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Abstract

Conversational question answering aims to
provide natural-language answers to users in
information-seeking conversations. Existing
conversational QA benchmarks compare mod-
els with pre-collected human-human conver-
sations, using ground-truth answers provided
in conversational history. It remains unclear
whether we can rely on this static evalua-
tion for model development and whether cur-
rent systems can well generalize to real-world
human-machine conversations. In this work,
we conduct the first large-scale human evalua-
tion of state-of-the-art conversational QA sys-
tems, where human evaluators converse with
models and judge the correctness of their an-
swers. We find that the distribution of human-
machine conversations differs drastically from
that of human-human conversations, and there
is a disagreement between human and gold-
history evaluation in terms of model rank-
ing. We further investigate how to improve
automatic evaluations, and propose a question
rewriting mechanism based on predicted his-
tory, which better correlates with human judg-
ments. Finally, we analyze the impact of var-
ious modeling strategies and discuss future di-
rections towards building better conversational
question answering systems.1

1 Introduction

Conversational question answering aims to build
machines to answer questions in conversations and
has the promise to revolutionize the way humans in-
teract with machines for information seeking. With
recent development of large-scale datasets (Choi
et al., 2018; Saeidi et al., 2018; Reddy et al., 2019;
Campos et al., 2020), rapid progress has been made
in better modeling of conversational QA systems.

Current conversational QA datasets are collected
by crowdsourcing human-human conversations,

*The first two authors contributed equally.
1Our data and code are publicly available at https://

github.com/princeton-nlp/EvalConvQA.

where the questioner asks questions about a specific
topic, and the answerer provides answers based on
an evidence passage and the conversational history.
When evaluating conversational QA systems, a set
of held-out conversations are used for asking mod-
els questions in turn. Since the evaluation builds
on pre-collected conversations, the gold history of
the conversation is always provided, regardless of
models’ actual predictions (Figure 1(b)). Although
current systems achieve near-human F1 scores on
this static evaluation, it is questionable whether this
can faithfully reflect models’ true performance in
real-world applications. To what extent do human-
machine conversations deviate from human-human
conversations? What will happen if models have no
access to ground-truth answers in a conversation?

To answer these questions and better understand
the performance of conversational QA systems,
we carry out the first large-scale human evalua-
tion with four state-of-the-art models on the QuAC
dataset (Choi et al., 2018) by having human eval-
uators converse with the models and judge the
correctness of their answers. We collected 1,446
human-machine conversations in total, with 15,059
question-answer pairs. Through careful analy-
sis, we notice a significant distribution shift from
human-human conversations and identify a clear in-
consistency of model performance between current
evaluation protocol and human judgements.

This finding motivates us to improve automatic
evaluation such that it is better aligned with hu-
man evaluation. Mandya et al. (2020); Siblini
et al. (2021) identify a similar issue in gold-history
evaluation and propose to use models’ own predic-
tions for automatic evaluation. However, predicted-
history evaluation poses another challenge: since
all the questions have been collected beforehand,
using predicted history will invalidate some of the
questions because of changes in the conversational
history (see Figure 1(c) for an example).

Following this intuition, we propose a question
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Topic: Spandau Ballet (English pop band)  

What was the band’s first success 
album at the international level?

They achieved platinum status.

1985.

What year did this happen?

What was the band’s first success 
album at the international level?

They achieved platinum status.

“Only When You Leave”.

What songs were in it?

Gold answer: “Parade” from 1984.

What was the band’s first success 
album at the international level?

They achieved platinum status.

???

(a) Human evaluation (b) Automatic evaluation w/

What songs were in it?

(c) Automatic evaluation w/
predicted historygold history

Figure 1: Examples of human and automatic evaluations with gold or predicted history. The model answers the first
question incorrectly. (a) A human questioner asks the next question based on current predictions. (b) Automatic
evaluation with gold history poses pre-collected questions with gold answers as conversational history, regardless
of model predictions. (c) Using predicted history in automatic evaluation makes the next question invalid.

rewriting mechanism, which automatically detects
and rewrites invalid questions with predicted his-
tory (Figure 4). We use a coreference resolution
model (Lee et al., 2018) to detect inconsistency
of conference in question text conditioned on pre-
dicted history and gold history, and then rewrite
those questions by substituting with correct men-
tions, so that the questions are resolvable in the
predicted context. Compared to predicted-history
evaluation, we find that incorporating this rewriting
mechanism aligns better with human evaluation.

Finally, we also investigate the impact of differ-
ent modeling strategies based on human evaluation.
We find that both accurately detecting unanswer-
able questions and explicitly modeling question de-
pendencies in conversations are crucial for model
performance. Equipped with all the insights, we
discuss directions for conversational QA modeling.
We release our human evaluation dataset and hope
that our findings can shed light on future develop-
ment of better conversational QA systems.

2 Preliminary

2.1 Evaluation of conversational QA

Evaluation of conversational QA in real-world con-
sists of three components: an evidence passage
P , a (human) questioner H that has no access to
P ,2 and a model M that has access to P . The
questioner asks questions about P and the model
answers them based on P and the conversational
history thus far (see an example in Figure 1(a)).
Formally, for the i-th turn, the human asks a ques-

2Existing conversational QA datasets make different as-
sumptions: For example, QuAC (Choi et al., 2018) assumes
no access but CoQA assumes the questioner to have access.

tion based on the previous conversation,

Qi ∼ H(Q1, A1, ..., Qi−1, Ai−1), (1)

and then the model answers it based on both the
history and the passage,

Ai ∼M(P,Q1, A1, ..., Qi−1, Ai−1, Qi), (2)

where Qi and Ai represent the question and the
answer at the i-th turn. If the question is unanswer-
able from P , we simply denote Ai as CANNOT
ANSWER. The modelM is then evaluated by the
correctness of answers.

Evaluating conversational QA systems requires
human in the loop and is hence expensive. Instead,
current benchmarks use automatic evaluation with
gold history (Auto-Gold) and collect a set of human-
human conversations for automatic evaluation. For
each passage, one annotator asks questions with-
out seeing the passage, while the other annotator
provides the answers. Denote the collected ques-
tions and answers as Q∗i and A∗i . In gold-history
evaluation, the model is inquired with pre-collected
questions Q∗i and the gold answers as history:

Ai ∼M(P,Q∗1, A
∗
1, ..., Q

∗
i−1, A

∗
i−1, Q

∗
i ), (3)

and we evaluate the model by comparing Ai to A∗i
(measured by word-level F1). This process does
not require human effort but cannot truly reflect
the distribution of human-machine conversations,
because unlike human questioners who may ask
different questions based on different model predic-
tions, this static process ignores model predictions
and always asks the pre-collected question.

In this work, we choose the QuAC dataset (Choi
et al., 2018) as our primary evaluation because it is
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closer to real-world information-seeking conversa-
tions, where the questioner cannot see the evidence
passage during the dataset collection. It prevents
the questioner asking questions that simply over-
laps with the passage and encourages unanswerable
questions. QuAC also adopts extractive question
answering that restricts the answer as a span of text,
which is generally considered easier to evaluate.

2.2 Models

For human evaluation and analysis, we choose the
following four conversational QA models with dif-
ferent model architectures and training strategies:

BERT. It is a simple BERT (Devlin et al., 2019)
baseline which concatenates the previous two turns
of question-answer pairs, the question, and the pas-
sage as the input and predicts the answer span.3

This model is the same as the “BERT + PHQA”
baseline in Qu et al. (2019a).

GraphFlow. Chen et al. (2020) propose a recur-
rent graph neural network on top of BERT em-
beddings to model the dependencies between the
question, the history and the passage.

HAM. Qu et al. (2019b) propose a history atten-
tion mechanism (HAM) to softly select the most
relevant previous turns.

ExCorD. Kim et al. (2021) train a question rewrit-
ing model on CANARD (Elgohary et al., 2019) to
generate context-independent questions, and then
use both the original and the generated questions
to train the QA model. This model achieves the
current state-of-the-art on QuAC (67.7% F1).

For all the models except BERT, we use the orig-
inal implementations for a direct comparison. We
report their performance on both standard bench-
mark and our evaluation in Table 2.

3 Human Evaluation

3.1 Conversation collection

In this section, we carry out a large-scale human
evaluation with the four models discussed above.
We collect human-machine conversations using
100 passages from the QuAC development set on
Amazon Mechanical Turk.4 We also design a set

3We use bert-base-uncased as the encoder.
4We restrict the annotators from English-speaking coun-

tries, and those who have finished at least 1,000 HITS with an
acceptance rate of >95%. The compensation rate for Amazon
Mechanical Turk workers is calculated using $15/h.

of qualification questions to make sure that the an-
notators fully understand our annotation guideline.
For each model and each passage, we collect three
conversations from three different annotators.

We collect each conversation in two steps:
(1) The annotator has no access to the passage

and asks questions. The model extracts the an-
swer span from the passage or returns CANNOT
ANSWER in a human-machine conversation inter-
face.5 We provide the title, the section title, the
background of the passage, and the first question
from QuAC as a prompt to annotators. Annotators
are required to ask at least 8 and at most 12 ques-
tions. We encourage context-dependent questions,
but also allow open questions like “What else is
interesting?” if asking a follow-up question is diffi-
cult. (2) After the conversation ends, the annotator
is shown the passage and asked to check whether
the model predictions are correct or not.

We noticed that the annotators are biased when
evaluating the correctness of answers. For ques-
tions to which the model answered CANNOT
ANSWER, annotators tend to mark the answer as
incorrect without checking if the question is an-
swerable. Additionally, for answers with the cor-
rect types (e.g. a date as an answer to “When was
it?”), annotators tend to mark it as correct without
verifying it from the passage. Therefore, we asked
another group of annotators to verify question an-
swerability and answer correctness.

3.2 Answer validation

For each collected conversation, we ask two addi-
tional annotators to validate the annotations. First,
each annotator reads the passage before seeing the
conversation. Then, the annotator sees the question
(and question only) and selects whether the ques-
tion is (a) ungrammatical, (b) unanswerable, or (c)
answerable. If the annotator chooses “answerable”,
the interface then reveals the answer and asks about
its correctness. If the answer is “incorrect”, the an-
notator selects the correct answer span from the
passage. We discard all questions that both anno-
tators find “ungrammatical” and the correctness is
taken as the majority of the 3 annotations.

3.3 Annotation statistics

In total, we collected 1,446 human-machine con-
versations and 15,059 question-answer pairs. We
release this collection as an important source that

5We used ParlAI (Miller et al., 2017) to build the interface.
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Human Evaluation QuAC
BERT GF HAM ExCorD

# C 357 359 373 357 1,000
# Q 3,755 3,666 3,959 3,679 7,354

Table 1: Number of conversations (# C) and questions
(# Q) collected in human evaluation, using 100 pas-
sages from the QuAC development set. We also add
QuAC development set for reference. GF: GraphFlow.

complements existing conversational QA datasets.
Numbers of conversations and question-answer
pairs collected for each model are shown in Table 1.
The data distribution of this collection is very differ-
ent from the original QuAC dataset (human-human
conversations): we see more open questions and
unanswerable questions, due to less fluent conversa-
tion flow caused by model mistakes, and that mod-
els cannot provide feedback to questioner about
whether an answer is worth following up like hu-
man answerers do (more analysis in §6.2).

Deciding the correctness of answers is challeng-
ing even for humans in some cases, especially
when questions are short and ambiguous. We mea-
sure annotators’ agreement and calculate the Fleiss’
Kappa (Fleiss, 1971) on the agreement between
annotators in the validation phase. We achieve
κ = 0.598 (moderate agreement) of overall anno-
tation agreement. Focusing on answerability anno-
tation, we have κ = 0.679 (substantial agreement).

4 Disagreements between Human and
Gold-history Evaluation

We now compare the results from our human evalu-
ation and gold-history (automatic) evaluation. Note
that the two sets of numbers are not directly com-
parable: (1) the human evaluation reports accuracy,
while the automatic evaluation reports F1 scores;
(2) the absolute numbers of human evaluation are
much higher than those of automatic evaluations.
For example, for the BERT model, the human eval-
uation accuracy is 82.6% while the automatic eval-
uation F1 is only 63.2%. The reason is that, in auto-
matic evaluations, the gold answers cannot capture
all possible correct answers to open-ended ques-
tions or questions with multiple answers; however,
the human annotators can evaluate the correctness
of answers easily. Nevertheless, we can compare
relative rankings between different models.

Figure 2 shows different trends between human
evaluation and gold-history evaluation (Auto-Gold).

BERT GraphFlow HAM ExCorD
Models
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Figure 2: Model performance of human evaluation (ac-
curacy, left) and Auto-Gold (F1, right). Scales for accu-
racy and F1 are different. Human evaluation and Auto-
Gold rank BERT and GraphFlow differently.

Current standard evaluation cannot reflect model
performance in human-machine conversations: (1)
Human evaluation and Auto-Gold rank BERT and
GraphFlow differently; especially, GraphFlow per-
forms much better in automatic evaluation, but
worse in human evaluation. (2) The gap between
HAM and ExCorD is significant (F1 of 65.4% vs
67.7%) in the automatic evaluation but the two
models perform similarly in human evaluation (ac-
curacy of 87.8% vs 87.9%).

5 Strategies for Automatic Evaluation

The inconsistency between human evaluation and
gold-history evaluation suggests that we need bet-
ter ways to evaluate and develop our conversational
QA models. When being deployed in realistic sce-
narios, the models would never have access to the
ground truth (gold answers) in previous turns and
are only exposed to the conversational history and
the passage. Intuitively, we can simply replace
gold answers by the predicted answers of models
and we name this as predicted-history evaluation
(Auto-Pred). Formally, the model makes predic-
tions based on the questions and its own answers:

Ai ∼M(P,Q∗1, A1, ..., Q
∗
i−1, Ai−1, Q

∗
i ). (4)

This evaluation has been suggested by several re-
cent works (Mandya et al., 2020; Siblini et al.,
2021), which reported a significant performance
drop using predicted history. We observe the same
performance degradation, shown in Table 2.

However, another issue naturally arises with pre-
dicted history: Q∗i s were written by the dataset an-
notators based on (Q∗1, A

∗
1, ..., Q

∗
i−1, A

∗
i−1), which
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Unresolved coreference (44.0%)

Q∗1: What was Frenzal Rhomb’s first song?
A∗1: Punch in the Face.
A1: CANNOT ANSWER.

Q∗2: How did it fare?

Incoherence (39.1%)

Q∗1: Did Billy Graham succeed in becoming a chaplain?
A∗1: He contracted mumps shortly after...
A1: After a period of recuperation in Florida, he ...

Q∗2: Did he retire after his mumps diagnosis?

Correct answer changed (16.9%)

Q∗1: Are there any other interesting aspects?
A∗1: ... Steve Di Giorgio returned to the band...
A1: ... bassist Greg Christian had left Testament again...

Q∗2: What happened following this change in crew?

Figure 3: Examples of invalid questions with predicted
history. Some are shortened for better demonstration.
Q∗

i , A
∗
i : questions and gold answers from the collected

dataset, Ai: model predictions.

may become unnatural or invalid when the history
is changed to (Q∗1, A1, ..., Q

∗
i−1, Ai−1).

5.1 Predicted history invalidates questions
We examined 100 QuAC conversations with the
best-performing model (ExCorD) and identified
three categories of invalid questions caused by pre-
dicted history. We find that 23% of the questions
become invalid after using the predicted history.
We summarize the types of invalid questions as
follows (see detailed examples in Figure 3):

• Unresolved coreference (44.0%). The question
becomes invalid for containing either a pronoun
or a definite noun phrase that refers to an entity
unresolvable without the gold history.

• Incoherence (39.1%). The question is incoher-
ent with the conversation flow (e.g., mention-
ing an entity non-existent in predicted history).
While humans may still answer the question us-
ing the passage, this leads to an unnatural conver-
sation and a train-test discrepancy for models.

• Correct answer changed (16.9%). The an-
swer to this question with the predicted history
changes from when it is based on the gold history.

We further analyze the reasons for the biggest
“unresolved coreference” category and find that the
model either gives an incorrect answer to the previ-
ous question (“incorrect prediction”, 39.8%), or the
model predicts a different (yet correct) answer to

What was the band’s first success 
album at the international level?

Became the band’s last American hit.

What songs were in it Coreference
resolution 

Gold answer:   “Parade”  from 1984.

They achieved  platinum status .

Coreference results using
predicted and gold history
do not match.

What songs were in “Parade” Rewritten by gold history
coreference results.

First single “Only When You Leave” .

Gold answer:  “Only When You Leave” .

How did  it  do on the charts? Coreference
resolution 

Coreference results match.
No rewriting needed.

Figure 4: An example of question rewriting. We
rewrite the second question with referent in the gold his-
tory, because predicted and gold history have different
coreference results. We do not rewrite the third ques-
tion as coreference results are the same.

an open question (“open question”, 37.0%), or the
model returns CANNOT ANSWER incorrectly (“no
prediction”, 9.5%), or the gold answer is longer
than prediction and the next question depends on
the extra part (“extra gold information”, 13.6%).
Invalid questions result in compounding errors,
which may further affect how the model interprets
the following questions.

5.2 Evaluation with question substitution

Among all the invalid question categories, “unre-
solved coreference” questions are the most criti-
cal ones. They lead to incorrect interpretations
of questions and hence wrong answers. We pro-
pose to improve our evaluation by first detecting
these questions using a state-of-the-art coreference
resolution system (Lee et al., 2018)6, and then sub-
stituting them with either rewriting the questions in-
place and replacing the questions with their context-
independent counterparts.

Detecting invalid questions. We make the as-
sumption that if the coreference model resolves
mentions in Q∗i differently between using gold his-
tory (Q∗1, A

∗
1, ..., A

∗
i−1, Q

∗
i ) and predicted history

(Q∗1, A1, ..., Ai−1, Q
∗
i ), thenQ∗i is identified as hav-

ing an unresolved coreference issue.
The inputs to the coreference model for Q∗i are

the following:

S∗i = [BG;Q∗i−k;A
∗
i−k;Q

∗
i−k+1;A

∗
i−k+1; ...;Q

∗
i ]

Si = [BG;Q∗i−k;Ai−k;Q
∗
i−k+1;Ai−k+1; ...;Q

∗
i ],

6We use the coreference model from AllenNLP (Gardner
et al., 2018).
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All Answerable questions

BERT GraphFlow HAM ExCorD BERT GraphFlow HAM ExCorD

Auto-Gold (F1) 63.2 64.9 65.4 67.7 61.8 66.6 64.5 66.4
Auto-Pred (F1) 54.6 49.6 57.2 61.2 52.7 54.5 54.6 59.2
Auto-Rewrite (F1) 54.5 48.2 57.3 61.9 51.2 51.9 55.1 59.7
Auto-Replace (F1) 54.2 47.8 57.1 61.7 50.7 51.7 54.8 59.7

Human (Accuracy) 82.6 81.0 87.8 87.9 75.9 83.2 84.8 85.3

Table 2: Model performance in automatic and human evaluations. We report overall performance on all questions
and also performance on answerable questions only.

where BG is the background, S∗i and Si denote
the inputs for gold and predicted history. After the
coreference model returns entity cluster informa-
tion given S∗i and Si, we extract a list of entities
E∗ = {e∗1, ..., e∗|E∗|} and E = {e1, ..., e|E|}.7 We
say Q∗i is valid only if E∗ = E, that is,

|E∗| = |E| and e∗j = ej , ∀ej ∈ E,

assuming e∗j and ej have a shared mention in Q∗i .
We determine whether e∗j = ej by checking if
F1(s∗j , sj) > 0, where s∗j and sj are the first men-
tion of e∗j and ej respectively, and F1 is the word-
level F1 score, i.e., e∗j = ej as long as their first
mentions have word overlap. The reason we take
the F1 instead of exact match to check whether the
entities are the same is stated in Appendix A.

Question rewriting through entity substitution.
Our first strategy is to substitute the entity names
in Q∗i with entities in E∗, if Q∗i is invalid. The
rewritten question, instead of the original one, will
be used in the conversation history and fed into
the model. We denote this evaluation method
as rewritten-question evaluation (Auto-Rewrite),
and Figure 4 illustrates a concrete example.

To analyze how well Auto-Rewrite does in de-
tecting and rewriting questions, we manually check
100 conversations of ExCorD from the QuAC de-
velopment set. We find that Auto-Rewrite can
detect invalid questions with a precision of 72%
and a recall of 72% (more detailed analysis in Ap-
pendix B). An example of correctly detected and
rewritten question is presented in Figure 4.

Question replacement using CANARD. Another
strategy is to replace the invalid questions with
context-independent questions. The CANARD

7We are only interested in the entities mentioned in the
current question Q∗

i and we filter out named entities (e.g., the
National Football League) because they can be understood
without coreference resolution.

dataset (Elgohary et al., 2019) provides such a re-
source, which contains human-rewritten context-
independent version of QuAC’s questions. Recent
works (Anantha et al., 2021; Elgohary et al., 2019)
have proposed training sequence-to-sequence mod-
els on such dataset to rewrite questions; however,
since the performance of the question-rewriting
models is upper bounded by the human-rewritten
version, we simply use CANARD for question re-
placement. We denote this strategy as replaced-
question evaluation (Auto-Replace). Because col-
lecting context-independent questions is expensive,
Auto-Replace is limited to evaluating models on
QuAC; it is also possible to be extended to other
datasets by training a question rewriting model, as
demonstrated in existing work.

6 Automatic vs Human Evaluation

In this section, we compare human evaluation with
all the automatic evaluations we have introduced:
gold-history (Auto-Gold), predicted-history (Auto-
Pred), and our proposed Auto-Rewrite and Auto-
Replace evaluations. We first explain the metrics
we use in the comparison (§6.1) and then discuss
the findings (§6.2 and §6.3).

6.1 Agreement metrics

Model performance and rankings. We first con-
sider using model performance reported by differ-
ent evaluation methods. Considering numbers of
automatic and human evaluations are not directly
comparable, we also calculate models’ rankings
and compare whether the rankings are consistent
between automatic and human evaluations. Model
performance is reported in Table 2. In human eval-
uation, GraphFlow < BERT < HAM ≈ ExCorD;
in Auto-Gold, BERT < GraphFlow < HAM < Ex-
CorD; in other automatic evaluations, GraphFlow
< BERT < HAM < ExCorD.
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Human Evaluation QuAC
BERT GF HAM ExCorD

34.6 20.6 34.1 33.2 20.2

Table 3: Percentage of unanswerable questions in hu-
man evaluation (it varies with different models) and
the original QuAC dataset (used in all automatic evalu-
ations). GF: GraphFlow.

30 40 50 60 70
Agreement (%)

B/E

H/B

H/E

G/B

G/E

G/H

M
od

el
 P

ai
rs Auto-Gold

Auto-Pred
Auto-Rewrite
Auto-Replace

Figure 5: Pairwise agreement of different model pairs
comparing automatic evaluations to human evaluation.
B: BERT; G: GraphFlow; H: HAM; E: ExCorD.

Statistics of unanswerable questions. Percent-
age of unanswerable questions is an important as-
pect in conversations. Automatic evaluations using
static datasets have a fixed number of unanswerable
questions, while in human evaluation, the percent-
age of unanswerable questions asked by human
annotators varies with different models. The statis-
tics of unanswerable questions is shown in Table 3.

Pairwise agreement. For a more fine-grained eval-
uation, we perform a passage-level comparison for
every pair of models. More specifically, for ev-
ery single passage we use one automatic metric
to decide whether model A outperforms model B
(or vice versa) and examine the percentage of pas-
sages that the automatic metric agrees with human
evaluation. For example, if the pairwise agreement
of BERT/ExCorD between human evaluation and
Auto-Gold is 52%, it means that Auto-Gold and hu-
man evaluation agree on 52% passages in terms of
which model is better. Higher agreement means the
automatic evaluation is closer to human evaluation.
Figure 5 shows the results of pairwise agreement.

6.2 Automatic evaluations have a significant
distribution shift from human evaluation

We found that automatic evaluations have a signifi-
cant distribution shift from human evaluation. We

draw this conclusion from the following points.

• Human evaluation shows a much higher model
performance than all automatic evaluations, as
shown in Table 2. Two reasons may cause this
large discrepancy: (a) Many conversational QA
questions have multiple possible answers, and it
is hard for the static dataset in automatic eval-
uations to capture all the answers. It is not an
issue in human evaluation because all answers
are judged by human evaluators. (b) There are
more unanswerable questions and open questions
in human evaluation (reason discussed in the next
paragraph), which are easier—for example, mod-
els are almost always correct when answering
questions like “What else is interesting?”.

• Human evaluation has a much higher unanswer-
able question rate, as shown in Table 3. The
reason is that in human-human data collection,
the answers are usually correct and the question-
ers can ask followup questions upon the high-
quality conversation; in human-machine interac-
tions, since the models can make mistakes, the
conversation flow is less fluent and it is harder
to have followup questions. Thus, questioners
chatting with models tend to ask more open or
unanswerable questions.

• All automatic evaluation methods have a pairwise
agreement lower than 70% with human evalua-
tion, as shown in Figure 2. This suggests that
all automatic evaluations cannot faithfully reflect
the model performance of human evaluation.

6.3 Auto-Rewrite is closer to human
evaluation

First, we can clearly see that among all automatic
evaluations, Auto-Gold deviates the most from the
human evaluation. From Table 2, only Auto-Gold
shows different rankings from human evaluation,
while Auto-Pred, Auto-Rewrite, and Auto-Replace
show consistent rankings to human judgments.

In Figure 2, we see that Auto-Gold has the lowest
agreement with human evaluation; among others,
Auto-Rewrite better agrees with human evaluation
for most model pairs. Surprisingly, Auto-Rewrite
is even better than Auto-Replace—which uses
human-written context independent questions—in
most cases. After checking the Auto-Replace con-
versations, we found that human-written context in-
dependent questions are usually much longer than
QuAC questions and introduce extra information

8080



Predicted unanswerable Q. Precision Recall

B G H E B G H E B G H E

Auto-Gold 27.1 21.5 27.1 28.3 56.8 62.3 57.1 57.9 68.1 59.3 68.4 72.5
Auto-Pred 27.8 13.8 28.6 28.9 50.0 53.9 52.3 53.3 61.4 33.0 66.1 68.2
Auto-Rewrite 27.3 13.1 25.1 26.0 48.6 55.0 52.4 53.9 65.7 35.7 65.1 69.4
Auto-Replace 27.5 12.9 25.2 25.7 48.6 54.2 52.1 53.8 66.1 34.7 64.9 68.4

Human 42.3 14.7 37.2 36.0 75.0 93.0 86.8 87.4 95.2 72.5 93.7 93.3

Table 4: The percentage of models’ predicted unanswerable questions, and the precision and recall for detecting
unanswerable questions in different evaluations. B: BERT; G: GraphFlow; H: HAM; E: ExCorD.

into the context, which leads to out-of-domain chal-
lenges for conversational QA models (example in
Appendix C). It shows that our rewriting strategy
can better reflect real-world performance of con-
versational QA systems. However, Auto-Rewrite is
not perfect—we see that when comparing G/E or
G/H, Auto-Pred is better than Auto-Rewrite; in all
model pairs, the agreement between human evalua-
tion and Auto-Rewrite is still lower than 70%. This
calls for further effort in designing better automatic
evaluation in the future.

7 Towards Better Conversational QA

With insights drawn from human evaluation and
comparison with automatic evaluations, we discuss
the impact of different modeling strategies, as well
as future directions towards building better conver-
sational question answering systems.

Modeling question dependencies on conversa-
tional context. When we focus on answerable
questions (Table 2), we notice that GraphFlow,
HAM and ExCorD perform much better than
BERT. We compare the modeling differences of
the four systems in Figure 6, and identify that all
the three better systems explicitly model the ques-
tion dependencies on the conversation history and
the passage: both GraphFlow and HAM highlight
repeated mentions in questions and conversation
history by special embeddings (turn marker and
PosHAE) and use attention mechanism to select
the most relevant part from the context; ExCorD
adopts a question rewriting module that generates
context-independent questions given the history
and passage. All those designs help models better
understand the question in a conversational con-
text. Figure 7 gives an example where GraphFlow,
HAM and ExCorD resolved the question from long
conversation history while BERT failed.

Unanswerable question detection. Table 4

demonstrates models’ performance in detecting
unanswerable questions. We notice that Graph-
Flow predicts much fewer unanswerable questions
than the other three models, and has a high pre-
cision and a low recall in unanswerable detection.
This is because GraphFlow uses a separate network
for predicting unanswerable questions, which is
harder to calibrate, while the other models jointly
predict unanswerable questions and answer spans.

This behavior has two effects: (a) GraphFlow’s
overall performance is dragged down by its poor
unanswerable detection result (Table 2). (b) In
human evaluation, annotators ask fewer unanswer-
able questions with GraphFlow (Table 3)—when
the model outputs more, regardless of correctness,
the human questioner has a higher chance to ask
passage-related followup questions. Both suggest
that how well the model detects unanswerable ques-
tions significantly affects its performance and the
flow in human-machine conversations.

Optimizing towards the new testing protocols.
Most existing works on conversational QA model-
ing focus on optimizing towards Auto-Gold eval-
uation. Since Auto-Gold has a large gap from the
real-world evaluation, more efforts are needed in
optimizing towards the human evaluation, or Auto-
Rewrite, which better reflects human evaluation.
One potential direction is to improve models’ ro-
bustness given noisy conversation history, which
simulates the inaccurate history in real world that
consists of models’ own predictions. In fact, prior
works (Mandya et al., 2020; Siblini et al., 2021)
that used predicted history in training showed that it
benefits the models in predicted-history evaluation.

8 Related Work

Conversational question answering. In recent
years, several conversational question answering
datasets have emerged, such as QuAC (Choi
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Figure 6: Modeling structures of BERT, GraphFlow, HAM, and ExCorD.

Tom McCall – Vortex I
... McCall decided to hold a rock festival at Milo McIver
State Park, Oregon called “Vortex I: A Biodegradable
Festival of Life”...

Q∗1: Was Vortex I popular?
B: The festival, “The Governor’s Pot Party” ... X
G/H/E: The festival, “The Governor’s Pot Party” ... X
...
Q∗4: Who played at the festival?
B: CANNOT ANSWER 7

G/H/E: Gold, The Portland Zoo, Osceola, Fox... X

Figure 7: An example of BERT failing to resolve the
festival in Q∗

4, while all other models with explicit de-
pendency modelings succeeded.

et al., 2018), CoQA (Reddy et al., 2019), and
DoQA (Campos et al., 2020), as well as a few
recent works focusing on conversational open-
domain question answering (Adlakha et al., 2021;
Anantha et al., 2021; Qu et al., 2020) Different
from single-turn QA datasets (Rajpurkar et al.,
2016), conversational QA requires the model to
understand the question in the context of conver-
sational history. There have been many methods
proposed to improve conversational QA perfor-
mance (Ohsugi et al., 2019; Chen et al., 2020; Qu
et al., 2019b; Kim et al., 2021) and significant im-
provements have been made on conversational QA
benchmarks. Besides text-based conversational QA
tasks, there also exist conversational QA bench-
marks that require external knowledge or other
modalities (Saeidi et al., 2018; Saha et al., 2018;
Guo et al., 2018; Das et al., 2017).

Only recently has it been noticed that the current
method of evaluating conversational QA models is
flawed. Mandya et al. (2020); Siblini et al. (2021)
point out that using gold answers in history is not
consistent with real-world scenarios and propose to
use predicted history for evaluation. Different from
prior works, in this paper, we conduct a large scale
human evaluation to provide evidence for why gold-
history evaluation is sub-optimal. In addition, we

point out that even predicted-history evaluation has
issues with invalid questions, for which we propose
rewriting questions to further mitigate the gap.

Automatic evaluation of dialogue systems. Au-
tomatically evaluating dialogue systems is difficult
due to the nature of conversations. In recent years,
the NLP community has cautiously re-evaluated
and identified flaws in many popular automated
evaluation strategies of dialogue systems (Liu et al.,
2016; Sai et al., 2019), and have proposed new eval-
uation protocols to align more with human evalua-
tion in a real-world setting: Huang et al. (2020); Ye
et al. (2021) evaluate the coherence of the dialogue
systems; Gupta et al. (2019) explore to use multi-
ple references for evaluation; Mehri and Eskenazi
(2020) propose an unsupervised and reference-free
evaluation; Lowe et al. (2017); Tao et al. (2018);
Ghazarian et al. (2019); Shimanaka et al. (2019);
Sai et al. (2020) train models to predict the related-
ness score between references and model outputs,
which are shown to be better than BLEU (Papineni
et al., 2002) or ROGUE (Lin, 2004).

9 Conclusion

In this work, we carry out the first large-scale
human evaluation on conversational QA systems.
We show that current standard automatic evalua-
tion with gold history cannot reflect models’ per-
formance in human evaluation, and that human-
machine conversations have a large distribution
shift from static conversational QA datasets of
human-human conversations. To tackle these prob-
lems, we propose to use predicted history with
rewriting invalid questions for evaluation, which
reduces the gap between automatic evaluations and
real-world human evaluation. Based on the insights
from the human evaluation results, we also nalyze
current conversational QA systems and identify
promising directions for future development.
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A Invalid Question Detection

In question rewriting, we use F1 instead of exact
match to check whether two entites are the same.
The reason is that sometimes the prediction may
mention the same entity as the gold answer does,
but with different names. Figure 8 gives an exam-
ple. Thus to avoid the false positive of detecting
invalid questions, we take the F1 metric.

Q∗1: Who is at the door?
A∗1: An elderly Chinese lady and a little boy
A1: elderly Chinese lady

Q∗2: Is she carrying something?

Figure 8: An example that the prediction may mention
the same entity as the gold answer does with slightly
different names.

B Quality of Rewriting Questions

Detection. After manually checking 100 conversa-
tions of ExCorD from the QuAC development set,
we find that Auto-Rewrite can detect invalid ques-
tions with a precision of 72% and a recall of 72%.
We notice that the coreference model sometimes
detects the pronoun of the main character in the pas-
sage as insolvable, although it almost shows up in
every question. This issue causes the low precision
but is not a serious problem in our case – whether
rewriting the pronoun of the main character does
not affect models’ prediction much, because the
model always sees the passage and knows who the
main character is.

Rewriting. Among all correctly detected invalid
questions, we further check the quality of rewrit-
ing, and in 68% of the times Auto-Rewrite gives a
correct context-independent questions. The most
common error is being ungrammatical. For exam-
ple, using the gold history of "... Dee Dee claimed
that Spector once pulled a gun on him", the origi-
nal question "Did they arrest him for doing this?"
was rewritten to "Did they arrest Phillip Harvey
Spector for doing pulled?" While this creates a dis-
tribution shift on question formats, it is still better
than putting an invalid question in the flow.

C Issue with Context Independent
Questions

Figure 9 shows an example where extra informa-
tion in context-independent questions confuses the
model and leads to incorrect prediction.

Q∗: Did he go on to any other notable matches?

QW : Did he go on to any other notable matches?
AW : During the Test match series against Australia

in 2010, at the Melbourne Cricket Ground...

QP : Did Mohammad Amir go on to any other
notable matches, besides on 9 November 2009?

AP : Later in 2009, Pakistan toured Sri Lanka

Figure 9: The context-independent question QP by
Auto-Replace contains extra information that confuses
the model. The rewritten question QW did not change
the original question and led to a correct answer.
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