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Abstract
Data sharing restrictions are common in NLP,
especially in the clinical domain, but there is
limited research on adapting models to new
domains without access to the original train-
ing data, a setting known as source-free do-
main adaptation. We take algorithms that tra-
ditionally assume access to the source-domain
training data—active learning, self-training,
and data augmentation—and adapt them for
source-free domain adaptation. Then we sys-
tematically compare these different strategies
across multiple tasks and domains. We find
that active learning yields consistent gains
across all SemEval 2021 Task 10 tasks and do-
mains, but though the shared task saw success-
ful self-trained and data augmented models,
our systematic comparison finds these strate-
gies to be unreliable for source-free domain
adaptation.

1 Introduction

Deep neural networks achieve high performance in
many tasks, but typically require annotated training
data for each new domain. Domain adaptation al-
gorithms aim to take models trained on one domain
(the “source domain”) and transfer the model’s
knowledge to another domain (the “target domain”).
They typically try to do this without a huge amount
of annotated data in the target domain. Domain
adaptation can be easy if the source and target do-
main have similar distributions, but domains often
differ substantially (Wilson and Cook, 2020).

While there has been much progress in domain
adaptation methods (Kouw, 2018) and even in un-
supervised domain adaptation where there are no
target-domain labels (Ramponi and Plank, 2020),
most methods assume access to the labeled source
data. Yet this assumption is often not satisfied,
especially in the clinical domain due to privacy
concerns (Laparra et al., 2020).

SemEval 2021 Task 10 (Laparra et al., 2021), on
source-free domain adaptation, called attention to

this challenging but more realistic scenario where
labeled source data are not accessible, only the
model trained on the source domain data can be
shared1, and little or no labeled target data are avail-
able. Participants explored methods including self-
training, active learning, and data augmentation
(Laparra et al., 2021) but it is hard to make fair
comparisons between algorithms since different
teams varied in their base implementations.

We therefore conducted experiments to provide
a systematic comparison of algorithms for source-
free domain adaptation. Our contributions are:
1. The first systematic comparison of self-training,

active learning, and data augmentation for
source-free domain adaptation, carried out
across multiple tasks and domains.

2. We identify a formulation of source-free active
learning that consistently improves performance
of the source-domain model, and sometimes
even outperforms fine-tuning on a large set of
labeled target domain data.

3. We perform an error analysis across tasks and
domains and show that the selected formulation
of active learning corrects several types of errors
that self-training does not.

Our code is publicly available.2

2 Related Work

2.1 Source-free Domain Adaptation

Recently, there is rising interest in computer vision
to develop methods for unsupervised source-free
domain adaptation. Several works utilize a genera-
tive framework with a classifier trained on source
data to generate labeled training examples (Kurmi
et al., 2021; Li et al., 2020) or transfer the target ex-

1In general, it is easier to distribute models than raw data.
For example, Lehman et al. (2021) found that none of the
algorithms they tried could effectively recover protected health
information from a pre-trained language model.

2github.com/xinsu626/
SourceFreeDomainAdaptation
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amples to match the source style (Hou and Zheng,
2020; Sahoo et al., 2020). Other works use self-
supervised pseudo-labeling. Liang et al. (2020)
proposes source hypothesis transfer that freezes
the classifier of the source model domain but fine-
tunes the encoding of the source model with a goal
to reduce the entropy of individual output predic-
tion while maintaining global diversity. They also
augment the strategy by self-supervised pseudo la-
bels via the nearest centroid classifier. Kim et al.
(2020) select low self-entropy instances as class
prototypes and pseudo-label the remaining target
instances based on the distance to the class proto-
types and progressively update the models on target
data in the manner of self-training.

Despite of a growing number of computer vision
studies on source-free domain adaptation, there is
limited NLP research into this challenging but real-
istic scenario. Though there is partially related re-
search on continual learning (de Masson d’Autume
et al., 2019; Sun et al., 2020) and generalization
of pre-trained models (Hendrycks et al., 2020),
the only work to explicitly test source-free do-
main adaptation is SemEval 2021 Task 10 (Laparra
et al., 2021), which asked participants to perform
source-free domain adaptation on negation detec-
tion and time expression recognition. A variety of
techniques were applied to this task, including ac-
tive learning, self-training, and data augmentation.
However, different techniques were applied by dif-
ferent participants with different baseline models,
so the shared task results do not allow us to make
fair comparisons between different techniques. In
the current article, we implement and then system-
atically compare these different techniques.

2.2 Self-training

Self-training (Yarowsky, 1995; McClosky et al.,
2006) trains a model on a labeled datasetL and then
iteratively makes predictions (“pseudo-labels”) on
an unlabeled dataset U and re-trains. On each it-
eration, the examples in U that the model labels
with high confidence (“silver labels”) are added to
L, and the model is retrained on the new, larger L.
This process is repeated until no more predictions
are highly confident. Self-training has been applied
to a variety of domain adaptation scenarios (Ruder
and Plank, 2018; Yu et al., 2015; Cui and Bollegala,
2019), but always with the assumption that the orig-
inal labeled data L is available at each iteration. In
source-free domain adaptation, L is not available,

so source-free self-training could train on only the
pseudo-labels, and it is unclear whether that would
yield a superior or inferior model.

2.3 Active Learning

Active learning selects a small number of examples
to be manually annotated, using strategies designed
to select the examples that should most benefit the
model. Various active learning selection strategies
have been developed (see the survey of Settles,
2009), and recent work has shown the benefits of
active learning even with pre-trained transformer
models (Ein-Dor et al., 2020). Active learning is
also frequently used in domain adaptation. For ex-
ample, Chan and Ng (2007) applied uncertainty
sampling for domain adaptation of word sense dis-
ambiguation models, and Rai et al. (2010) com-
bined model confidence and a domain discrimina-
tor to select target-domain examples for sentiment
analysis. As with self-training, active learning al-
gorithms typically assume that the source-domain
training data is available and can be combined
with target-domain examples. Thus, the efficacy of
source-free active learning is currently unclear.

2.4 Data Augmentation

Data Augmentation enhances limited data by using
existing resources (WordNet, similar datasets, etc.)
and/or rule-based transformations of the training
data to create new training examples. A variety
of data augmentation techniques have been pro-
posed (see the survey of Liu et al., 2020) includ-
ing back-translation (Sennrich et al., 2016; Wang
et al., 2021), lexical-substitution (Zhou et al., 2019;
Arefyev et al., 2020; Wei and Zou, 2019; Miao
et al., 2020), noise injection (Wei and Zou, 2019),
conditional generation (Juuti et al., 2020; Malan-
drakis et al., 2019; Kobayashi, 2018), and data
transformation with task-specific rules or templates
(Şahin and Steedman, 2018; Wang et al., 2021; Xu
et al., 2020). Data augmentation assumes access
to the source-domain training data, so cannot be
used by itself in source-free domain adaptation. It
could be coupled with source-free self-training or
source-free active learning, but researchers have
not yet systematically explored such combinations.

3 Data

We base our experiments off of the data and source-
domain models from the tasks of SemEval 2021
Task 10: negation detection and time expression
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Domain Data Source #

Negation Detection Data

Source SHARP Seed 10,259 sentences
Target: development i2b2 2010 1109 sentences
Target: test i2b2 2010 4436 sentences
Target: development MIMIC III 1916 sentences
Target: test MIMIC III 7664 sentences

Time Expression Detection Data

Source SemEval 2018 Task 6 clinical notes 278 documents
Target: development SemEval 2018 Task 6 news articles 20 documents
Target: test SemEval 2018 Task 6 news articles 79 documents
Target: development Food security reports 4 documents
Target: test Food security reports 13 documents

Table 1: Data summary for negation detection and time expression recognition tasks.

recognition. We select these tasks because:
1. They represent real-world data-sharing prob-

lems: the negation source-domain data “cannot
currently be distributed” and the time expression
source-domain data is “difficult to gain access
to due to the complex data use agreements” (La-
parra et al., 2021). Only the task organizers had
access to the data and permission to distribute
models trained on the (de-identified) data.

2. The annotation schemes are complex enough
that the problem cannot be easily solved by
manually annotating the target domain. Su
et al. (2021) found that annotations from anno-
tators given only the time annotation guidelines
yielded no gains to models, while annotations
from heavily trained annotators did yield gains.

3. These two tasks suffer a large performance loss
under domain shift: the source-trained model is
15+ points of F1 lower on the target test set than
on the source test set (Laparra et al., 2021).

The popular Amazon reviews sentiment analysis
dataset (Blitzer et al., 2007) violates the points
above: labeled source and target data are easily
available, the annotation scheme is easy (it is artifi-
cially balanced and removes reviews with neutral
labels, as others have noted (He et al., 2018; Miller,
2019)), and the source domain model performs
well on the target domain (within 0-4 points of F1).
We nonetheless include some experiments on this
dataset in appendix A.3. We find that with simple
data preprocessing and source-domain hyperparam-
eter tuning, the source-domain model alone outper-
forms all domain adaptation models from Ye et al.
(2020) and Ben-David et al. (2020).

SemEval 2021 Task 10 negation detection is a
“span-in-context” classification task. The goal is to
predict whether an event (denoted by two special

tokens <e> and </e>) in the sentence is negated
by its context. For example, given the sentence:

Has no <e> diarrhea </e> and no new lumps
or masses

the goal is to predict that diarrhea is negated by
its context. The source-domain negation detection
model was trained on Mayo clinic clinical notes.
The target domains are Partners HealthCare clinical
notes from the i2b2 2010 Challenge and Beth Israel
ICU progress notes from the MIMIC III corpus.

SemEval 2021 Task 10 time expression recog-
nition is a sequence-tagging task. The goal is to
identify the time entities in the document and la-
bel them with SCATE types (Bethard and Parker,
2016). For example, given the sentence:

the patient underwent appendicitis surgery on
August 29, 2018,

the goal is to label August as Month-Of-Year, 29
as Day-Of-Month, and 2018 as Year. The source-
domain time expression recognition model was
trained on the Mayo Clinic clinical notes of Sem-
Eval 2018 Task 6 (Laparra et al., 2018). The target
domains are news articles (also from SemEval 2018
Task 6) and reports from food security warning sys-
tems including the UN World Food Programme
and the Famine Early Warning Systems Network.

Each task has a model trained from a source
domain and a test set for each of two target domains.
For each target domain, we split the data into 20%
as a development set and 80% as a test set. Detailed
data information is shown in table 1.
Source data We do not use source domain data.

We use only the English RoBERTa-base models
(Liu et al., 2019) (approx. 125M parameters)
that the task organizers fine-tuned on the source
domain data sets via the Huggingface Transform-
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ers library v3.5.1 (Wolf et al., 2020).
Target development data We use the develop-

ment data for fine-tuning the model. For active
learning, to simulate manual annotation, we fine-
tune on a small number of automatically selected
labeled examples. For self-training, no labels are
used; we fine-tune on predictions (pseudo-labels)
generated by the model on the development data.
For oracle experiments, we fine-tune the model
on all labeled examples in the development set.

Target test data We evaluate on the test data. No
fine-tuning is performed. Models always treat
this data as unlabeled3. Its labels are used only
during evaluation. We use the same evaluation
metrics as in SemEval 2021 Task 10: precision,
recall, and F1 score.

4 Research Questions

We aim for a systematic analysis of three strategies
with many different implementations in SemEval
2021 Task 10: self-training, active learning, and
data augmentation. Our research questions are:
1. How much can we gain from having human

intervention (active learning) and not just the
model alone (self-training)?

2. For active learning, given a fixed annotation
budget, is it better to do several iterations of
selecting examples for annotation and retraining
the model, or to select and retrain just once?

3. For self training, given a fixed confidence thresh-
old, is it better to do several iterations of gener-
ating pseudo-labels and retraining the model, or
to generate and train only once?

4. In each iteration of active learning or self-
training, should we use the training data from
the previous iteration or start anew?

5. In each iteration of active learning or self-
training, should we continue training the model
from the previous iteration or the model from
the source-domain?

6. Do active learning and self-training improve
with data augmentation or work better alone?

5 Method

We design source-free variants of self-training, ac-
tive learning, and data augmentation that incor-
porate the following parameters, allowing us to
investigate the questions above.

3The data augmentation strategies assume that the target
test data represents all available unlabeled data, and therefore
deterministically restrict their lexicons to words in this data.

Algorithm 1: Source-Free Self-training Al-
gorithm

Input:
M : the source-domain model
D: the unlabeled target domain data
τ : the self-training threshold
T : the maximum number of iterations
SD: the data construction strategy
SM : the model training strategy
SA: the data augmentation strategy

1 M0 ← Copy(M)
2 D0 ← Copy(D)
3 L← ∅
4 for i← 0 to T do
5 if D = ∅ then
6 Stop training
7 if SD = ResetData then
8 L = ∅
9 D = D0

10 LCi ←
{(d,M(d)) for d ∈ D if M(d) confidence > τ}

11 if LCi = ∅ or LCi = LCi−1 then
12 Stop training
13 L = L ∪ LCi

14 if SD = KeepData then
15 D ← D − {d for (d, l) ∈ LCi}
16 if SA = Augment then
17 L← L ∪Augment(LCi);
18 if SM = ResetModel then
19 M ←M0;
20 Fine-tune M on L;

T the maximum number of iterations for self-
training or active learning

SD the data construction strategy: KeepData to
keep the training data from the previous iteration,
or ResetData to start anew on each iteration.

SM the model training strategy: KeepModel to
continue training the model from the previous
iteration, or ResetModel to continue training
from the source-domain model.

SA whether or not to use data augmentation.

5.1 Source-Free Self-training

Algorithm 1 presents our self-training algorithm. It
follows standard self-training (Yarowsky, 1995) in
using the model to add pseudo-labels to the unla-
beled data (line 10). However, there is no source-
domain labeled data, so the model can fine-tune
only on the pseudo-labels. The remainder of the
code ensures that models and/or data are kept, reset,
or augmented as per the selected strategies.

Self-training requires a measure of model con-
fidence on each prediction. In both tasks, we add
pseudo-labeled training data a sentence at a time,
so we measure confidence at the sentence level. In
negation detection, we use the predicted probability
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Algorithm 2: Source-Free Active Learning
Algorithm

Input:
M : the source-domain model
D: the development set of the target domain
T : the maximum number of iterations
K: the number of annotations per iteration
SD: the data construction strategy
SM : the model training strategy
SA: the data augmentation strategy

1 M0 ← Copy(M)
2 D0 ← Copy(D)
3 L← ∅
4 for i← 0 to T do
5 if SD = ResetData then
6 L = ∅
7 D = D0

8 DU ←
[d for d ∈ D sorted by uncertainty of M(d)]

9 LU ←
{(d,Annotate(d)) for d ∈ top K of DU}

10 L← L ∪ LU

11 if SD = KeepData then
12 D ← D − {d for (d, l) ∈ LU}
13 if SA = Augment then
14 L← L ∪Augment(LU );
15 if SM = ResetModel then
16 M ←M0

17 Fine-tune M on L;

at RoBERTa’s special sentence-initial token <s>.
In time expression recognition, we use the average
of the predicted probabilities of the most probable
class of each token.

5.2 Source-Free Active Learning

Algorithm 2 presents our active learning algorithm.
It follows an approach similar to Su et al. (2021).
Like most active learning algorithms, the core is to
select examples the model is uncertain of (line 8)
and then manually annotate them (line 9). Since our
development sets are already annotated, we simu-
late annotation by simply revealing the (previously
hidden) labels for the selected examples.

Active learning requires a measure of model un-
certainty on each prediction. In both tasks, we add
annotations a sentence at a time, so we measure
uncertainty at the sentence level. In negation detec-
tion, we use the predicted entropy at RoBERTa’s
special sentence-initial token, <s>. In time expres-
sion recognition, we use the average of the pre-
dicted entropies of the tokens in the sentence.

5.3 Data Augmentation

Inspired by Miao et al. (2020), we use a pool-
based data augmentation method to automatically
increase the size of the training set.

In negation detection, we construct a pool of
all event words in the unlabeled target domain test
data. For each development data example to be aug-
mented, we substitute its event with n randomly-
sampled words from the pool. For example, if data
augmentation is performed on the sentence: Has no
<e> diarrhea </e>, we replace the diarrhea with
random words from the pool, resulting in sentences
like Has no <e> asthma </e>.

In time expression recognition, we construct a
pool of words for each time entity type using the
guidelines of the SCATE annotation schema, ex-
cluding words that do not appear in the unlabeled
target domain test data. For each entity in a develop-
ment data example to be augmented, we substitute
it with n randomly-sampled words from the pool
for its entity type. For example, in the sentence,
the patient underwent appendicitis surgery on Au-
gust 29, 2018, there are three time entities (Au-
gust: Month-Of-Year, 29: Day-Of-Month, 2018:
Year). Data augmentation can therefore generate
up to n× 3 sentences with different years, months,
and days, e.g., the patient underwent appendicitis
surgery on September 1st, 2017.

6 Experiments

The input to the source-domain models for both
tasks is a sentence. The output for the negation
detection model is a sentence label (negated or not
negated). The output for the time expression model
is one label per token (its time entity type). For
both tasks, we use the conventional RoBERTa input
format, surrounding the sentence with the special
tokens <s> and </s>. The negation detection data
is already split into sentences. For the time recog-
nition data, we split it into sentences using the
English sentencizer from Spacy v2.3.2 (Honnibal
et al., 2020).

When we fine-tune the source-domain model on
the target domain, we keep the same training hy-
perparameters as were used when the shared task
organizers trained the models on the source do-
mains. In source-free domain adaptation, there is
no (or very little) labeled development data avail-
able, so it is not possible to tune hyperparameters.
All hyperparameters are given in appendix A.1. All
experiments are run on a single Nvidia P100 GPU.
The total approximate GPU hours are 70 hours.

In self-training, we set the threshold τ to 0.95,
and experiment with running just a single iteration
and with running 30 iterations with the different
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SD and SM strategies. The threshold and the num-
ber of iterations are adapted from Su et al. (2021).
Training may run for fewer iterations when the stop-
ping conditions are met. In active learning, we set
our annotation budget to 96 sentences, and experi-
ment with spending these 96 sentences at once and
in 8 iterations with the different SD and SM strate-
gies. For all experiments, we run one version with
data augmentation (with n = 5) and one without.

For each source and target domain pair, we com-
pare our adapted model with the following models.
1. Source-Domain Model: The baseline. It is un-

adapted, trained only on the source domain.
2. Fine-Tuned Source-Domain Model: The ora-

cle. It is fine-tuned on the target domain using
the entire labeled development set.

3. Self-Distilled Model: A RoBERTa-base model
fine-tuned on the development set using pseudo
labels generated by the source-domain model.

4. Passive Learning Model: The source-domain
model fine-tuned on 96 randomly sampled ex-
amples from the labeled development set.

7 Discussion

Tables 2 and 3 show the results of our experiments.
We are interested less in the best model for a par-
ticular configuration, but rather in which config-
urations are successful across multiple tasks and
domains. This is because in source-free domain
adaptation, there is typically no (or very little) la-
beled target domain data available for hyperparam-
eter tuning. Therefore, what we need is a universal
strategy that does not require careful tuning.

For source-free active learning, we find that even
small amounts of annotated data are useful, and
that smart data selection (e.g., using uncertainty
scores) is usually helpful. The active learning Keep-
Data models (rows 6, 8, 11, and 13 in tables 2
and 3) have higher F1s than the baseline source
domain models across all tasks and domains (0.054
F1 higher on average). Active learning KeepData
models also outperform passive learning models
(that randomly select data) in 14 out of 16 cases,
and are at least as good as, and typically much bet-
ter than, the self-training models (rows 15-24 in
tables 2 and 3). The ResetModel+ResetData mod-
els always have the worst F1s of the active learning
models (rows 7 and 12 in tables 2 and 3).

Several active learning models achieve higher
F1s than the “oracle” model that fine-tuned on the
full labeled development set (row 8, 10, 11, 13,

14 in table 3 Time: News and row 8, 11, 14 in
table 3 Time: Food). This emphasizes a challenge
of source-free domain adaptation: more data is not
always better data. Since we do not have access to
the source domain training data, if we fine-tune on
too much target domain data the model may start
to forget what it learned on the source domain, i.e.,
“catastrophic forgetting” (McCloskey and Cohen,
1989). In these cases, the active learning models,
by selecting a small set of just the most uncertain
examples, reap the benefits of knowing something
about the target domain without losing what they
learned from the source domain.

For source-free self-training, we find that iter-
atively updating both model and data is slightly
above baseline, and that it is better to start from the
source-domain model than from RoBERTa without
fine-tuning. The KeepModel+KeepData (without
data augmentation) is slightly above the source-
domain model across all tasks and domains (0.013
F1 higher on average). Every other configuration,
even if they outperform KeepModel+KeepData in
one task or domain, is below the source-domain
baseline in another. All self-trained models without
data augmentation (which start from the source-
domain model) do at least outperform self-distilled
models (which start from the RoBERTa model with-
out fine-tuning; row 3 in tables 2 and 3). The
small gains from the only self-training configu-
ration that consistently outperformed the source-
domain model suggest that self-training may not
be worthwhile for source-free domain adaptation.

Data augmentation helped in some cases (e.g.,
self-training time expression recognition on news),
and hurt in others (e.g., self-training time expres-
sion recognition on food security). Data augmen-
tation sometimes led to ill-behaving models: on
the negation MIMIC-III dataset, data augmentation
made the self-trained model predict all examples as
not negated resulting in 0.000 F1 (rows 21 -24 in
table 2: Negation-MIMIC-III). This suggests that
data augmentation (or at least the variants of it that
we explored) is probably not viable for source-free
domain adaptation where no labeled data for tuning
strategies is available.

We thus make the following suggestions for
source-free domain adaptation:

1. If there is sufficient expertise to label the data,
use active learning and iteratively adapt the
model with the KeepModel+KeepData strategy
instead of spending the annotation budget all at
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Negation: MIMIC-III Negation: i2b2
# Strategy F P R F P R

1 Source-Domain Model (baseline) 0.656 0.921 0.510 0.837 0.855 0.820
2 Fine-Tuned Source-Domain Model (oracle) 0.868 0.875 0.862 0.925 0.928 0.922
3 Self-Distilled Model 0.623 0.825 0.501 0.846 0.849 0.842
4 Passive Learning Model 0.722 0.792 0.663 0.882 0.914 0.853

Active Learning

5 AL (96× 1) 0.759 0.901 0.656 0.886 0.943 0.836
6 AL (12× 8) + ResetModel + KeepData 0.800 0.828 0.774 0.891 0.951 0.838
7 AL (12× 8) + ResetModel + ResetData 0.618 0.842 0.489 0.778 0.972 0.649
8 AL (12× 8) + KeepModel + KeepData 0.817 0.867 0.773 0.859 0.852 0.865
9 AL (12× 8) + KeepModel + ResetData 0.777 0.890 0.689 0.877 0.928 0.831

Active Learning + Data Augmentation

10 AL (96× 1) + DA (5) 0.708 0.652 0.773 0.883 0.937 0.834
11 AL (12× 8) + ResetModel + KeepData + DA (5) 0.805 0.803 0.806 0.891 0.960 0.831
12 AL (12× 8) + ResetModel + ResetData + DA (5) 0.586 0.489 0.730 0.817 0.960 0.710
13 AL (12× 8) + KeepModel + KeepData + DA (5) 0.805 0.878 0.744 0.881 0.925 0.841
14 AL (12× 8) + KeepModel + ResetData + DA (5) 0.745 0.882 0.645 0.889 0.929 0.852

Self-training

15 ST (1) 0.677 0.916 0.537 0.854 0.871 0.838
16 ST (30) + ResetModel + KeepData 0.679 0.937 0.533 0.857 0.876 0.839
17 ST (30) + ResetModel + ResetData 0.695 0.912 0.562 0.861 0.880 0.843
18 ST (30) + KeepModel + KeepData 0.664 0.906 0.525 0.864 0.890 0.840
19 ST (30) + KeepModel + ResetData 0.654 0.879 0.521 0.858 0.883 0.834

Self-training + Data Augmentation

20 ST (1) + DA (5) 0.654 0.943 0.501 0.863 0.894 0.833
21 ST (30) + ResetModel + KeepData + DA (5) 0.000 0.000 0.000 0.861 0.887 0.838
22 ST (30) + ResetModel + ResetData + DA (5) 0.000 0.000 0.000 0.864 0.897 0.834
23 ST (30) + KeepModel + KeepData + DA (5) 0.000 0.000 0.000 0.854 0.869 0.839
24 ST (30) + KeepModel + ResetData + DA (5) 0.000 0.000 0.000 0.855 0.885 0.827

Table 2: Performance of domain adaptation strategies on the negation detection target domains. AL (k × i) is
active learning with k samples and i iterations. ST (i) is self-training up to i iterations. DA (n) is augmenting each
example with up to n new examples. The best scores are in bold and the worst scores are underlined.

once. This is the best model without data aug-
mentation in three of the four domains (Nega-
tion: MIMIC III, Time: News, Time: Food).
Note that expertise is important: Su et al. (2021)
found that active learning with non-experts in
the face of a complex annotation scheme did not
yield performance improvements.

2. Self-training and data augmentation, at least
as implemented here, are not good choices for
source free domain adaptation: sometimes they
led to gains, and sometimes they led to losses.
While a good strategy could be found by label-
ing some target domain data and performing
hyperparameter search, such annotation effort
would have a higher payoff if used for active
learning instead.

3. Active learning is better than passive learning:
smart example selection is better than random
example selection.

4. Self-training is better than self-distillation: the

models benefit from the task knowledge learned
from the source-domain.

Our systematic analysis allowed us to make the
above more specific suggestions than the shared
task’s main suggestion that “the best perform-
ing [systems] incorporated. . . active-learning, hand-
crafted heuristics or semiautomatically building a
training set” (Laparra et al., 2021).

8 Error Analysis

We performed an error analysis to try to determine
if different adaptation strategies resulted in differ-
ent types of errors being corrected (as compared to
the source domain model). For negation detection
we sampled and categorized around 200 errors of
the source-domain model for each target domain.
When the model failed to predict a negation, we
manually categorized the error by the negation cue
(no, free, absent, etc.). When the model predicted
a negation it should not have, we manually cate-
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Time: News Time: Food
# Strategy F P R F P R

1 Source-Domain Model (baseline) 0.771 0.772 0.770 0.781 0.834 0.734
2 Fine-Tuned Source-Domain Model (oracle) 0.844 0.826 0.864 0.851 0.841 0.861
3 Self-Distilled Model 0.572 0.590 0.555 0.766 0.831 0.711
4 Passive Learning Model 0.796 0.783 0.809 0.770 0.755 0.785

Active Learning

5 AL (96× 1) 0.812 0.800 0.825 0.819 0.821 0.818
6 AL (12× 8) + ResetModel + KeepData 0.812 0.794 0.830 0.842 0.844 0.840
7 AL (12× 8) + ResetModel + ResetData 0.771 0.771 0.770 0.781 0.832 0.737
8 AL (12× 8) + KeepModel + KeepData 0.861 0.844 0.879 0.872 0.866 0.879
9 AL (12× 8) + KeepModel + ResetData 0.772 0.758 0.787 0.781 0.797 0.765

Active Learning + Data Augmentation

10 AL (96× 1) + DA (5) 0.856 0.829 0.884 0.840 0.824 0.855
11 AL (12× 8) + ResetModel + KeepData + DA (5) 0.860 0.830 0.893 0.856 0.840 0.873
12 AL (12× 8) + ResetModel + ResetData + DA (5) 0.790 0.748 0.836 0.793 0.782 0.805
13 AL (12× 8) + KeepModel + KeepData + DA (5) 0.849 0.820 0.881 0.841 0.821 0.863
14 AL (12× 8) + KeepModel + ResetData + DA (5) 0.853 0.828 0.879 0.856 0.831 0.881

Self-training

15 ST (1) 0.753 0.733 0.774 0.777 0.807 0.750
16 ST (30) + ResetModel + KeepData 0.786 0.791 0.782 0.780 0.815 0.747
17 ST (30) + ResetModel + ResetData 0.727 0.688 0.770 0.787 0.815 0.761
18 ST (30) + KeepModel + KeepData 0.784 0.777 0.792 0.786 0.832 0.745
19 ST (30) + KeepModel + ResetData 0.633 0.551 0.743 0.789 0.829 0.752

Self-training + Data Augmentation

20 ST (1) + DA (5) 0.800 0.794 0.805 0.756 0.787 0.726
21 ST (30) + ResetModel + KeepData + DA (5) 0.789 0.790 0.788 0.754 0.780 0.730
22 ST (30) + ResetModel + ResetData + DA (5) 0.795 0.792 0.798 0.765 0.788 0.744
23 ST (30) + KeepModel + KeepData + DA (5) 0.794 0.801 0.788 0.759 0.786 0.734
24 ST (30) + KeepModel + ResetData + DA (5) 0.797 0.791 0.802 0.747 0.771 0.724

Table 3: Performance of domain adaptation strategies on the time expression recognition target domains. AL (k×i)
is active learning with k samples and i iterations. ST (i) is self-training up to i iterations. DA (n) is augmenting
each time entity with up to n new examples. The best scores are in bold and the worst scores are underlined.

gorized the error into “wrong cue” (there was a
negation cue in the sentence but it did not apply to
the target event) or “short sentence” (especially on
the i2b2 domain, the model liked to predict all short
sentences as negated). For time expression recogni-
tion, we categorized all errors of the source-domain
model by entity type (inside–outside–beginning for-
mat) for each target domain.

For both tasks, we then calculated how many of
these source-domain model errors the best adapted
models continued to make. Heatmaps of these
analyses are plotted in appendix A.2. Across all
tasks and domains, we see that the best self-trained
models correct errors roughly evenly across source-
domain error categories, while the best active learn-
ing models correct different errors, more like the
oracle (target-fine-tuned) model. For example, the
oracle model and active learning adapted models
correct many more “wrong cue” errors in the nega-
tion i2b2 domain, more denies and none errors in

the negation MIMIC III domain, more B-Period
and B-Month-Of-Year entities in the time news
domain, and more B-Season-Of-Year, I-Season-Of-
Year, and B-This entities in the time food domain.

Some error types appear to be only learnable
with substantially more data. Only the oracle model
is able to correct errors with the non and afebrile
negation cues in the i2b2 domain and with the hold
negation cue in MIMIC-III domain. This suggests
that the source-domain model may be very con-
fident in some types of wrong examples causing
them not to be selected in active learning and gen-
erating poor pseudo-labels in self-training.

9 Conclusion

In this paper, we present a detailed comparison of
the use of active learning, self-training and data
augmentation to adapt a source-domain model on
a target domain when the source-domain training
data is unavailable. We identify a specific formula-
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tion of source-free active learning that consistently
improves performance of the source-domain model.
We believe our work highlights the interesting chal-
lenges of source-free domain adaptation, and its
systematic comparison provides a solid base for
future research in this area.

Acknowledgements

Research reported in this publication was supported
by the National Library of Medicine of the Na-
tional Institutes of Health under Award Numbers
R01LM012918 and R01LM010090. The content
is solely the responsibility of the authors and does
not necessarily represent the official views of the
National Institutes of Health.

Ethical Considerations

Our comparison experiments and proposed formu-
lation are intended to encourage model sharing in
source-free domain adaptation while avoiding the
risk of privacy leakage caused by direct data shar-
ing. The data we use in this experiment are publicly
available and from a shared task, however some of
that data is from health institutions and requires a
data use agreement to work with the data. Though
recent research has found it difficult to recover pro-
tected information from trained models (Lehman
et al., 2021), there is still some small risk that more
complex models may be able to do so. However,
as our research is a comparative study, we are not
directly releasing models, and thus not risking any
release of protected health information.

References
Nikolay Arefyev, Boris Sheludko, Alexander Podol-

skiy, and Alexander Panchenko. 2020. Always
keep your target in mind: Studying semantics and
improving performance of neural lexical substitu-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 1242–
1255, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Eyal Ben-David, Carmel Rabinovitz, and Roi Reichart.
2020. PERL: Pivot-based domain adaptation for
pre-trained deep contextualized embedding models.
Transactions of the Association for Computational
Linguistics, 8:504–521.

Steven Bethard and Jonathan Parker. 2016. A seman-
tically compositional annotation scheme for time
normalization. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 3779–3786, Portorož,

Slovenia. European Language Resources Associa-
tion (ELRA).

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 440–
447, Prague, Czech Republic. Association for Com-
putational Linguistics.

Yee Seng Chan and Hwee Tou Ng. 2007. Domain adap-
tation with active learning for word sense disam-
biguation. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 49–56, Prague, Czech Republic. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Xia Cui and Danushka Bollegala. 2019. Self-
adaptation for unsupervised domain adaptation. In
Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2019), pages 213–222, Varna, Bulgaria. IN-
COMA Ltd.

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In NeurIPS.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim.
2020. Active Learning for BERT: An Empirical
Study. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 7949–7962, Online. Associa-
tion for Computational Linguistics.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Adaptive semi-supervised learn-
ing for cross-domain sentiment classification. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3467–3476, Brussels, Belgium. Association for
Computational Linguistics.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744–2751, Online. Association for Computa-
tional Linguistics.

8360

https://doi.org/10.18653/v1/2020.coling-main.107
https://doi.org/10.18653/v1/2020.coling-main.107
https://doi.org/10.18653/v1/2020.coling-main.107
https://doi.org/10.18653/v1/2020.coling-main.107
https://doi.org/10.1162/tacl_a_00328
https://doi.org/10.1162/tacl_a_00328
https://aclanthology.org/L16-1599
https://aclanthology.org/L16-1599
https://aclanthology.org/L16-1599
https://aclanthology.org/P07-1056
https://aclanthology.org/P07-1056
https://aclanthology.org/P07-1007
https://aclanthology.org/P07-1007
https://aclanthology.org/P07-1007
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.26615/978-954-452-056-4_025
https://doi.org/10.26615/978-954-452-056-4_025
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://doi.org/10.18653/v1/D18-1383
https://doi.org/10.18653/v1/D18-1383
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244


Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Yunzhong Hou and Liang Zheng. 2020. Source free
domain adaptation with image translation.

Mika Juuti, Tommi Gröndahl, Adrian Flanagan, and
N. Asokan. 2020. A little goes a long way: Im-
proving toxic language classification despite data
scarcity. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2991–
3009, Online. Association for Computational Lin-
guistics.

Youngeun Kim, Sungeun Hong, Donghyeon Cho,
Hyoungseob Park, and Priyadarshini Panda. 2020.
Domain adaptation without source data. CoRR,
abs/2007.01524.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Wouter M. Kouw. 2018. An introduction to do-
main adaptation and transfer learning. CoRR,
abs/1812.11806.

Vinod K. Kurmi, Venkatesh K. Subramanian, and
Vinay P. Namboodiri. 2021. Domain impression: A
source data free domain adaptation method. In Pro-
ceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 615–
625.

Egoitz Laparra, Steven Bethard, and Timothy A Miller.
2020. Rethinking domain adaptation for machine
learning over clinical language. JAMIA open,
3(2):146–150.

Egoitz Laparra, Xin Su, Yiyun Zhao, Özlem
Uzuner, Timothy Miller, and Steven Bethard. 2021.
SemEval-2021 task 10: Source-free domain adap-
tation for semantic processing. In Proceedings of
the 15th International Workshop on Semantic Eval-
uation (SemEval-2021), pages 348–356, Online. As-
sociation for Computational Linguistics.

Egoitz Laparra, Dongfang Xu, Ahmed Elsayed, Steven
Bethard, and Martha Palmer. 2018. SemEval 2018
task 6: Parsing time normalizations. In Proceedings
of The 12th International Workshop on Semantic
Evaluation, pages 88–96, New Orleans, Louisiana.
Association for Computational Linguistics.

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Gold-
berg, and Byron Wallace. 2021. Does BERT pre-
trained on clinical notes reveal sensitive data? In
Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 946–959, Online. Association for Computa-
tional Linguistics.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong,
and Si Wu. 2020. Model adaptation: Unsupervised
domain adaptation without source data. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR).

Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we
really need to access the source data? Source hypoth-
esis transfer for unsupervised domain adaptation. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 6028–6039.
PMLR.

Pei Liu, Xuemin Wang, Chao Xiang, and Weiye Meng.
2020. A survey of text data augmentation. In 2020
International Conference on Computer Communica-
tion and Network Security (CCNS), pages 191–195.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Nikolaos Malandrakis, Minmin Shen, Anuj Goyal,
Shuyang Gao, Abhishek Sethi, and Angeliki Met-
allinou. 2019. Controlled text generation for data
augmentation in intelligent artificial agents. In Pro-
ceedings of the 3rd Workshop on Neural Generation
and Translation, pages 90–98, Hong Kong. Associa-
tion for Computational Linguistics.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Gordon H. Bower,
editor, Psychology of Learning and Motivation, vol-
ume 24, pages 109–165. Academic Press.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 152–
159, New York City, USA. Association for Compu-
tational Linguistics.

Zhengjie Miao, Yuliang Li, Xiaolan Wang, and Wang-
Chiew Tan. 2020. Snippext: Semi-supervised
opinion mining with augmented data. CoRR,
abs/2002.03049.

Timothy Miller. 2019. Simplified neural unsupervised
domain adaptation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 414–419, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

8361

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://arxiv.org/abs/2008.07514
http://arxiv.org/abs/2008.07514
https://doi.org/10.18653/v1/2020.findings-emnlp.269
https://doi.org/10.18653/v1/2020.findings-emnlp.269
https://doi.org/10.18653/v1/2020.findings-emnlp.269
http://arxiv.org/abs/2007.01524
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
http://arxiv.org/abs/1812.11806
http://arxiv.org/abs/1812.11806
https://doi.org/10.18653/v1/2021.semeval-1.42
https://doi.org/10.18653/v1/2021.semeval-1.42
https://doi.org/10.18653/v1/S18-1011
https://doi.org/10.18653/v1/S18-1011
https://doi.org/10.18653/v1/2021.naacl-main.73
https://doi.org/10.18653/v1/2021.naacl-main.73
http://proceedings.mlr.press/v119/liang20a.html
http://proceedings.mlr.press/v119/liang20a.html
http://proceedings.mlr.press/v119/liang20a.html
https://doi.org/10.1109/CCNS50731.2020.00049
https://doi.org/10.18653/v1/D19-5609
https://doi.org/10.18653/v1/D19-5609
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://aclanthology.org/N06-1020
http://arxiv.org/abs/2002.03049
http://arxiv.org/abs/2002.03049
https://doi.org/10.18653/v1/N19-1039
https://doi.org/10.18653/v1/N19-1039


Piyush Rai, Avishek Saha, Hal Daumé, and Suresh
Venkatasubramanian. 2010. Domain adaptation
meets active learning. In Proceedings of the NAACL
HLT 2010 Workshop on Active Learning for Natu-
ral Language Processing, pages 27–32, Los Ange-
les, California. Association for Computational Lin-
guistics.

Alan Ramponi and Barbara Plank. 2020. Neural unsu-
pervised domain adaptation in NLP—A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6838–6855,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044–1054, Mel-
bourne, Australia. Association for Computational
Linguistics.
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A Appendix

A.1 Hyperparameters
For both tasks, when we continue training the
source-domain model on the target domain, we
keep the same training hyperparameters as were
used when the shared task organizers trained the
models on the source domains. Those hyperparam-
eters are shown in tables A1 and A2.

Hyperparameter Value

maximum sequence length 128
batch size 8
epochs 10
gradient accumulation steps 4
learning rate warm up steps 0
weight decay 0.0
learning rate 5e-5
adam epsilon 1e-08
maximum gradient norm 1.0

Table A1: Hyperparameters for negation detection sys-
tems.

Hyperparameter Value

maximum sequence length 271
batch size 2
epochs 3
gradient accumulation steps 1
learning rate warm up steps 500
weight decay 0.01
learning rate 5e-5
adam epsilon 1e-08
maximum gradient norm 1.0

Table A2: Hyperparameters for time expression recog-
nition systems.

A.2 Heat Maps for Error Analysis
For both tasks, we calculated how many source-
domain model errors the best adapted models con-
tinued to make, and plotted them as heatmaps,
where the rows are types of errors, and the columns
are different models. Figures A1 to A4 show these
analyses.
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Figure A1: Negation i2b2 target domain error heat
map. Source is source-domain model. Oracle is oracle
model. AL is the best performing active learning model.
ALDA is the best performing active learning with data
augmentation model. ST is the best self-training model.
STDA is the best self-training with data augmentation
model. The numbers in parentheses are the F1 scores
of the models.

8363



So
urc

e (
0.6

56
)

Orac
le 

(0.
86

8)

AL (
0.8

17
)

ALD
A (0

.80
5)

ST
 (0

.69
5)

ST
DA (0

.65
4)

denies

none

hold

not

no

wrong cue

negative

denied

quit

refused

holding

discontinued

neg

refusal

off

hold off

d/c

stop

without

never

stopped

stopping

didn't

shutting off

abort

discontinue

33 3 2 5 23 23

29 1 6 1 29 29

22 3 21 21 22 22

18 7 9 5 13 16

18 2 2 2 10 11

11 4 5 6 6 5

10 8 7 8 9 9

5 1 0 0 3 4

5 2 2 1 5 5

4 0 0 0 3 4

4 0 4 4 4 4

3 2 3 3 3 3

3 3 3 3 3 3

3 3 3 2 3 3

3 3 3 3 3 3

3 0 3 3 3 3

2 1 2 2 2 2

2 1 2 0 2 2

2 2 1 1 2 2

1 0 0 0 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
0

5

10

15

20

25

30

Figure A2: Negation MIMIC-III target domain error
heat map. Source is source-domain model. Oracle is
oracle model. AL is the best performing active learn-
ing model. ALDA is the best performing active learn-
ing with data augmentation model. ST is the best self-
training model. STDA is the best self-training with data
augmentation model. The numbers in parentheses are
the F1 scores of the models.
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Figure A3: Time news target domain error heat map.
Source is source-domain model. Oracle is oracle
model. AL is the best performing active learning model.
ALDA is the best performing active learning with data
augmentation model. ST is the best self-training model.
STDA is the best self-training with data augmentation
model. The numbers in parentheses are the F1 scores
of the models.
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Figure A4: Time food security target domain error heat
map. Source is source-domain model. Oracle is oracle
model. AL is the best performing active learning model.
ALDA is the best performing active learning with data
augmentation model. ST is the best self-training model.
STDA is the best self-training with data augmentation
model. The numbers in parentheses are the F1 scores
of the models.
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Strategy B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

Source-Domain Model (baseline) 88.5 92.0 93.8 90.2 91.7 90.7 89.0 89.2 93.5 92.0 90.5 94.8
Fine-Tuned Source-Domain Model (oracle) 89.7 93.0 94.5 91.5 93.5 94.3 93.2 91.0 94.0 92.2 90.5 94.3

Self-Distilled Model 88.0 91.7 95.5 92.5 90.5 93.0 89.2 90.5 94.0 90.5 90.0 92.5
Passive Learning Model 86.5 92.5 92.5 91.5 89.2 91.2 90.0 90.2 93.2 91.5 89.7 91.2

Best model from Ye et al. (2020) 87.9 91.3 92.5 91.5 91.6 92.5 88.7 88.2 93.6 89.8 87.9 92.6

Active Learning

AL (96 x 1) 87.7 90.2 92.7 90.7 91.0 93.0 90.2 90.7 93.2 91.7 90.0 93.8
AL (12 X 8) + KeepModel + KeepData 88.2 90.0 91.0 90.2 90.5 94.8 91.0 88.2 94.0 89.7 91.0 92.7
AL (12 X 8) + KeepModel + ResetData 87.5 93.0 79.0 83.5 90.5 91.0 86.8 78.5 89.0 85.3 83.8 89.5
AL (12 X 8) + ResetModel + KeepData 87.5 92.2 93.5 92.5 91.2 94.0 91.2 89.0 94.5 91.0 89.2 94.8
AL (12 X 8) + ResetModel + ResetData 75.0 84.0 67.2 91.7 62.5 90.0 89.2 87.5 91.0 93.0 69.0 94.5

Self-training

ST (1) 87.5 91.7 94.3 91.5 90.5 92.5 90.2 91.7 92.5 91.5 91.5 94.3
ST (30) + KeepModel + KeepData 87.5 92.5 94.0 90.5 91.0 92.0 89.5 89.5 94.5 90.2 89.7 93.2
ST (30) + KeepModel + ResetData 90.0 91.2 94.3 91.2 90.2 92.7 90.7 90.5 94.5 91.2 90.5 93.5
ST (30) + ResetModel + KeepData 88.2 91.0 94.3 91.7 91.0 91.7 90.7 92.2 95.3 91.0 92.0 92.7
ST (30) + ResetModel + ResetData 89.0 92.5 94.0 90.7 90.5 92.2 90.0 90.7 94.8 91.5 91.2 94.3

Table A3: Accuracy on the Amazon benchmark dataset from Ye et al. (2020). B is Books. D is DVDs. E is
Electronics. K is Kitchen. The bolded score is the highest score for the entire column. The underlined score is the
worst score for the entire column.

A.3 Results on Amazon Benchmark

The Amazon Sentiment Analysis dataset has been
used as a domain adaptation benchmark dataset by
a large number of previous works (Blitzer et al.,
2007; Ziser and Reichart, 2017; He et al., 2018;
Ye et al., 2020; Ben-David et al., 2020). The data
consists of reviews of four different product types
(domains): Books, DVDs, Electronics, and Kitchen
appliances. For the labeled portion, there are 1000
positive reviews and 1000 negative reviews for each
domain. From these 4 domains, we construct 12
source-free domain adaptation tasks. For better
comparison we directly use the data and split from
the software release of Ye et al. (2020). The data
of each source domain is split into 80% as source-
domain training set and 20% as source-domain de-
velopment set. The source-domain model is trained
on the source-domain training set and its hyper-
parameters are tuned using the source-domain de-
velopment set. The data of each target domain is
split into 80% as target-domain development set
and 20% as target-domain test set. The use of
target-domain development set and target-domain
test set is the same as in section 3.

When training the source-domain model, we
used RoBERTa-base as a starting point and used
grid search to tune the hyperparameters within the
space of:

Learning Rate (Adam): 1e-5, 2e-5, 3e-5
Batch Size: 8

Gradient Accumulation Steps: 2, 4
Epochs: 10

Table A3 shows the results of these 12 source-
free domain adaptations. In 9 of 12 cases, our un-
adapted source-domain models score higher than
the best adaptation model from Ye et al. (2020) 4 .
The gap between these unadapted source-domain
models and the fully target-domain adapted (oracle)
models is also very small: the average difference is
only 1.3 points, much smaller than the 11.1 point
average difference in tables 2 and 3. In essence,
no domain adaptation is needed for this data, so
it is a poor dataset for evaluating source-free do-
main adaptation. Unsurprisingly, we thus see no
source-free domain adaptation models that consis-
tently improve performance, though we do see that
the active learning ResetData models are typically
poor, as they were in tables 2 and 3.

To make sure that it is not a specific split or a
smaller test set that leads to good source-domain
models, we also use the data from Ben-David et al.
(2020) to train and test the source-domain models
again. The source-domain data split and usage here
is the same as before. The only difference is that
there is no target-domain development set and the
entire target domain is used as a test set. We show
the results in table A4. All source-domain mod-
els outperform the best adapted models from Ben-
David et al. (2020). It is worth noting that when we

4The model used in Ye et al. (2020) is XLM-R(Conneau
et al., 2020).
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Strategy B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

SD 91.8 93.5 95.0 93.0 93.0 94.6 92.8 90.8 94.7 92.1 90.2 94.4
Best model from Ben-David et al. (2020) 87.8 87.2 90.2 85.6 89.3 90.4 84.3 85.0 91.2 83.0 85.6 91.2

Table A4: Accuracy on the Amazon benchmark dataset from Ben-David et al. (2020). B is Books. D is DVDs. E
is Electronics. K is Kitchen. The bolded score is the highest score for the entire column. The underlined score is
the worst score for the entire column.

trained the source-domain model, we found that a
large number of punctuation and special symbols
included in the data from Ben-David et al. (2020)
caused severe overfitting of the model (accuracy
is 1 on the source-domain development set). After
removing these symbols, the problem was resolved.

A.4 Other Experimented Methods
We also tried to adapt the source-domain model
by continuing to pre-train it with masked language
modeling on the target domain. We removed the
classification layer of the source-domain model,
replaced it with a randomly initialized masked lan-
guage modeling layer, then trained the language
model on the unlabeled target-domain data, and
then replaced the masked language modeling layer
with the original classification layer. The hope
was that this would bring the internal represen-
tations of the source-domain model closer to the
target domain. However, despite a number of at-
tempts at pre-training both all layers and selected
layers, performance of this model was always much
worse than the source-domain model. In the future,
we plan to experiment with different initialization
methods for the masked language model layer.
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