, suggesting we
should not use a fixed attacking ratio in the pretrain-
ing stage. The character selection is also crucial
and removing it significantly reduces the perfor-
mance. To show whether it is necessary to adopt
our attacking algorithm with complex combina-
tions of attacking forms. We further compare with
pretraining the model with SimCSE (Gao et al.,
2021), an algorithm which uses drop out as the
noise instead of our adversarial examples. We can
see that SimCSE is rarely helpful under different
attacks. This suggests it is important to define rule-
based attacking algorithms to better fit the real-
world attacks. General drop-out regularizations
cannot adapt well to complex real-world attacks.

6 Conclusion

We present ROCBERT: the first pretrained Chinese
language model that is robust under various forms
of adversarial attacks. It is pretrained with the mul-
timodal contrastive learning objective and achieves
the best performance on 5 Chinese NLU tasks un-

928

der three different attacking algorithms without
negative effects on clean testsets. It also signifi-
cantly outperforms the others in the toxic content
detection task. Extensive ablation studies are pro-
vided to benefit future research.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Xingyi Cheng, Weidi Xu, Kunlong Chen, Shaohua
Jiang, Feng Wang, Taifeng Wang, Wei Chu, and
Yuan Qi. 2020. Spellgcn: Incorporating phono-
logical and visual similarities into language models
for chinese spelling check. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 871–881.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2475–2485.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shi-
jin Wang, and Guoping Hu. 2020. Revisiting pre-
trained models for chinese natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
Findings, pages 657–668.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Ziqing Yang, Shijin Wang, and Guoping Hu. 2019.
Pre-training with whole word masking for chinese
bert. arXiv preprint arXiv:1906.08101.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Steffen Eger and Yannik Benz. 2020. From hero to
z\’eroe: A benchmark of low-level adversarial at-
tacks. arXiv preprint arXiv:2010.05648.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-
Ung Lee, Claudia Schulz, Mohsen Mesgar, Kr-
ishnkant Swarnkar, Edwin Simpson, and Iryna

Gurevych. 2019. Text processing like humans do:
Visually attacking and shielding nlp systems. arXiv
preprint arXiv:1903.11508.

Hicham El Boukkouri, Olivier Ferret, Thomas
Lavergne, Hiroshi Noji, Pierre Zweigenbaum, and
Jun’ichi Tsujii. 2020. Characterbert: Reconciling
elmo and bert for word-level open-vocabulary rep-
resentations from characters. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6903–6915.

Jiarui Fang, Yang Yu, Zilin Zhu, Shenggui Li, Yang
You, and Jie Zhou. 2021. Patrickstar: Parallel train-
ing of pre-trained models via a chunk-based memory
management. arXiv preprint arXiv:2108.05818.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Siddhant Garg and Goutham Ramakrishnan. 2020.
Bae: Bert-based adversarial examples for text clas-
sification. arXiv preprint arXiv:2004.01970.

Yotam Gil, Yoav Chai, Or Gorodissky, and Jonathan
Berant. 2019. White-to-black: Efficient distillation
of black-box adversarial attacks. arXiv preprint
arXiv:1904.02405.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for bert sentence
representations. arXiv preprint arXiv:2106.07345.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2020a.
Contextualized perturbation for textual adversarial
attack. arXiv preprint arXiv:2009.07502.

Jinfeng Li, Tianyu Du, Shouling Ji, Rong Zhang, Quan
Lu, Min Yang, and Ting Wang. 2020b. Textshield:
Robust text classification based on multimodal em-
bedding and neural machine translation. In 29th
{USENIX} Security Symposium ({USENIX} Secu-
rity 20), pages 1381–1398.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019a. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

929

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020c. Bert-attack: Adversar-
ial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Linyang Li, Yunfan Shao, Demin Song, Xipeng Qiu,
and Xuanjing Huang. 2020d. Generating adversar-
ial examples in chinese texts using sentence-pieces.
arXiv preprint arXiv:2012.14769.

Xiaoya Li, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Arianna Yuan, and Jiwei Li. 2019b. Is word segmen-
tation necessary for deep learning of chinese repre-
sentations? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3242–3252.

Hui Liu, Yongzheng Zhang, Yipeng Wang, Zheng Lin,
and Yige Chen. 2020. Joint character-level word em-
bedding and adversarial stability training to defend
adversarial text. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8384–8391.

Shulin Liu, Tao Yang, Tianchi Yue, Feng Zhang, and
Di Wang. 2021. Plome: Pre-training with mis-
spelled knowledge for chinese spelling correction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2991–3000.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Zhao Meng, Yihan Dong, Mrinmaya Sachan, and
Roger Wattenhofer. 2021. Self-supervised con-
trastive learning with adversarial perturbations for
robust pretrained language models. arXiv preprint
arXiv:2107.07610.

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-
berg, and Lewis Griffin. 2021. Frequency-guided
word substitutions for detecting textual adversarial
examples. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 171–186.

Cheng Nuo, Guo-Qin Chang, Haichang Gao, Ge Pei,
and Yang Zhang. 2020. Wordchange: Adversarial
examples generation approach for chinese text clas-
sification. IEEE Access, 8:79561–79572.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Proceedings of the

57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5582–5591.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving language understanding
by generative pre-training.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 3505–
3506.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari
Asai, Jia Li, Philip Yu, and Caiming Xiong. 2020a.
Adv-bert: Bert is not robust on misspellings! gen-
erating nature adversarial samples on bert. arXiv
preprint arXiv:2003.04985.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020b. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 8968–
8975.

Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng,
Xiang Ao, Qing He, Fei Wu, and Jiwei Li.
2021. Chinesebert: Chinese pretraining enhanced
by glyph and pinyin information. arXiv preprint
arXiv:2106.16038.

Baoxin Wang, Wanxiang Che, Dayong Wu, Shijin
Wang, Guoping Hu, and Ting Liu. 2021a. Dynamic
connected networks for chinese spelling check. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 2437–2446.

Boxin Wang, Boyuan Pan, Xin Li, and Bo Li. 2020. To-
wards evaluating the robustness of chinese bert clas-
sifiers. arXiv preprint arXiv:2004.03742.

Dong Wang, Ning Ding, Piji Li, and Hai-Tao Zheng.
2021b. Cline: Contrastive learning with semantic
negative examples for natural language understand-
ing. arXiv preprint arXiv:2107.00440.

Heng-Da Xu, Zhongli Li, Qingyu Zhou, Chao Li,
Zizhen Wang, Yunbo Cao, Heyan Huang, and Xian-
Ling Mao. 2021. Read, listen, and see: Leveraging
multimodal information helps chinese spell check-
ing. arXiv preprint arXiv:2105.12306.

930

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020. Clue: A chinese language un-
derstanding evaluation benchmark. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 4762–4772.

Jin Yong Yoo and Yanjun Qi. 2021. Towards im-
proving adversarial training of nlp models. arXiv
preprint arXiv:2109.00544.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan
Liu, Meng Zhang, Qun Liu, and Maosong Sun.
2020. Word-level textual adversarial attacking
as combinatorial optimization. arXiv preprint
arXiv:1910.12196.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. Advances in neural information process-
ing systems, 28:649–657.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji,
Jian Guan, et al. 2021. Cpm: A large-scale gener-
ative chinese pre-trained language model. AI Open,
2:93–99.

Zihan Zhang, Mingxuan Liu, Chao Zhang, Yiming
Zhang, Zhou Li, Qi Li, Haixin Duan, and Donghong
Sun. 2020. Argot: Generating adversarial readable
chinese texts.

931

