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Abstract

Neural discrete reasoning (NDR) has shown
remarkable progress in combining deep mod-
els with discrete reasoning. However, we find
that existing NDR solution suffers from large
performance drop on hypothetical questions,
e.g., “what the annualized rate of return would
be if the revenue in 2020 was doubled”. The
key to hypothetical question answering (HQA)
is counterfactual thinking, which is a natural
ability of human reasoning but difficult for
deep models. In this work, we devise a Learn-
ing to Imagine (L2I) module, which can be
seamlessly incorporated into NDR models to
perform the imagination of unseen counterfac-
tual. In particular, we formulate counterfactual
thinking into two steps: 1) identifying the fact
to intervene, and 2) deriving the counterfactual
from the fact and assumption, which are de-
signed as neural networks. Based on TAT-QA,
we construct a very challenging HQA dataset
with 8,283 hypothetical questions. We apply
the proposed L2I to TAGOP, the state-of-the-
art solution on TAT-QA, validating the ratio-
nality and effectiveness of our approach.

1 Introduction

Neural discrete reasoning (Dua et al., 2019) is an
emerging technique for machine reading compre-
hension (Rajpurkar et al., 2016) which aims at
answering numerical questions from textual (Dua
et al., 2019) or hybrid (Zhu et al., 2021) context1.
NDR combines deep neural network with discrete
and symbolic reasoning (e.g., addition, sorting, or
counting) (Dua et al., 2019) and enables the com-
prehension of complex contexts and compositional
questions, which is critical for many practical ap-
plications such as automatic diagnosis (Wei et al.,
2018) and robo-advisor (Fisch et al., 2019). Exist-
ing state-of-the-art NDR models implement the nu-

∗∗Corresponding author.
1where hybrid includes textual and tabular data in this

work

merical reasoning process as neural network mod-
ules (Ran et al., 2019; Herzig et al., 2020; Zhu et al.,
2021), e.g., a graph neural network for sorting (Ran
et al., 2019; Chen et al., 2020a).

In this work, we extend NDR to hypothetical
question answering (HQA), where the question
consists of an assumption beyond the context (Fig-
ure 1). The ability of HQA will undoubtedly en-
hance the practical use of NDR due to the uni-
versality of hypothetical questions. However, cur-
rent NDR models face severe generalization failure
on hypothetical questions. An empirical evidence
on such vulnerability is that the state-of-the-art
model (Zhu et al., 2021) encounters a sharp perfor-
mance drop (F1 score drops from 68.6% to 3.8%)
on the TAT-QA dataset when changing the ques-
tions to be hypothetical by adding a related as-
sumption (see details in Section 2, Table 3). We
postulate that the failure is due to unable of imag-
ining the counterfactual context according to the
assumption (Figure 1). To pursue such reasoning
ability, we resort to the concept of counterfactual
thinking (Pearl, 2019) from the theory of causal-
ity, which is the ability to imagine and reason over
unseen cases based on the seen facts and counter-
factual assumptions.

In this light, we consider modeling counterfac-
tual thinking as neural network modules that can be
seamlessly incorporated into existing NDR models.
One straightforward solution is to model counter-
factual thinking as a generation procedure with
the fact and assumption as inputs by using a gen-
eration model such as GPT (Brown et al., 2020).
However, such uncontrollable model (Zou et al.,
2021) can hardly generate high-quality context for
two reasons: 1) the context is more complex than
plain text, which can include a table (Figure 1);
and 2) NDR requires a precise context with the cor-
rect numbers (Figure 1, $132,935 for the finished
goods in 2019). Therefore, we resort to an alter-
native approach: constructing the counterfactual
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What was the change in finished 
goods from 2018 to 2019?

Factual Context

Fiscal year-end 2019 2018

Purchased parts 
and assemblies $134,298 $137,566

Work-in-process $174,550 $186,240

Finished goods $133,682 $162,935

Total 
inventories $442,530 $486,741

Table

Paragraph
• Inventories are stated at the lower of 
cost (first-in, first-out or weighted 
average cost) or net realizable value. 
Inventories are as follows (in thousands):

Normal Question

Hypothetical Question
What would the change in finished 
goods from 2018 to 2019 be if the 
amount in 2019 was $132,935 
thousand instead?

Answer: -29253 

Counterfactual Context

Fiscal year-end 2019 2018

Purchased parts 
and assemblies $134,298 $137,566

Work-in-process $174,550 $186,240

Finished goods $132,935 $162,935

Total 
inventories $442,530 $486,741

Paragraph
• Inventories are stated at the lower of 
cost (first-in, first-out or weighted 
average cost) or net realizable value. 
Inventories are as follows (in thousands):

Table

Answer: -30000

(133,682-162,935)

(132,935-162,935)

Im
agine

Figure 1: Illustration of hypothetical question and the corresponding counterfactual context to be imagined.

by intervening on the factual context. As shown
in Figure 1, the assumption changes one entry in
the table, e.g., $133,682 to $132,935. This is coher-
ent with the causal inference theory (Pearl, 2009)
where the target variable is intervened according to
the hypothetical condition to infer a counterfactual.

We propose Learning to Imagine, where the
counterfactual thinking is implemented with two
intervening steps: 1) identifying the facts to inter-
vene, and 2) deriving the result of intervention. To
pursue accurate context, we derive the interven-
tion with a set of discrete operators such as SWAP
and ADD for imagination. To evaluate the coun-
terfactual thinking ability, we recruit volunteers
with domain expertise to construct an HQA dataset
based on TAT-QA (Zhu et al., 2021) by posting
an assumption for each original question, named
TAT-HQA. We apply L2I to TAGOP (Zhu et al.,
2021), and obtain a promising solution for HQA.
In summary, the main contributions are as follows:

• We highlight the importance of counterfactual
thinking in NDR and formulate counterfactual
thinking as an intervening procedure to achieve
precise imagination.

• We devise the L2I module, which is designed as
neural network operations and can be seamlessly
incorporated into the NDR model for answering
hypothetical questions.

• We construct a challenging HQA dataset and
conduct extensive experiments on the dataset,
where the performance validates the rationality
and effectiveness of the proposed L2I.

2 Hypothetical Question Answering

In the general setting of machine reading compre-
hension, the task is to answer a question accord-
ing to the facts in a given context. Formally, it
is to learn a function y = f(q, c), where y, q,
and c are the word list representing the answer,

the question, and the context2 respectively. This
work studies a new and more challenging task that
focuses on hypothetical question. As shown in Fig-
ure 1, a hypothetical question includes an assump-
tion, e.g., “if the amount in 2019 was $132,935
thousand instead”. The target of HQA is to learn
y = f(q, c,a) where a denotes the assumption.
The existence of an assumption calls for the imagi-
nation of a counterfactual context before inferring
the answer, pushing the NDR model to grasp both
semantic understanding and counterfactual think-
ing.

To facilitate the evaluation of HQA and diag-
nose counterfactual thinking, we construct an HQA
dataset based on TAT-QA (Zhu et al., 2021), which
is a QA dataset with a mix of tabular and textual
context extracted from financial reports. Inspired
by previous work on constructing counterfactual
samples (Kaushik et al., 2019), we recruit college
students with finance-related majors to imagine an
intervention based on the factual question and con-
text from TAT-QA which involves numerical think-
ing, e.g., a change of number. Then they phrase the
intervention into an assumption, forming a “what
if ” type of question, and calculate the answer (see
an example in Figure 1). To ensure the diversity
of the phrasing, annotators are free to generate var-
ious phrasing of the assumption, and there is no
restriction on the position of the assumption. Usu-
ally, the assumption appears either before of after
the factual question. Each hypothetical question
is related to one factual question from TAT-QA,
but each factual question in TAT-QA is not guar-
anteed to have one hypothetical question. We fol-
low the quality control approaches of annotator
training and two-round validation in TAT-QA to
guarantee the quality of the hypothetical questions.

2Note that recent NDR methods flatten the tabular context
(if available) and concatenate it with the textual context. We
thus denote the context as a word list for brief notation.
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Table 1: Statistics of TAT-HQA dataset by answer type
and answer location.

Tab Text Tab-Text Total
Span 565 16 175 756
Multi-Span 133 1 57 191
Counting 101 5 271 377
Arithmetic 4,423 140 2,396 6,959
Total 5,222 162 2,899 8,283

Table 2: Statistics of TAT-HQA dataset by data split.

Statistics Train Val. Test
# of hybrid contexts 2207 274 277
# of hypothetical questions 6229 823 831
Avg. length of question [words] 23.9 23.6 24.1
Avg. length of assumption [words] 10.58 10.31 10.66

Following TAT-QA, the hypothetical questions are
also labeled with four answer types: arithmetic,
span, count, and multi-span, three types of answer
sources: table, text and table-text, and a derivation
on how the answer is derived from the context. In
total, we obtain 8,283 hypothetical questions, nam-
ing it as TAT-HQA. The statistics of TAT-HQA are
shown in Table 1. We follow the split of training,
testing and validation set of TAT-QA as shown in
Table 2.

We conduct a pilot study on the generalization
ability of existing NDR models on hypothetical
questions. In particular, we evaluate TAGOP (Zhu
et al., 2021), which is the state-of-the-art model
on TAT-QA (see detailed settings in Section 4.1)
by training on TAT-QA and testing on TAT-HQA.
In Table 3, the huge performance drop shows that
even the state-of-the-art NDR model lacks counter-
factual thinking ability.

3 Methodology

We aim to empower NDR models with counterfac-
tual thinking ability. Firstly, we decide to choose
the approach of explicitly modeling discrete oper-
ations, since existing NDR solutions have demon-
strated its superiority (Dua et al., 2019; Ran et al.,
2019; Herzig et al., 2020; Zhu et al., 2021). We
devise a Learning to Imagine module to model
counterfactual thinking (Section 3.1), and then in-
corporate the L2I module (Section 3.2) into exist-
ing NRD methods, followed by a discussion about
potential extensions (Section 3.3).

3.1 Learning to Imagine

Functionally speaking, the L2I module aims to con-
struct a counterfactual context based on the factual

Table 3: Performance of NDR model on TAT-QA and
TAT-HQA.

Testing
TAT-QA TAT-HQA

EM F1 EM F1
TAGOP 61.3 68.6 2.8 3.8

context and the assumption. We formulate it as:
c′ = g(c,a), where the counterfactual context c′ is
the status of the context c after the assumption a is
executed. Resorting to the language of causality, it
can be expressed as the do-operation that intervenes
a variable to execute the assumption and the action
to derive the outcome of the intervention3 (Pearl,
2009). The key to achieving counterfactual think-
ing in NDR lies in: 1) parsing the assumption to
identify the target fact to intervene; and 2) deriving
the assumed value to construct the counterfactual
context. Taking the hypothetical question in Fig-
ure 1 as an example, an ideal L2I should recognize
the target variable (finished goods in 2019), iden-
tify the corresponding fact ($133,682), and replace
the fact with the assumed value ($132,935).

Two-step Formulation. To this end, we pro-
pose a two-step formulation of counterfactual think-
ing for HQA to perform the identification and
derivation. Formally,

Step 1: i = r(c,a, q) (1)

Step 2: c′i = d (ci, c,a) , c′j =

{
c′j , j = i,

cj , otherwise.
• Step 1: Identifying the target fact. r(·) de-

notes the tagging function which scans the fac-
tual context c to recognize the fact related to the
assumption a and the question q. i is the word
position of the identified fact ci.

• Step 2: Deriving intervention result. d(·) de-
notes the deriving function that parses the as-
sumption a to infer the discrete operation and
the premise to derive the assumed value c′i. As
to the assumption in Figure 1, the derivation re-
quires a SWAP operation and a premise $132,935.
This step then calls for an editing operation to
construct the counterfactual context c′.

Module Design. Based on the two-step formu-
lation, we then design the L2I module as neural
network operations. We have two considerations
for the module design: 1) the module should recog-
nize the semantic connection between the assump-
tion and the context, and 2) the module should
uniformly support various discrete operations to

3Note that we adopt the do-expression (Pearl, 2009) of
counterfactual.
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enable accurate derivation. To this end, we devise
four key building blocks for the L2I module:
• Encoder. It projects the raw content into latent

representation. Inspired by the recent research on
NDR, we employ a pre-trained language model
(PLM), i.e., RoBERTa (Liu et al., 2019), as the
encoder to learn an overall representation of the
context, question, and assumption;

H = PLM ([CLS, c, SEP, {q,a}, SEP]) (2)

where L and M are the length of the tokenized
inputs. CLS and SEP denote the beginning
and the separation token of the input. {q,a}
represents that the relevant position of a to p can
vary. We do not assume q to always precede a
due to the various location of a in the annotation.

• Matching block. It distills the semantic connec-
tion between the factual question, the factual con-
text and the hypothetical assumption (Figure 1,
“amount in 2019” and “$132,935”). After ap-
plying the token-level self-attention of PLM, we
aim to further distill the sequence-level semantic
connection between the factual part (the ques-
tion and the context) and the hypothetical part
(the assumption). We obtain the factual and as-
sumption representations by maskingH accord-
ing to the position of the question, the context
and the assumption, which splits H into 2 non-
overlapping parts. Inspired by the success of
cross-attention (Kim et al., 2018) in associating
different sources, e.g., image-image (Hou et al.,
2019) and image-text (Lu et al., 2019), we adopt
cross-attention between the factual representa-
tion and the assumption representation, followed
by self-attention respectively. Formally, the cal-
culation of the k-th layer is,

Hf = mask (H, pos({c, q}))

Ha = mask (H, pos(a))

Ĥk
f = MHA

(
Hk−1

f ,Hk−1
a ,Hk−1

a

)
Ĥk

a = MHA
(
Hk−1

a ,Hk−1
f ,Hk−1

f

)
Hk

f = MHA
(
Ĥk

f , Ĥ
k
f , Ĥ

k
f

)
Hk

a = MHA
(
Ĥk

a , Ĥ
k
a , Ĥ

k
a

)
where MHA(·) denotes the multi-head atten-
tion (Vaswani et al., 2017) with a triple of query,
key, and value as the input. The residual con-
nection and batch normalization are applied as
the default choice. mask(·) denotes the masking
operation, and pos(x) is a binary vector with the
same length ofH denoting the positions of x in
the input of PLM.

• Tagging head. It models the identification of
target fact as a token-wise tagging. Formally,

ti =

{
1, ∃(j), argmax(pj) = 1 ∧ hK

j 7→ ci,

0, otherwise.

pj = softmax(MLP
(
hK

j

)
)

(3)

where ti is a binary tag for the fact ci. ci will be
a target as at least one of its tokens is tagged. We
use hK

j 7→ ci to represent the mapping between
token and fact, which is true if token j belongs
to fact ci. For each token, we employ a 2-way
classifier MLP

(
hK
j

)
to predict its probability

of being tagged as pj where argmax(pj) = 1
means positive (see Appendix A for more de-
tails).

• Deriving head. It derives the intervention result
for the target fact. To calculate the intervention
result, we select a set of commonly used dis-
crete operators such as SWAP, ADD, and MINUS
(cf. Appendix B). Then, we model the deriva-
tion as making a choice across the operators
and tagging the premise for executing the op-
erator. In particular, we adopt a tagging head to
identify the premise and a multi-way classifier
for choosing operators, which is formulated as:
o = softmax(MLP(hCLS)). o ∈ RO is a dis-
tribution over the operators where O denotes the
number of operators. hCLS corresponds to the
CLS token inH .

3.2 NDR with L2I
Most recent NDR models (Ran et al., 2019; Andor
et al., 2019; Chen et al., 2020a; Herzig et al., 2020;
Zhu et al., 2021) consist of two main modules: 1)
a PLM to encode the context and the question into
latent representations, and 2) a reasoning module
that chooses the discrete operator and identifies the
operands according to the latent representations.
As shown in Figure 2, we can seamlessly incorpo-
rate the proposed L2I into such NDR model as an
intermediate module, which performs imagination
before discrete reasoning. In particular, we simply
let the reasoning module conduct operand look-up
within the counterfactual context constructed by
L2I. Besides, we let L2I reuse the PLM in the NDR
model to reduce the model complexity and training
time.

Model training. Existing NDR methods typi-
cally follow the supervised learning paradigm to
optimize the model parameters (Dua et al., 2019).
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Figure 2: Illustration of NDR equipped with the proposed L2I module for answering hypothetical questions.

Suppose we have a set of labeled questions D =
{< ȳ, (q, c,a) >}, the training objective can be
abstracted as minθ

∑
D QA (ȳ, f(q, c,a)) where

θ denotes model parameters. Note that QA(·) mea-
sures the discrepancy between the ground-truth and
the predicted answers which can have different for-
mats. For instance, it can be a combination of the
cross-entropy (CE) loss over the operand look-up
and the CE loss over the choice of discrete opera-
tion (Herzig et al., 2020; Yin et al., 2020; Zhu et al.,
2021). When applying L2I to an existing NDR
method, we keep its question-answering objective
unchanged. To optimize the L2I module, we incor-
porate supervision on the classifiers in the tagging
head and deriving head. Formally,

min
θ

∑
D

(
QA
(
ȳ, f(q, c,a)

)
+

1

L

∑
j<L

CE
(
p̄j ,MLP(hK

j )
)

+CE
(
ō,MLP(hCLS)

))
,

(4)
where p̄j ∈ {0, 1} denotes the label of the target
fact (token j in context) or the premise (token j
in assumption); and ō ∈ RO is the label of the
deriving operator (see Appendix C for the details
of label construction).

3.3 Discussion

Readers might have raised the following two con-
cerns for L2I: 1) the operators defined are lim-
ited, and 2) the operators are tailored to one step
of derivation on one target fact. Actually, it is a
common approach for current state-of-the-art NDR
models to apply a set of defined operators (Ran
et al., 2019; Chen et al., 2020a; Zhu et al., 2021).
For the first concern, by doing more fine-grained
classification on the numerical reasoning process
in the dataset, we can derive new operators and
simply plug them into L2I. Note that the annota-
tion of numerical intervention of TAT-HQA does
not follow the defined operators in Appendix C,
but the operators are summarized from the data.

Our defined operators can cover over 90% of the
training data. For the second concern, we discuss
two potential solutions by our L2I framework, and
we leave the implementation as future work.

Multi-fact intervention. The assumption a can
include intervening multiple facts, e.g., “if the Fin-
ished goods in 2018 and 2019 were both doubled”.
Apparently, if the target facts are independent, we
can easily handle such an assumption by executing
L2I in multiple iterations. In other cases, L2I needs
to recognize the relationship among the target facts.
If such relationship is available, L2I should be able
to handle such cases as the corresponding multi-
variable operator is added to the deriving head.

Multi-iteration derivation. In causal inference,
a rigorous derivation of an intervention considers
the successors of the target variable, e.g., finished
goods in 2019 affects total inventories in 2019. Cur-
rently, we omit the following iterations in Step 2 of
L2I (cf. Eq 1). This is because not all successors
are necessary for answering the question. For in-
stance, answering the question in Figure 1 does not
require the post-intervention value of total inven-
tories in 2019. In conventional causal inference,
such successors will also be omitted according to
the local surgery principle (Pearl, 2009). More-
over, we believe that the following iterations can be
achieved by the current L2I module in an iterative
manner. Assume that NDR model equipped with
L2I can answer the hypothetical questions requir-
ing one-iteration derivation (i.e., ci → c′i). We can
thus derive the value of successors (e.g., c′i → c′j)
by forming a simple hypothetical question: “What
cj would be if ci is c′i?” and answering it with the
NDR model.

4 Experiments

We conduct experiments on TAT-HQA dataset to
answer the following questions: RQ1: How does
L2I perform on HQA? RQ2: What factors influ-
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Table 4: Performance of compared methods on the TAT-HQA dataset. The best and the second-best performance
w.r.t. each metric are highlighted with bold font and underline, respectively. RI means the relative improvement
achieved by TAGOP-L2I over the best baseline.

BERT-RC NumNet+ V2 TAPAS-WTQ Hybrider TAGOP TAGOP-CLO TAGOP-L2I RI
EM 4.7±0.4 9.7±0.4 4.7±0.3 4.6±0.2 41.1±0.7 45.4±1.1 54.4±1.0 19.8%
F1 10.4±0.5 11.7±0.4 5.9±0.2 4.9±0.1 41.4±0.8 45.7±1.2 54.7±1.0 19.7%

ence the effectiveness of L2I?

4.1 Experiment Settings
Following Dua et al. (2019) and Zhu et al. (2021),
we evaluate the performance with two commonly
used metrics: Exact Match (EM) and numerically-
focused F1 score, where higher value (in [0, 100])
means better performance. We tune the hyper-
parameters on the validation set, and report the
average test performance of five different runs.

Compared methods. To validate the effective-
ness of our proposed L2I module, we apply it to
TAGOP, obtaining an NDR model for HQA, named
TAGOP-L2I. In addition to the vanilla TAGOP, we
compare our method against representative meth-
ods of traditional QA, numerical QA, tabular QA,
and hybrid QA. Besides, we want to select base-
lines that are effective for learning counterfactual
samples. The baselines are: BERT-RC (Devlin
et al., 2019), a traditional QA method that se-
lects answer spans from the context. NumNet+
V2 (Ran et al., 2019), a numerical QA method with
numerically-aware graph neural network. TAPAS-
WTQ (Herzig et al., 2020), a tabular QA method
that focuses on parsing and understanding tables,
pre-trained over tables collected from Wikipedia
before training on TAT-HQA. HyBrider (Chen
et al., 2020c), a hybrid QA method that consid-
ers the connection between the table and text.
TAGOP, a hybrid QA method that performs dis-
crete reasoning over both the tabular and textual
contexts. It is the state-of-the-art method on TAT-
QA dataset. TAGOP-CLO, incorporating the Con-
trastive Learning Objective (CLO) into the training
objective of TAGOP, which is shown to be effec-
tive in learning the relationship between factual
and counterfactual samples (Liang et al., 2020).

Parameter settings. We implement TAGOP-
L2I based on TAGOP4. We set the number of cross-
attention layers to 3, and fine tune from TAGOP
trained on TAT-QA with a learning rate of 5e-5,
batch size of 32, and gradient accumulation step
of 4. All compared methods are initialized with

4https://github.com/NExTplusplus/
TAT-QA.

the model trained on TAT-QA and then fine-tuned
on TAT-HQA. For TAGOP-CLO, we conduct max
pooling for H and adopt cosine similarity as the
distance metric. We select the corresponding fac-
tual question as the positive sample and a randomly
selected factual question as the negative sample.
The weight for the contrastive loss is 0.1.

4.2 Performance Comparison (RQ1)

Overall performance. Table 4 shows the perfor-
mance of the compared methods on the TAT-HQA
dataset. We can observe that: 1) TAGOP-L2I
achieves the best performance among all the com-
pared methods. In particular, it outperforms the
best baselines by 19.8% and 19.7% on EM and F1,
respectively. Such significant performance gain
validates the effectiveness of the L2I module and
reveal the rationality of modeling counterfactual
thinking as a neural network module. 2) TAGOP-
CLO outperforms TAGOP by 10.5% and 10.4% on
EM and F1. The only difference between these two
methods is that TAGOP-CLO incorporates an extra
CLO. The improvement indicates that learning the
relationship between the factual and counterfactual
samples with CLO provides some clue for counter-
factual imagination, yet it is still worse than directly
learning to imagine with neural network modules.
3) As to the remaining methods, their performance
has a clear gap between TAGOP, which is consis-
tent with the result on the TAT-QA dataset (Zhu
et al., 2021). This is because both datasets have tex-
tual and tabular texts, where the ability of TAGOP
to perform discrete reasoning across hybrid con-
texts brings significant advantages. 4) The perfor-
mance achieved is still low w.r.t. the two metrics
(e.g., 54.4→100), showing a large space for future
exploration on the challenging TAT-HQA dataset.

Detailed performance. To further investigate
the effectiveness of the proposed L2I module, we
perform a detailed comparison between TAGOP-
L2I and TAGOP w.r.t. the discrete operation re-
quired in answering the question or counterfactual
thinking. We group the questions according to
1) the answer type and 2) the operator to derive
the intervention. Table 5 shows the group-wise
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Table 5: Detailed performance of TAGOP-L2I and TAGOP w.r.t. answer type and deriving operator type.

Answer Type
TAGOP-L2I TAGOP Operator Type TAGOP-L2I TAGOP

EM F1 EM F1 SWAP 60.5±1.5 47.4±0.9
Span 52.1±3.0 53.4±2.8 46.7±1.7 47.5±1.6 ADD, MINUS 29.6±1.5 2.0±0.0

Multi-Span 57.1±3.8 62.0±1.7 51.9±0.0 60.3±0.0 MULT, DIV 40.0±14.0 0.0±0.0
Counting 66.1±4.5 66.1±4.5 52.7±5.6 52.7±5.6 PERCENT INC, DEC 56.0±6.8 0.0±0.0

Arithmetic 54.0±1.4 54.0±1.4 39.4±0.8 39.4±0.8 SWAP MIN NUM 5.0±4.1 6.7±8.2

performance. As to answer type (the left half),
we have the following observations: 1) TAGOP-
L2I outperforms TAGOP on all groups, showing
the superior ability of learning to imagine to all
types of questions. 2) Particularly, on the arith-
metic group, which is also the largest group (cf.
Table 1), TAGOP-L2I largely outperforms TAGOP.
For this group, the key difference between TAGOP-
L2I and TAGOP is whether the derivation of inter-
vention and calculation of the answer are achieved
by separate modules. The superior performance
of TAGOP-L2I validates the rationality of model-
ing counterfactual thinking as a separate module.
It should be noted that the separation also facil-
itates the generalization to new operations since
the modules can be separately updated. 3) The
performance of TAGOP on arithmetic has a large
gap with other types, showing that arithmetic ques-
tions are more difficult to conduct imagination and
reasoning even though arithmetic makes up the ma-
jority of TAT-HQA data. As to TAGOP-L2I, the
gap between arithmetic question and other types of
question largely reduces, validating the effective-
ness of learning intervention with discrete opera-
tors and neural network modules.

As to operator types (the right half), we observe
that: 1) TAGOP-L2I achieves imagination on the
majority of operator types with better performance
than TAGOP, yet TAGOP can only achieve imag-
ination on a few operator types. The better per-
formance of TAGOP-L2I is attributed to modeling
the deriving operations as specific operators. We
thus believe that TAGOP-L2I can generalize well to
more deriving operations by simply incorporating
the operators, as long as the corresponding train-
ing questions are not rare. This result thus reflects
the advantage of the unified operator framework
adopted by the L2I module, which is consistent
with previous work (Andor et al., 2019). 2) Across
the groups, TAGOP achieves relatively good per-
formance on the SWAP group, which replaces the
target fact with a number in the assumption. It
corresponds to the simplest imagination since the
assumed value (i.e., c′i) is explicitly mentioned in

the assumption. Therefore, the result shows that
the NDR model can achieve simple counterfactual
thinking by learning to answer hypothetical ques-
tions. However, such indirect guidance on imag-
ination fails on the groups requiring more com-
plex imagination, e.g., requiring add or minus. 3)
TAGOP-L2I achieves the worst performance on
SWAP MIN NUM, which is merely comparable to
TAGOP. We suspect the reason is that the operation
of SWAP MIN NUM is very close to SWAP, which
may confuse the deriving head when making clas-
sification over the operators. To address this issue,
it is worth considering the operator relation in the
deriving head in the future.

4.3 In-depth Analysis (RQ2)

Study on L2I module design. We then explore
the influence of network architecture on the effec-
tiveness of the L2I module from three perspectives:
1) module depth; 2) configuration of the matching
block; and 3) the setting of PLM.

Figure 3(a) shows the validation result of
TAGOP-L2I as increasing the matching block from
1 to 4 layers. We can observe that: 1) Stacking
more layers does not always bring performance
gain. 2) In particular, three layers of matching
block achieve the best performance on TAGOP-
L2I. The result indicates that three layers should
be sufficient to capture the semantic connection
across the context, question and assumption. This
is reasonable since the average length of both as-
sumption and question are only around 10 words
(cf. Table 2).

As to the architecture of the matching block, we
evaluate three variants from the default choice p-
s, self-a which enables parameter sharing across
layers (i.e., ps) and applies both cross-MHA on
the factual and assumption representations and self-
MHA for each of them (i.e., self-a). The three
variants are: 1) p-s, w/o self-a, which removes
self-MHA; 2) w/o p-s, self-a, which disables pa-
rameter sharing; and 3) w/o p-s, w/o self-a, which
adopts both changes. Figure 3(b) shows the per-
formance of the four versions of TAGOP-L2I with
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Figure 3: Performance of TAGOP-L2I under difference module configurations.

Figure 4: Performance of TAGOP-L2I and the original
TAGOP trained on TAT-QA on the test set of TAT-QA.

three layers of the matching block. From the figure,
we can observe that: 1) The default choice largely
outperforms the variants, validating the rational-
ity of our module design. 2) Disabling parameter
sharing hinders the counterfactual thinking, which
indicates that keeping the same parameters through
the process of matching factual and assumption
representations is beneficial for extracting the se-
mantic correlation. 3) Removing self-MHA also
leads to sharp performance drop, which justifies the
contribution of self-MHA in the L2I module. It is
thus essential to also separately process the seman-
tic information of the factual and the assumption
representations in the matching block.

We also conduct experiments on fixing the pa-
rameter of PLM during training on TAT-HQA as
initialized by TAT-QA. The performance drops to
EM 48.5 and F1 49.0. Fixing the parameter of PLM
largely impedes the performance of TAGOP-L2I on
TAT-HQA, showing that encoding factual and hy-
pothetical questions requires different mechanisms.
To further investigate the difference in answering
factual and hypothetical questions, we test TAGOP-
L2I on TAT-QA. The result in Figure 4 shows that
training on TAT-HQA causes a performance drop in
counting, span and multi-span groups of TAT-QA,
and performs similar on the in arithmetic group.
We conjecture the performance drop in the first
three groups is because the question-answering la-
bel in TAT-HQA under the same c and q is different
from TAT-QA. However, for arithmetic questions,
the question-answering label for one pair of c and
q remains the same between TAT-HQA and TAT-
QA, and the intervention is achieved explicitly by

Figure 5: Group-wise performance of TAGOP-L2I and
TAGOP-L2I-T w.r.t. operator type.

deriving operators and tagging head.
Study on L2I training objective. We then

investigate the influence of imagination-oriented
training objectives on the effectiveness of L2I. In
particular, we evaluate a variant TAGOP-L2I-T
trained only with the question-answering objec-
tive (i.e., QA(·)). That is, TAGOP-L2I-T learns to
implicitly imagine the final answer. Figure 5 shows
the group-wise performance of TAGOP-L2I and
TAGOP-L2I-T w.r.t. the type of operator for deriv-
ing the intervention. We can observe the followings.
1) On most groups, TAGOP-L2I largely outper-
forms TAGOP-L2I-T, demonstrating the rationality
of learning to imagine explicitly. 2) On SWAP
group TAGOP-L2I-T achieves comparable result
to TAGOP-L2I. As SWAP is the simplest deriving
operator, the result shows that the implicit guidance
can achieve simple imagination, yet is still less ef-
fective than the explicit manner. 3) TAGOP-L2I-T
achieves better performance on SWAP MIN NUM
group. As SWAP MIN NUM is a rare operator
(cf. Table 6) and involves the most complex imag-
ination process (cf. Appendix B), we conjecture
that learning complex operators is more difficult
than implicitly learning. This may shed light on
the rules of deriving new operators that simple op-
erators with ample training data is preferred over
complex operators with less training data.

5 Related Work

Counterfactual thinking. Existing research in-
corporates counterfactual thinking into deep mod-
els from two main perspectives: counterfactual
training and counterfactual inference.
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Counterfactual sample has become an emerg-
ing data augmentation technique in computer vi-
sion (Chen et al., 2020b) and natural language pro-
cessing (Kaushik et al., 2019) to enhance model
robustness. For instance, the technique is applied
in visual QA (Chen et al., 2020b; Agrawal et al.,
2018; Agarwal et al., 2020; Gokhale et al., 2020),
vision-language navigation (Fu et al., 2020; Par-
vaneh et al., 2020), table entailment (Eisenschlos
et al., 2020), sentiment analysis (Kaushik et al.,
2019; Yang et al., 2020), natural language infer-
ence (Kaushik et al., 2019), named entity recogni-
tion (Zeng et al., 2020), and dialogue system (Zhu
et al., 2020). Along this line, a series of studies
explore how to maximize the effect of counterfac-
tual samples by combining with different learn-
ing paradigms, such as adversarial training (Zhu
et al., 2020; Fu et al., 2020; Teney et al., 2020),
contrastive learning (Liang et al., 2020), causal
graph (Gokhale et al., 2020), posterior regulariza-
tion (Ramakrishnan et al., 2018), and designing
new learning paradigms (Gokhale et al., 2020). A
few studies along this line also generate counter-
factual samples with neural networks (Sauer and
Geiger, 2021; Yue et al., 2021). They are inher-
ently different from our work due to their reliance
on causal graph and the causal expression of the
hypothetical condition for improving robustness.
Moreover, they supervise the generation with other
related tasks such as image classification. In con-
trast, we formulate imagination as an explicit learn-
ing objective, i.e., learning to imagine. Addition-
ally, in commonsense reasoning, counterfactual
samples are also utilized through hyperbole gen-
eration (Tian et al., 2021), story generation (Qin
et al., 2019) and commonsense QA(Huang et al.,
2019), which is also a related yet different strand
of research.

Another line of research performs counterfac-
tual inference over the predictions of deep model
to incorporate counterfactual thinking (Yue et al.,
2021; Wang et al., 2021; Niu et al., 2021; Tang
et al., 2020). However, they perform counterfactual
inference according to causal graph which is not
available in NDR tasks.

Neural discrete reasoning. Recent research on
NDR focuses on enhancing the discrete reasoning
ability of deep models in two main directions: rea-
soning with more discrete operations (Dua et al.,
2019; Ran et al., 2019; Chen et al., 2020a) and rea-
soning over more complex context. For instance,

NumNet (Ran et al., 2019) and QDGAT (Chen
et al., 2020a) leverage graph neural network to en-
hance comparison oriented operations. GenBERT
(Geva et al., 2020) uses pre-trained language mod-
els to generate the numerical answer, which breaks
the limitation of fixed operators. NMN (Gupta
et al., 2019) and FinQA (Chen et al., 2021) model
the discrete reasoning process as executing pro-
grams. As to extending the context, several studies
try to enable the NDR model to operate on context
with semi-structured tabular data and hybrid data
(Chen et al., 2020c; Herzig et al., 2020; Chen et al.,
2021). Our paper studies the hybrid data, yet ex-
tends the scope of NDR to hypothetical questions.
Moreover, beyond the ability of discrete operations,
the main idea is to endow NDR models with the
ability to think counterfactually.

6 Conclusion

In this work, we pointed out a key issue of exist-
ing NDR models: lacking counterfactual thinking.
We proposed an L2I module, which can imagine
the counterfactual according to a textual assump-
tion. By applying the proposed module in the NDR
model, we enable the model to answer hypothetical
questions. We constructed a HQA dataset and con-
ducted extensive experiments on the dataset, which
validates the effectiveness of our method.

This work opens up a new research direction
about modeling counterfactual thinking through
neural network. In the future, we will further
extend the L2I from the following perspectives:
1) handling of multiple interventions; 2) rigorous
derivation of intervention with consideration of suc-
cessors; 3) incorporation of the relations across the
deriving operators; and 4) construction of complex
operators by dynamically combining basic opera-
tors. Moreover, we will explore the translation be-
tween assumptions in natural language and causal
expression to further connect the L2I framework
with conventional causal theory, and facilitate auto-
matic causal inference with neural network.
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A Working Process of the Tagging Head

The tagging head (cf. Section 3.1) in L2I identi-
fies the target fact from the factual context, which
is formulated as the Inside-Outside (IO) Tagging
(Ramshaw and Marcus, 1999). A 2-way classifier,
which is a 2-layer MLP followed by softmax, com-
putes the probability of being tagged as negative
and positive for each token in the sequence. Then,
the positive score for each fact is aggregated by the
maximum probability of its tokens. For instance,
the fact “$133,682” has four tokens “$”, “133”, “,”,
“682” where each token obtains a latent represen-
tation from the PLM. The 2-layer MLP takes the
latent representation as input to predict the score
for each token. The maximum score represents the
score of fact “$133,682”.

B Deriving Operators

The deriving head consists of two steps: 1) select-
ing the deriving operators; and 2) identifying the
premises for the selected operator. The deriving
operator is defined as a function f(T, P ) over the
target fact T and premise P . The value of f(T, P )
replaces T in the factual context to form the coun-
terfactual context. In particular, we define eight
operators as follows:

• SWAP: f(T, P ) = P .

• ADD: f(T, P ) = T + P .

• MINUS: f(T, P ) = T − P .

• MULTIPLY: f(T, P ) = T ∗ P .

• DIVISION: f(T, P ) = T/P .

• PERCENT INC: f(T, P ) = T ∗(100+P )/100,
where P is a percentage.

• PERCENT DEC: f(T, P ) = T ∗ (100 −
P )/100, where P is a percentage.

• SWAP MIN NUM: This is a multivariable oper-
ator, which intervenes two facts: the target fact T
and the sum including the target fact op2. Apart
from swapping T with P , this operator also re-
places op2 with op2 − T + P .

As to the identification of the premise, we simply
use the outputs of the tagging head where every
fact has a score. We select the fact with the highest
score in the context as the target fact and the one
in the assumption as the premise.

C Labels for Tagging Head and Deriving
Head

Note that each hypothetical question in TAT-HQA
corresponds to a question in TAT-QA. Both datasets
provide the derivation to answer the question (e.g.,
133,682 - 162,935), which can be used to construct
the ground-truth for training the tagging head and
deriving head of L2I (Equation 4). In particular, we
compare the counterfactual derivation with the orig-
inal derivation. Under the assumption of one-step
intervention, we postulate that the counterfactual
derivation differs from the original derivation by
involving in one more number or substituting one
number, where we name the new number in the
counterfactual derivation as the premise. By iden-
tifying the premise, we construct the label for the
tagging head. According to the operator around
the premise, we construct the label of the deriving
operator. The statistics of the deriving operator are
shown in Table 6.

D Accuracy of Deriving Operator
Selection and Target Fact Picking

We calculate the accuracy of operator selection and
target fact picking of L2I. The average testing re-
sult for 5 runs is 96.4% for operator selection, and
82.9% for target fact picking, showing that L2I
can select the correct operator and target fact quite
precisely. The good performance on selection op-
erators and target facts owes to the superior ability
of PLM to understand questions and contexts. We
also try a naive lexical match to select operators
and target facts. For operator selection, we define
a set of keywords(e.g., increase to, decrease by)
for the question as a sign of the operator type. For
target fact selection, we utilize the word overlap
between the assumption and the context to locate
the target fact. The accuracy for selecting operators
is 89.4%, and for picking up target facts is 52.5%.
The gap between L2I and lexical match demon-
strates that the generalization ability of PLM plays
an important part in operator selection and target
fact picking in L2I.

E Computation Resources

We train TAGOP-L2I on a NVIDIA Tesla V100
GPU with 32GB RAM.
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SWAP ADD MINUS MULT DIV PERCENT INC PERCENT DEC SWAP MIN NUM
Train 4498 274 180 77 7 111 61 52
Val. 540 37 29 9 0 14 3 6
Test 570 32 18 6 1 11 4 12

Table 6: Statistics of the deriving operator.
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