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Abstract

Transfer learning has proven to be crucial in
advancing the state of speech and natural lan-
guage processing research in recent years. In
speech, a model pre-trained by self-supervised
learning transfers remarkably well on multi-
ple tasks. However, the lack of a consistent
evaluation methodology is limiting towards a
holistic understanding of the efficacy of such
models. SUPERB was a step towards intro-
ducing a common benchmark to evaluate pre-
trained models across various speech tasks. In
this paper, we introduce SUPERB-SG, a new
benchmark focused on evaluating the seman-
tic and generative capabilities of pre-trained
models by increasing task diversity and dif-
ficulty over SUPERB. We use a lightweight
methodology to test the robustness of repre-
sentations learned by pre-trained models under
shifts in data domain and quality across dif-
ferent types of tasks. It entails freezing pre-
trained model parameters, only using simple
task-specific trainable heads. The goal is to be
inclusive of all researchers, and encourage effi-
cient use of computational resources. We also
show that the task diversity of SUPERB-SG
coupled with limited task supervision is an ef-
fective recipe for evaluating the generalizabil-
ity of model representation.

˚̊Equal contribution.

1 Introduction

Transfer learning is a paradigm in machine learn-
ing that has been very effective for natural lan-
guage processing (NLP) (Peters et al., 2018; De-
vlin et al., 2019; Liu et al., 2019; Lan et al., 2019;
Dong et al., 2019; Yang et al., 2019; Raffel et al.,
2020; Lewis et al., 2019; Conneau et al., 2020),
and speech processing (van den Oord et al., 2018;
Rivière et al., 2020; Chung et al., 2019; Schneider
et al., 2019; Baevski et al., 2020b; Hsu et al., 2021;
Liu et al., 2020c,b; Ravanelli et al., 2020; Ling
et al., 2020; Ling and Liu, 2020). Self-supervised
learning (SSL) is the main driver of this paradigm,
an effective and scalable way to learn high-level
representation of language that transfers to a vari-
ety of tasks. SSL entails learning from the input
or some perturbation of it without the need for la-
belled data. This has unlocked the usage of large
amounts of cheaply available unlabelled data. It
lends naturally to neural network models that have
been shown to possess impressive scaling charac-
teristics such that it is often enough to increase
the model and data sizes to improve downstream
performance (Hestness et al., 2017; Shazeer et al.,
2017; Jozefowicz et al., 2016; Mahajan et al., 2018;
Radford et al., 2019).

Speech signal consists of acoustic, linguistic,
prosodic, and speaker characteristics. SSL algo-
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rithms in speech must be evaluated in their ability
to produce representations that are useful for tasks
that demand understanding of linguistic, speaker,
and prosodic elements of spoken language as well
as high-level semantics. Researchers have used
auto-regressive, contrastive, discriminative and
multi-task learning objectives to pre-train mod-
els, and have investigated their capabilities across
tasks like phoneme recognition (van den Oord
et al., 2018; Chung et al., 2019), automatic speech
recognition (ASR) (Liu et al., 2020b; Schneider
et al., 2019; Ling and Liu, 2020; Ravanelli et al.,
2020; Hsu et al., 2021; Chang et al., 2021), speaker
verification (Fan et al., 2020), speaker identifica-
tion (Chung et al., 2019; Liu et al., 2020c), emotion
recognition (Macary et al., 2021), speech transla-
tion (Chung et al., 2019), voice conversion (Lin
et al., 2020; Huang et al., 2021a), spoken lan-
guage understanding (Lai et al., 2021), and text-to-
speech (Álvarez et al., 2019). However, the method-
ologies in such studies vary in the use of datasets,
fine-tuning strategies and task-specific model ar-
chitectures. To bridge this gap, SUPERB (Yang
et al., 2021) introduced a standardized benchmark
of 10 speech tasks to compare 13 pre-trained mod-
els and a Log Mel-Filterbank baseline. It studied
the models’ performance in tasks focusing on lin-
guistic (phoneme recognition and automatic speech
recognition, keyword spotting and query by exam-
ple), shallow semantic (intent classification and
slot filling), speaker (speaker identification, speaker
verification and speaker diarization), and prosodic
(emotion recognition) characteristics.

In this paper, we introduce SUPERB-SG, a
benchmark with 5 new tasks, which are speech
translation, out-of-domain ASR, voice conversion,
speech separation, and speech enhancement, with
an emphasis on evaluating the semantic and gener-
ative capabilities of pre-trained models that require
high-level representations to capture linguistic, se-
mantic, and speaker characteristics. These tasks go
beyond speech recognition by focusing on various
other aspects that are essential to building intel-
ligent speech interfaces. Further, we show that
while SSL models achieve close to state-of-the-art
performance on many tasks, there isn’t one model
that outperforms all others, and that a simple Log
Mel-Filterbank can perform competitively on some
tasks. We also demonstrate the robustness of our
methodology with an ablation study over different
task-specific model architectures and data sizes.

Downstream Model

Downstream

Features 1

Upstream Model
(eg. FBANK, TERA, etc.)

Upstream (frozen)

Features L

Weighted-sum Mechanism

?

Prediction

Features

Loss

Target

Figure 1: Illustration of the detailed training procedure.
A trainable weighted-sum mechanism is used to sum-
marize all layers’ representations into a sequence of
vectors and then taken by downstream model as input.
Upstream is frozen through the whole process. Dashed
arrow (99K) is used to indicate the flow of gradient
when back propagating.

The introduction of these new tasks of varying
difficulty takes us closer to a more comprehensive
unified standard speech benchmark. We hope that
this will motivate the development of more power-
ful, generalizable, and reusable pre-trained models
to democratize the advancement of speech research.
To facilitate this, we released the codes1 and inte-
grated the tasks with the SUPERB benchmark.

2 Related Work

As more powerful SSL models are proposed
with promising performance on various tasks, re-
searchers continually try to find extensive evalu-
ation methods to assess model performance, and
wish to holistically understand the capability of the
learned representations in these models.
SUPERB (Yang et al., 2021) is a framework to

benchmark the SSL models on 10 speech tasks by
learning task-specific prediction heads on top of
the frozen shared SSL models. Although the tasks
in SUPERB span across different domains, most
of them are simple classification problems, or only
require utilization of shallow semantics. In contrast,
we focus on harder semantic and generative tasks.

Another recently proposed benchmark is the
LeBenchmark (Evain et al., 2021), investigating
the performance of SSL models trained on French
data with three semantic tasks. However, they only
consider wav2vec 2.0 (Baevski et al., 2020b) with

1https://github.com/s3prl/s3prl: Tasks in SUPERB-SG are
open-sourced and reproducible in the S3PRL toolkit which
supports benchmarking the most existing and customized pre-
trained models.
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different architectures as their upstream models
(i.e., networks pre-trained with SSL). Here, we
evaluate a diverse set of SSL models, and offer a
more comprehensive analysis.

The Zero Resource Speech Benchmark
2021 (Nguyen et al., 2020) introduces unsuper-
vised speech processing tasks, particularly the
spoken language modeling problem. They evaluate
the SSL models via zero-shot probings at four
linguistic levels. While their benchmark task is
specific for certain domain, we use various tasks to
evaluate different aspects of SSL models.

The HEAR 2021 Challenge2 aims to develop
general-purpose audio representation by focusing
on audio tasks beyond speech that include sound
event detection, speech commands and pitch &
chroma classification. We specifically focus on var-
ious aspects of speech processing, thus providing a
wide variety of spoken language tasks.

3 SUPERB-SG

3.1 Tasks and Datasets

This section introduces the tasks in SUPERB-SG,
including why we choose these tasks and how
we design the task-specific heads for fine-tuning.
Following SUPERB’s methodology, we use a
lightweight fine-tuning approach wherein we freeze
the pre-trained model parameters and only keep
the task-specific head’s parameters trainable. This
setting serves the dual purpose of evaluating the
robustness as well as the generalizability of the
speech representations, and provides a resource-
efficient way of fine-tuning the models that is inclu-
sive of participants with constrained compute re-
sources. We call the pre-trained model as upstream
model and the task-specific heads as downstream
model. We now discuss the newly added tasks in
SUPERB-SG in the following sub-sections.

3.1.1 Speech Translation
Speech translation (ST) involves translating the
acoustic speech signals in the source language into
the words in the target language. We use it to
evaluate the semantic capability of SSL models,
and how they benefit the translation task. We use
the CoVoST2 EnÑDe (Wang et al., 2020) dataset
(CC0 Licensed) with their official train, valida-
tion, and test splits while removing all the samples
containing "REMOVE", resulting in 425.8, 25.9

2https://neuralaudio.ai/hear2021-holistic-evaluation-of-
audio-representations.html

and 24.5 hours respectively. For text, we keep
original case, normalize punctuation, and build
character vocabulary with 100% train-set coverage.
We report case-sensitive de-tokenized BLEU using
sacreBLEU (Post, 2018). Our downstream model
has an encoder-decoder architecture with 3 layers
of Transformers (Vaswani et al., 2017) each with
hidden dimension of 512. A convolutional sub-
sampler is used to reduce the sequence length of
the input before feeding it to the encoder. We train
our model with label-smoothing using a probability
of 0.1. A beam size of 20 is used for inference.

3.1.2 Out-of-domain ASR
Although an ASR is included in SUPERB, it only
examines SSL models on read English corpus Lib-
riSpeech (Panayotov et al., 2015). Therefore, we
introduce out-of-domain ASR (OOD-ASR), which
aims to evaluate the models’ capabilities across lan-
guages, and out-of-domain scenarios. The OOD-
ASR tasks are categorized into cross-lingual and
spontaneous speech tasks. For the cross-lingual
tasks, we choose the Mexican Spanish (es), Man-
darin (zh), and Arabic (ar) subsets from Common
Voice 7.0 (Ardila et al., 2020) (CC0 Licensed) con-
taining 21.5, 31.2, and 30.7 hours of training data
respectively. The validation set sizes are 1.2 hours,
14.4 hours and 12.24 hours, and the test set sizes
are 0.6 hour, 15.3 hours and 12.5 hours for es, zh
and ar respectively. For the spontaneous speech
task (spon), we use the Santa Barbara Corpus of
Spoken American English (SBCSAE) (Du Bois
et al., 2000 – 2005) (CC BY-ND 3.0 Licensed),
consisting of 60 conversations over different topics
spanning 16.7 hours of data. The validation and test
set sizes are 1.6 hours and 2.2 hours respectively.
For evaluation, we use word error rate (WER) as
the metric except for Mandarin which character er-
ror rate (CER) is used. The error rates are averaged
across all sub-tasks to offer an overall score. The
ASR model is a 2-layer BLSTM (Hochreiter and
Schmidhuber, 1997) with hidden states of 1024
dimension. The training objective is to minimize
the Connectionist Temporal Classification (CTC)
loss (Graves et al., 2006). During inference, we
use CTC greedy decoding without language model
re-scoring to simplify the process and to highlight
the impact of the learned acoustic representations.

3.1.3 Voice Conversion
For voice conversion (VC), we consider the intra-
lingual VC task in VCC2020 (Zhao et al., 2020)
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Upstream Network #Params Stride Input Corpus Pretraining Official Github

FBANK - 0 10ms waveform - - -

PASE+ SincNet, 7-Conv, 1-QRNN 7.83M 10ms waveform LS 50 hr multi-task santi-pdp / pase

APC 3-GRU 4.11M 10ms FBANK LS 360 hr F-G iamyuanchung / APC
VQ-APC 3-GRU 4.63M 10ms FBANK LS 360 hr F-G + VQ iamyuanchung / VQ-APC
NPC 4-Conv, 4-Masked Conv 19.38M 10ms FBANK LS 360 hr M-G + VQ Alexander-H-Liu / NPC
Mockingjay 12-Trans 85.12M 10ms FBANK LS 360 hr time M-G s3prl / s3prl
TERA 3-Trans 21.33M 10ms FBANK LS 960 hr time/freq M-G s3prl / s3prl
DeCoAR 2.0 12-Trans 89.84M 10ms FBANK LS 960 hr time M-G + VQ awslabs / speech-representations

Modified CPC 5-Conv, 1-LSTM 1.84M 10ms waveform LL 60k hr F-C facebookresearch / CPC_audio
wav2vec 19-Conv 32.54M 10ms waveform LS 960 hr F-C pytorch / fairseq
vq-wav2vec 20-Conv 34.15M 10ms waveform LS 960 hr F-C + VQ pytorch / fairseq
wav2vec 2.0 Base 7-Conv 12-Trans 95.04M 20ms waveform LS 960 hr M-C + VQ pytorch / fairseq
wav2vec 2.0 Large 7-Conv 24-Trans 317.38M 20ms waveform LL 60k hr M-C + VQ pytorch / fairseq
HuBERT Base 7-Conv 12-Trans 94.68M 20ms waveform LS 960 hr M-P + VQ pytorch / fairseq
HuBERT Large 7-Conv 24-Trans 316.61M 20ms waveform LL 60k hr M-P + VQ pytorch / fairseq

Table 1: Details of the investigated SSL representations. LibriSpeech and LibriLight are denoted as LS and LL,
respectively. For the pretraining methods, we abbreviate "vector quantization" as VQ, "future" as F, "masked" as
M, "generation" as G, "contrastive discrimination" as C, and "token prediction/classification" as P. Parameters for
both pretraining and inference are counted.

(ODbL Licensed) under the any-to-one (A2O) set-
ting. A2O VC aims to convert speech from any arbi-
trary speaker into that of a predefined target speaker.
We use the task to evaluate the speaker transferabil-
ity as well as the generalizability of the SSL models.
We use 60 utterances from the target speaker that
spans 5 minutes for training, and 25 utterances for
testing that span 2 minutes. No validation set was
used. We use the commonly used mel-cepstrum
distortion (MCD), word error rate (WER) and auto-
matic speaker verification (ASV) accept rate from
off-the-shelf ASR and ASV models as evaluation
metrics. The downstream model is trained to re-
construct the acoustic feature from the upstream
representations in a target-speaker-dependent man-
ner. In the conversion phase, given the represen-
tations extracted by the upstream, the model gen-
erates the converted acoustic features, which are
then sent to a neural vocoder to synthesize the con-
verted waveform. We adopted Tacotron2 (Shen
et al., 2018) as the downstream model, which is an
autoregressive network consisting of convolutional
and LSTM layers. For the neural vocoder, we used
the Hifi-GAN (Kong et al., 2020). We follow an
implementation described in (Huang et al., 2021b).

3.1.4 Speech Separation

Speech separation (SS) is the task of separating
target speech from background interference (Wang
and Chen, 2018). It is an important step in
speech processing, especially for noisy and multi-
speaker scenarios. We investigate the speech sep-

aration problem on a dataset simulated from Lib-
riSpeech (Cosentino et al., 2020) (CC BY 4.0 Li-
censed) and WHAM! (Wichern et al., 2019) (CC
BY-NC 4.0 Licensed) noise. We use 16kHz version
of the dataset containing 2 speakers, and focus on
the mix_clean condition. The train and evaluation
sets contain 43.3 and 4.2 hours of speech simulated
from LibriSpeech’s train-clean-100 and test-clean.
This task is used to evaluate the generative capa-
bility of SSL models when input is a mixture of
acoustic signals. We use the scale-invariant signal-
to-distortion ratio improvement (SI-SDRi) as the
evaluation metric. For the downstream model, we
use a 3-layer BLSTM model with dimension of 896
for each direction to predict the short-time Fourier
transform (STFT) masks for each speaker, and the
predictions are transformed back to the time do-
main using inverse short-time Fourier transform
(iSTFT). Permutation invariant training (PIT) (Yu
et al., 2017) is performed to optimize the mean
square error between the predicted mask and Ideal
Non-negative Phase Sensitive Mask (INPSM) (Er-
dogan et al., 2015; Kolbæk et al., 2017). We choose
frequency domain method instead of a time domain
based method because of the stride size constraint
and computational cost.

3.1.5 Speech Enhancement

Speech enhancement (SE) is the task of remov-
ing background noise from a degraded speech sig-
nal, and it aims to improve the perceived quality
and intelligibility of the signal. We include this
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Upstream ST OOD-ASR VC SS SE

BLEUÒ WERÓ MCDÓ WERÓ ASVÒ SI-SDRiÒ PESQÒ STOIÒ

FBANK 2.32 63.58 8.47 38.3 77.25 9.23 2.55 93.6

PASE+ 3.16 61.56 8.66 30.6 63.20 9.87 2.56 93.9

APC 5.95 63.12 8.05 27.2 87.25 8.92 2.56 93.4
VQ-APC 4.23 63.56 7.84 22.4 94.25 8.44 2.56 93.4
NPC 4.32 61.66 7.86 30.4 94.75 8.04 2.52 93.1
Mockingjay 4.45 65.27 8.29 35.1 79.75 9.29 2.53 93.4
TERA 5.66 58.49 8.21 25.1 83.75 10.19 2.54 93.6
DeCoAR 2.0 9.94 53.62 7.83 17.1 90.75 8.54 2.47 93.2

Modified CPC 4.82 62.54 8.41 26.2 71.00 10.40 2.57 93.7
wav2vec 6.61 55.86 7.45 10.1 98.25 9.30 2.53 93.8
vq-wav2vec 5.66 60.66 7.08 13.4 100.00 8.16 2.48 93.6
wav2vec 2.0 Base 14.81 46.95 7.50 10.5 98.00 9.77 2.55 93.9
wav2vec 2.0 Large 12.48 44.69 7.63 15.8 97.25 10.02 2.52 94.0
HuBERT Base 15.53 46.69 7.47 8.0 98.50 9.36 2.58 93.9
HuBERT Large 20.01 44.08 7.22 9.0 99.25 10.45 2.64 94.2

Table 2: Evaluating various SSL representations on new semantic and generative downstream tasks. Ò indicates
the higher the better and Ó indicates the lower the better. The complete results of OOD-ASR are in Appendix A.

task to evaluate the generative capability under
noisy conditions. In SUPERB-SG, we discuss the
speech enhancement problem on the Voicebank-
DEMAND (Veaux et al., 2013) (CC BY 4.0 Li-
censed) corpus. The train, validation, and test
sets contain 8.8, 0.6 and 0.6 hours of speech re-
spectively. Our evaluation metrics are Perceptual
Evaluation of Speech Quality (PESQ) and Short-
Time Objective Intelligibility (STOI). For the down-
stream model, we follow the mask-based speech
enhancement pipeline in (Kolbæk et al., 2017). A
3-layer BLSTM model similar to the speech sep-
aration task is trained to predict the spectral mask
for the clean signal. The mean square error be-
tween the predicted mask and INPSM is used as
the objective.

3.2 Self-supervised Models

We evaluate the tasks on 15 upstream models,
which are PASE+ (Ravanelli et al., 2020), APC
(Chung et al., 2019), VQ-APC (Chung et al.,
2020), NPC (Liu et al., 2020a), Mockingjay (Liu
et al., 2020c), TERA (Liu et al., 2020b), DeCoAR
2.0 (Ling and Liu, 2020), Modifile CPC (Rivière
et al., 2020), wav2vec family (Schneider et al.,
2019) (Baevski et al., 2020a) (Baevski et al., 2020b)
and HuBERT (Hsu et al., 2021). They span across
different architectures, sizes and learning objec-
tives. Some models also use vector quantization
which has an added benefit of signal compression.
For grounding, we use Log Mel Filterbank as our
baseline. The detailed properties of upstream mod-

els are shown in Table 1.

4 Experimental Setup

Following SUPERB, we fix upstream models pa-
rameters for all downstream tasks’ training. We
extract the frame-level representations for each hid-
den layer of the upstream models from raw wave-
form, and use a trainable task-specific weighted-
sum mechanism to summarize all layers’ represen-
tations into a sequence of vectors. The summarized
representations are then used as the downstream
model’s input. An overview of the training proce-
dure is demonstrated in Figure 1. Each experiment
is done by one single run with the same seed. This
procedure is consistent for all experiments, offer-
ing a fair and simple evaluation strategy for all
upstream models.

5 Results and Discussion

5.1 Main result
The results of the upstream models evaluated on
SUPERB-SG are shown in Table 2. We only report
the averaged WER for OOD-ASR. Full results can
be found in Appendix A. For speech-to-text tasks
(ST and OOD-ASR), wav2vec 2.0 and HuBERT
offer competitive results, while DeCoAR 2.0 shows
some improvements. In speech generation tasks
(VC, SS, and SE), FBANK yields comparable or
superior performance than some SSL models, es-
pecially for those metrics that take the quality of
the output signal into account. For VC, the 3 re-
ported metrics have the same trend for respective

8483



ST OO
D-

AS
R

VC
 (M

CD
)

VC
 (W

ER
)

VC
 (A

SV
)

SS SE
 (P

ES
Q)

SE
 (S

TO
I)

PR AS
R

SI
D

AS
V

IC ER

ST

OOD-ASR

VC (MCD)

VC (WER)

VC (ASV)

SS

SE (PESQ)

SE (STOI)

PR

ASR

SID

ASV

IC

ER

1.0 .86 .74 .85 .69 .38 .10 .51 .89 .92 .86 .75 .92 .83

.86 1.0 .69 .83 .65 .46 .02 .66 .86 .92 .79 .70 .83 .79

.74 .69 1.0 .90 .98 -.08 -.15 .31 .84 .75 .61 .66 .87 .63

.85 .83 .90 1.0 .85 .24 .13 .54 .91 .85 .75 .70 .90 .79

.69 .65 .98 .85 1.0 -.13 -.11 .30 .79 .71 .58 .66 .84 .57

.38 .46 -.08 .24 -.13 1.0 .52 .78 .23 .40 .31 .04 .15 .37

.10 .02 -.15 .13 -.11 .52 1.0 .46 .08 -.01 .21 .10 .05 .25

.51 .66 .31 .54 .30 .78 .46 1.0 .52 .54 .42 .41 .44 .53

.89 .86 .84 .91 .79 .23 .08 .52 1.0 .89 .89 .85 .98 .94

.92 .92 .75 .85 .71 .40 -.01 .54 .89 1.0 .83 .71 .88 .83

.86 .79 .61 .75 .58 .31 .21 .42 .89 .83 1.0 .81 .88 .88

.75 .70 .66 .70 .66 .04 .10 .41 .85 .71 .81 1.0 .85 .81

.92 .83 .87 .90 .84 .15 .05 .44 .98 .88 .88 .85 1.0 .89

.83 .79 .63 .79 .57 .37 .25 .53 .94 .83 .88 .81 .89 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Spearman’s ρ between tasks.

models. Here, vq-wav2vec achieves the best perfor-
mance on MCD and ASV, while HuBERT performs
the best on WER. For SS, Hubert-Large achieves
the best performance, followed by Modified CPC.
PASE+, which is pre-trained with denoising tasks,
performs better than half the SSL models, but this
observation doesn’t transfer to the other tasks. For
SE, all upstream models perform comparably. The
largest gap is only 0.17 in PESQ and 1.1 in STOI.

Overall, no model outperforms all others on all
tasks. However, HuBERT-Large performs most
competitively on all downstream tasks, especially
those requiring linguistic and semantic signals.

5.2 Correlation between tasks

We analyze the correlations between tasks in
SUPERB-SG to understand the similarity between
tasks, and verify if the experimental results agree
with the common understanding of related tasks
based on shared representation they require.

To compute the correlation, we first change all
metrics into a higher-better manner. Then, we com-
pute the Spearman’s rank correlation coefficients
(Spearman’s ρ) between all pairs of tasks. For mul-
tiple metrics contained in a single task, such as
MCD/WER/ASV in VC as well as PESQ/STOI in
SE, we compute each of them separately.

To make our analysis more representative and
generalized to all speech domains, we bring back
the six tasks from SUPERB (Yang et al., 2021) that
are considered representative of the following four
domains: (i) Content recognition tasks contain-
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Figure 3: Spearman’s ρ between tasks rearranged by
clustering result.

ing Phoneme Recognition (PR), Automatic Speech
Recognition (ASR) (ii) Speaker identity tasks in-
cluding Identification (SID), Automatic Speaker
Verification (ASV) (iii) Semantics task which is
Intent Classification (IC) and (iv) Prosodic task
which is Emotion Recognition (ER). Together with
the 5 tasks introduced in this paper, we show the
results of total 11 downstream tasks with the 14
corresponding metrics in Figure 2.

Overall, results show that all tasks except SS and
SE have strong positive correlation among them.
One possible explanation for SS and SE not show-
ing strong correlation is that the low-level informa-
tion closely related to audio signals is more criti-
cal as they need to reconstruct clean speech from
interfering speakers and background noise by es-
timating the STFT masks. As a result, high-level
information extracted from SSL models has little
benefit for these tasks but is helpful for other tasks.
As noted earlier, there is only a small gap in per-
formance between FBANK and SSL models. If
we leave SS and SE out, all correlation coefficients
are greater than 0.58, showing that the SSL model
representations are useful for multiple domains.

Although the Spearman’s ρ are large in general
in Figure 2, differences between tasks are observ-
able. Here, we focus on the relation between cor-
relation and similarity of tasks. We list the most
and the least two correlated tasks comparing with
ST, OOD-ASR, VC, SS, and SE. SS and SE are
skipped as candidates for for the least correlated
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Tasks Top 2 Last 2

ST ASR
(0.92)

IC
(0.92)

ASV
(0.75)

VC
(0.76)

OOD-ASR ASR
(0.92)

PR
(0.86)

ASV
(0.70)

VC
(0.72)

VC PR
(0.84)

ASR
(0.77)

SID
(0.64)

ER
(0.66)

SS SE
(0.65)

OOD-ASR
(0.46)

VC
(0.01)

ASV
(0.04)

SE SS
(0.65)

ER
(0.39)

VC
(0.17)

IC
(0.25)

Table 3: Top 2 and last 2 tasks correlated with the five
SUPERB-SG tasks ranked by Spearman’s ρ.

Cluster Metrics

A ST, OOD-ASR, PR
VC (WER), ASR, IC

B SID, ASV, ER

C VC (MCD), VC (ASV)

D SS

E SE (PESQ)

F SE (STOI)

Table 4: K-means clustering result based on the corre-
lation between each downstream tasks.

tasks since they dominate the results. For VC, we
average the correlation coefficients across the three
metrics. The results are shown in Table 3. ST
and OOD-ASR are highly correlated with ASR
since they both transform speech signals into dis-
crete text tokens. IC is also correlated with ST
since semantic information is required to perform
both tasks. Moreover, ASV and VC are the least
correlated tasks since they primarily focus on the
speaker information with lesser regard to the se-
mantic content. However, the absolute correlation
values are still larger than 0.7. For VC, the speaker
information needs to be removed while the con-
tent has to be kept, similar to PR and ASR but
different from SID. SS and SE are correlated with
each other and have a much lower correlation with
speaker identity and semantics tasks, supporting
our assumption. Overall, we find that empirically
highly-correlated tasks require similar knowledge
or understanding ability.

To give a broader view of our correlation results,
we further cluster the downstream tasks by their
correlation with each other using K-means. In this
way, all the tasks are considered simultaneously,

and the grouping is driven automatically by the em-
pirical correlation results. If more than one metric
are used in a downstream task, we cluster them
independently. The clustering results are shown in
Table 4 and a rearranged correlation map is shown
in Figure 3. The result shows that the clusters of
the tasks align with our empirical knowledge. Clus-
ter A includes tasks that require content informa-
tion, while tasks in cluster B are more sensitive to
speaker and prosodic features. Cluster C contains
metrics MCD and ASV of VC, which are used to
evaluate the signal quality and the rates of speaker
transfer. It is worth noting that WER in VC be-
longs to cluster A, showing that it is more similar
to content-related tasks. Furthermore, clusters D,
E, and F each contain one of the metrics in SS and
SE, aligning with our assumption that these tasks
utilize different types of information compared to
other tasks.

With the analysis of the correlation between
tasks, we empirically confirm the reliability of the
results, and show that we increase the heterogene-
ity among speech tasks over SUPERB. We further
discover shared properties between tasks with clus-
tering, and the result is aligned with our common
understanding of related tasks.

5.3 Robustness of SUPERB-SG

To study the impact of downstream model archi-
tecture and the data sizes used in SUPERB-SG we
evaluate the robustness of SUPERB-SG with varia-
tions in downstream model as well as training data
size, and show that our conclusions still hold true.

We choose ST, OOD-ASR and SS as the down-
stream tasks for evaluation with an aim to cover
semantic, content recognition, and generative task
types. For the upstream models, FBANK, TERA,
CPC, wav2vec 2.0 Base and HuBERT Base are
used to cover different SSL algorithms.

5.3.1 Downstream model
For each task, 2 additional downstream architec-
tures are created by modifying the number of layers
and the hidden dimensions compared to our default
setting. We create small and large models that are
roughly the half and twice of default in terms of the
number of trainable parameters. A detailed com-
parison of the downstream architectures is shown
in Table 5. The results are shown in Table 6.

We show that the ranking of the upstream models
is almost fixed when the model sizes are varied. As
expected, the small architecture has worse perfor-
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Architecture ST OOD-ASR SS

architecture #params architecture #params architecture #params

default

3-layer encoder
3-layer decoder

Transformer
(dim 512)

28.8M 2-layer BLSTM
(dim 1024) 53.4M 3-layer BLSTM

(dim 896) 51.4M

small

no encoder
1-layer decoder

Transformer
(dim 512)

10.9M
(ˆ 0.38)

1-layer BLSTM
(dim 1024)

24.1M
(ˆ 0.45)

2-layer BLSTM
(dim 768)

24.4M
(ˆ 0.47)

large

12-layer encoder
6-layer decoder

Transformer
(dim 512)

69.8M
(ˆ 2.42)

4-layer BLSTM
(dim 1024)

112.2M
(ˆ 2.10)

4-layer BLSTM
(dim 1152)

114.50M
(ˆ 2.23)

Table 5: A detailed comparison of downstream model architectures. We report the number of trainable parameters
when using TERA as upstream model while minor difference (< 10%) exists due to different upstream dimensions.
For OOD-ASR, we average values across all sub-tasks since sub-tasks have different vocabulary sizes.

Upstream ST OOD-ASR SS

BLEUÒ WERÓ SI-SDRiÒ

default

FBANK 2.32 63.58 9.23
TERA 5.66 58.49 10.19
Modified CPC 4.82 62.54 10.40
wav2vec 2.0 Base 14.81 46.95 9.77
HuBERT Base 15.53 46.69 9.36

small

FBANK 0.58 70.86 8.19
TERA 1.84 64.80 9.20
Modified CPC 1.44 67.83 9.56
wav2vec 2.0 Base 8.55 50.75 8.83
HuBERT Base 9.24 50.32 8.73

large

FBANK 3.02 60.49 9.77
TERA 6.64 57.95 (Ĳ) 10.87
Modified CPC 4.56 59.73 (İ) 10.61
wav2vec 2.0 Base 16.81 (Ĳ) 45.61 9.86
HuBERT Base 17.59 (İ) 45.78 9.83

Table 6: Results on SS, ST, OOD-ASR when using dif-
ferent architectures. Ĳ and İ are used to denote the rank
changing. The complete results of OOD-ASR are in
Appendix A.

mance than default, while large has better. More-
over, the scores causing the change in ranking are
negligible, e.g., TERA/CPC in SS and wav2vec 2.0
Base/HuBERT Base in OOD-ASR with large. The
results show that the relative performance achieved
by different upstream models is agnostic to the
downstream architecture, confirming the robust-
ness of the framework used in SUPERB-SG.

5.3.2 Training data size

To study the effect of data size, we create 3 pseudo
datasets per task by sub-sampling 10%, 5% and

Partition ST
OOD-ASR

SS
es zh ar spon

Train
100% 425.80 21.44 31.05 30.39 11.43 43.27
10% 42.58 2.15 3.11 3.04 1.14 4.34
5% 25.91 1.07 1.56 1.52 0.57 2.17
1% 4.26 0.22 0.31 0.31 0.12 0.43

Dev 25.91 1.19 14.41 12.24 1.59 1.52

Test 24.51 0.62 15.32 12.46 2.15 4.19

Table 7: Hours of data in pseudo datasets.

1% from the original training set while fixing the
validation and test sets. The statistics of the datasets
are shown in Table 7, and the results are in Table 8.

The ranking of the upstream models remains al-
most the same for 10% of training data. When that
is further reduced to 5%, there is a change in rank-
ing in SS due to a performance drop in Modified
CPC. Excluding Modified CPC, the ranking is still
fixed showing that the relative performance of the
upstream models is agnostic to data size.

Furthermore, when using only 1% of training
data, most of the SSL models fail on the 3 down-
stream tasks. This phenomenon is caused by in-
sufficient task-specific knowledge due to limited
training data size. Although SSL models learn high-
level representations from the unlabeled speech sig-
nal, acquisition of task-specific knowledge such as
translingual ability in ST, text-level token mapping
in OOD-ASR, and mask prediction in SS, requires
non-trivial supervision.

We note that fewer training examples speeds
training up but sacrifices the evaluation quality.
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Upstream
ST OOD-ASR SS

BLEUÒ WERÓ SI-SDRiÒ

100%

FBANK 2.32 63.58 9.23
TERA 5.66 58.49 10.19
Modified CPC 4.82 62.54 10.40
wav2vec 2.0 Base 14.81 46.95 9.77
HuBERT Base 15.53 46.69 9.36

10%

FBANK 0.46 85.39 5.65
TERA (İ) 0.88 80.32 (Ĳ) 6.72
Modified CPC (Ĳ) 1.30 85.32 (İ) 6.59
wav2vec 2.0 Base 5.04 63.85 6.45
HuBERT Base 5.57 63.43 6.13

5%

FBANK 0.27 89.70 4.52
TERA 0.44 86.95 (Ĳ 1) 5.59
Modified CPC 0.37 87.97 (İ 3) 4.95
wav2vec 2.0 Base 2.91 69.88 (Ĳ 1) 5.36
HuBERT Base 3.35 69.33 (Ĳ 1) 5.03

1%

FBANK 0.03 99.53 2.29
TERA 0.04 98.31 3.24
Modified CPC 0.03 98.37 (İ 3) 2.87
wav2vec 2.0 Base 0.33 92.46 (Ĳ 2) 3.34
HuBERT Base 0.38 92.17 (Ĳ 1) 3.01

Table 8: Results on ST, OOD-ASR and SS when us-
ing different amount of training data. Ĳ and İ are used
to denote the rank changing. The complete results of
OOD-ASR are in Appendix A.

Overall, we show the robustness of SUPERB-SG
to variations in data size even when the training
data is reduced to 5%, showing the reliability of
the benchmark.

6 Conclusion

We introduce SUPERB-SG, a set of 5 new tasks
that include speech translation, out-of-domain
ASR, voice conversion, speech separation, and
speech enhancement to evaluate the deep seman-
tic and generative capabilities of SSL models. We
evaluate 15 SSL models, and do a comprehensive
analysis of the task correlations to demonstrate the
reliability of our methodology. We test and con-
firm the robustness of SUPERB-SG in terms of
the downstream model architecture as well as the
training data size. The latest introduction of the se-
mantic and generative tasks increases the diversity
and difficulty of SUPERB, which can boost a more
comprehensive understanding of the capability of
various SSL models’ representations, and help re-
searchers discover the hidden properties of SSL

techniques in development.
We have open-sourced all the codes1 and re-

leased a challenge3 to encourage further research
of SSL in speech. We welcome the community
to participate and advance the research frontier to-
gether.

Ethics

This work fully adheres to the ACL code of ethics.
For more details, we provide a checklist in Ap-
pendix B.
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A Complete Out-of-domain ASR Results

Here, we provide complete results of OOD-ASR
tasks, as shown in Tables 9, 10, 11. All upstream
models used in this paper are trained with English
speech data, but we are also interested in multi-
lingual pre-trained models in OOD-ASR. There-
fore, we evaluate the wav2vec 2.0 XLSR model
on the OOD-ASR tasks, as shown in the last row
of Table 9. XLSR has identical architecture as
wav2vec 2.0 Large, but is trained with 56k hours
of speech including 53 different languages. The
pre-training data of XLSR cover our cross-lingual
tasks’ training data. As expected, using multilin-
gual data improves OOD-ASR tasks and achieves
the best performance among all upstream models.

Upstream es zh ar spon

WERÓ CERÓ WERÓ WERÓ AVG

FBANK 54.03 35.44 72.07 92.78 63.58

PASE+ 52.11 35.52 70.47 88.15 61.56

APC 55.23 36.38 70.79 90.07 63.12
VQ-APC 55.32 37.06 71.56 90.29 63.56
NPC 51.07 35.85 69.87 89.86 61.66
Mockingjay 58.11 38.13 73.57 91.27 65.27
TERA 48.67 32.21 66.18 86.89 58.49
Modified CPC 54.37 36.22 68.94 90.61 62.54
DeCoAR 2.0 43.18 28.77 61.00 81.53 53.62
wav2vec 46.16 31.69 60.85 84.72 55.86
vq-wav2vec 52.02 36.55 66.19 87.89 60.66
wav2vec 2.0 Base 37.85 26.44 55.95 67.55 46.95
wav2vec 2.0 Large 35.75: 25.07: 54.29: 63.64: 44.69
HuBERT Base 37.15 26.23 54.94 68.41 46.69
HuBERT Large 30.90 23.73: 50.60; 71.09; 44.08

wav2vec 2.0 XLSR 26.90: 22.97: 49.63: 63.05: 40.64:

Table 9: Results of OOD-ASR tasks, where spon de-
notes spontaneous speech. : Normalized across dimen-
sionality of representation to stabilize training and en-
sure convergence. ; Uses linear warmup of learning
rates in the first 8k steps to stabilize training and ensure
convergence.

B Responsible NLP Research Checklist

Here we answer the ethics questions to show our
ethics statement.

B.1 Did you discuss the limitations of your
work?

Yes, we discussed the constrains on the frozen up-
streams and simple task specific heads in abstract
and Section 3.

B.2 Did you discuss any potential risks of
your work?

Yes, in Section 5.3, we discussed about the risks of
the unstable benchmark results, and we showed the

Upstream es zh ar spon

WERÓ CERÓ WERÓ WERÓ AVG

default

FBANK 54.03 35.44 72.07 92.78 63.58
TERA 48.67 32.21 66.18 86.89 58.49
Modified CPC 54.37 36.22 68.94 90.61 62.54
wav2vec 2.0 Base 37.85 26.44 55.95 67.55 46.95
HuBERT Base 37.15 26.23 54.94 68.41 46.69

small

FBANK 63.86 41.97 80.30 97.30 70.86
TERA 57.13 37.66 73.92 90.49 64.80
Modified CPC 60.81 41.47 76.45 92.59 67.83
wav2vec 2.0 Base 41.84 30.22 61.72 69.23 50.75
HuBERT Base 41.45 29.68 59.93 70.21 50.32

large

FBANK 46.39 37.71 65.35 92.52 60.49
TERA 45.41 37.40 64.48 84.53 57.95
Modified CPC 48.70 35.16 69.15 85.93 59.73
wav2vec 2.0 Base 34.02 27.60 54.10 66.73 45.61
HuBERT Base 33.91 27.22 53.43 68.57 45.78

Table 10: Complete results of OOD-ASR tasks with
different model sizes.

Upstream es zh ar spon

WERÓ CERÓ WERÓ WERÓ AVG

100%

FBANK 54.03 35.44 72.07 92.78 63.58
TERA 48.67 32.21 66.18 86.89 58.49
Modified CPC 54.37 36.22 68.94 90.61 62.54
wav2vec 2.0 Base 37.85 26.44 55.95 67.55 46.95
HuBERT Base 37.15 26.23 54.94 68.41 46.69

10%

FBANK 84.82 62.97 93.27 100.49 85.39
TERA 76.44 58.54 88.49 97.79 80.32
Modified CPC 83.84 64.78 91.20 101.44 85.32
wav2vec 2.0 Base 61.26 43.50 72.98 77.65 63.85
HuBERT Base 58.08 42.94 72.78 79.94 63.43

5%

FBANK 89.48 71.99 96.69 100.65 89.70
TERA 83.98 71.04 93.15 99.62 86.95
Modified CPC 88.61 67.61 95.71 99.93 87.97
wav2vec 2.0 Base 67.09 50.58 78.53 83.33 69.88
HuBERT Base 66.29 50.72 76.59 83.74 69.33

1%

FBANK 96.79 96.73 99.85 104.73 99.53
TERA 94.73 98.82 99.77 99.93 98.31
Modified CPC 95.93 97.94 99.80 99.84 98.37
wav2vec 2.0 Base 82.00 94.38 92.41 101.06 92.46
HuBERT Base 82.36 94.34 90.37 101.60 92.17

Table 11: Complete results of OOD-ASR tasks with
different data sizes.

robustness of SUPERB-SG.

B.3 Do the abstract and introduction
summarize the paper’s main claims?

Yes, the paper’s main claims are summarized in
abstract and Section 1.
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B.4 Did you use or create scientific artifacts?
Yes, we used public datasets and pre-trained models
mentioned in Section 3.

B.4.1 Did you cite the creators of artifacts
you used?

Yes, we cited those artifacts properly in Section 3.

B.4.2 Did you discuss the license or terms for
use and/or distribution of any
artifacts?

Yes, the licenses of the artifacts are clearly indi-
cated in Section 3.

B.4.3 Did you discuss if your use of existing
artifact(s) was consistent with their
intended use, provided that it was
specified? For the artifacts you create,
do you specify intended use and
whether that is compatible with the
original access conditions (in particular,
derivatives of data accessed for
research purposes should not be used
outside of research contexts)?

Yes, we use the official implementations of the up-
stream models in Table 1 and followed their public
API to access the models. For the datasets, we also
follow their licenses.

B.4.4 Did you discuss the steps taken to check
whether the data that was
collected/used contains any information
that names or uniquely identifies
individual people or offensive content,
and the steps taken to protect /
anonymize it?

No, there were no data collection involved in this
work. We used the widely-used public datasets and
followed the common data preprocessing steps.

B.4.5 Did you provide documentation of the
artifacts, e.g., coverage of domains,
languages, and linguistic phenomena,
demographic groups represented, etc.?

Yes, the properties of the artifacts were indicated
in Section 3.

B.4.6 Did you report relevant statistics like
the number of examples, details of
train/test/dev splits, etc. for the data
that you used/created?

Yes, the relevant statistics were reported in Section
3.

ST OOD-ASR VC SS SE

Steps 32k 500k 10k 150k 150k
Time 25hr 36hr 4hr 48hr 72hr
GPU 3090 V100 3090 1080 Ti 1080 Ti

Table 12: Training steps, time and GPU devices used
by each task when using HuBERT Base as upstream.
NVIDIA ReForce RTX 3090, NVIDIA Tesla V100 and
NVIDIA GeForce GTX 1080 Ti are denoted as 3090,
V100 and 1080 Ti respectively.

B.5 Did you run computational experiments?
Yes.

B.5.1 Did you report the number of
parameters in the models used, the total
computational budget (e.g., GPU hours),
and computing infrastructure used?

We reported the number of the parameters in Sec-
tion 5.3.1. The computational budget and comput-
ing infrastructures are reported in Table 12.

B.5.2 Did you discuss the experimental setup,
including hyperparameter search and
best-found hyperparameter values?

No, we didn’t do the hyperparameter searching in
a unified way. Some hyperparameters came from
the official implementation or related works and
some were searched by ourselves. However, the
hyperparameters we used are public available1.

B.5.3 Did you report descriptive statistics
about your results (e.g., error bars
around results, summary statistics
from sets of experiments), and is it
transparent whether you are reporting
the max, mean, etc. or just a single
run?

Yes, we indicated that in Section 4.

B.5.4 If you used existing packages (e.g., for
preprocessing, for normalization, or for
evaluation), did you report the
implementation, model, and parameter
settings used (e.g., NLTK, Spacy,
ROUGE, etc.)?

Yes, we reported them in Section 3.

B.6 Did you use human annotators (e.g.,
crowdworkers) or research with human
subjects?

No.
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