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Abstract

Pre-trained language models have recently
shown that training on large corpora using the
language modeling objective enables few-shot
and zero-shot capabilities on a variety of NLP
tasks, including commonsense reasoning tasks.
This is achieved using text interactions with
the model, usually by posing the task as a natu-
ral language text completion problem. While
using language model probabilities to obtain
task specific scores has been generally useful,
it often requires task-specific heuristics such as
length normalization, or probability calibration.
In this work, we consider the question answer-
ing format, where we need to choose from a
set of (free-form) textual choices of unspeci-
fied lengths given a context. We present ALC
(Answer-Level Calibration), where our main
suggestion is to model context-independent bi-
ases in terms of the probability of a choice
without the associated context and to subse-
quently remove it using an unsupervised esti-
mate of similarity with the full context. We
show that our unsupervised answer-level cali-
bration consistently improves over or is compet-
itive with baselines using standard evaluation
metrics on a variety of tasks including com-
monsense reasoning tasks. Further, we show
that popular datasets potentially favor models
biased towards easy cues which are available
independent of the context. We analyze such
biases using an associated F1-score. Our anal-
ysis indicates that answer-level calibration is
able to remove such biases and leads to a more
robust measure of model capability.

1 Introduction

Language models (LM), trained on large corpora,
have been shown to exhibit few-shot and zero-shot
learning capability (Radford et al., 2019; Brown
et al., 2020) using only text interactions, as op-
posed to finetuning the model parameters using
task specific training examples. Relying purely on
text interactions for few-shot ability shifts the fo-

cus to designing and utilizing suitable task-specific
natural language templates.

In this work, we focus on free-form multiple
choice question answering (and commonsense rea-
soning tasks in particular), where given a context
and a set of choices of unspecified lengths, a model
is required to select the most suitable choice. To
enable zero-shot learning, the typical approach is
to form textual sequences by concatenating the con-
text independently with each choice and then scor-
ing the concatenated strings using a pre-trained
LM.

While LM probabilities have been shown to pro-
vide useful estimates of choice probabilities given a
context, there is no incentive to treat the choices as
equal in the absence of the associated context. For
example, the LM probabilities in a neutral context
are likely to be determined by frequency. In this
work, we explore the role of biases that are likely to
be associated with the choices naturally due to the
language modeling objective. We propose ALC1

(Answer-Level Calibration), where we use a neu-
tral context to model such biases and remove them
using a scaling factor determined by how similarly
a model handles the question context as compared
to a neutral context.

Further, we show that popular datasets favor
models which rely on easy cues which are con-
text independent. We use a bias-specific F1 score
to analyze such biases. Our results indicate the
need for answer-level calibration for more accurate
estimates of model capabilities, or equivalently the
design of better datasets. We hope our work will
be useful for further research in both those direc-
tions. Specifically, we analyze context-independent
biases related to length, part-of-speech (POS) and
neutral context probabilities of the choices.

In summary, we make the following contribu-
tions:

1ALC source code is available at
https://github.com/SawanKumar28/alc
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1. We present ALC, a model-agnostic approach
to improve the unsupervised performance of
pretrained LMs for free-form multiple choice
question answering, including commonsense
reasoning tasks.

2. We show that popular datasets favor models
relying on context-independent easy cues and
demonstrate the need for answer-level calibra-
tion to better estimate model capabilities.

2 Related Work

Prompts Jiang et al. (2020) show that manually
created templates can be sub-optimal in extract-
ing knowledge from LMs, and propose mining and
paraphrasing-based approaches using training ex-
amples. Schick and Schütze (2021) highlight the
importance of selecting templates for enabling few-
shot learning.

Calibration Probabilities output by neural net-
works are known to suffer from lack of calibration
(Guo et al., 2017), including LM output probabil-
ities (Braverman et al., 2020). Zhao et al. (2021)
use token-level calibration to improve on few-shot
classification and generation tasks. In contrast, we
show that answer-level calibration is more suitable
for the multiple choice setting that we consider.

While we focus on free-form multiple choice
questions in this work, when the choices are single
tokens, for example in a classification task where
the choices are True and False, answer-level cali-
bration would behave similar to token-level calibra-
tion. As a result, answer-level calibration can be
seen to have a more general scope as also illustrated
empirically through our experiments.

Further, our analysis (Section 3.4) shows that
answer-level calibration provides a more reliable
measure of model performance on datasets with
potential biases.

Finally, Jiang et al. (2021) explore supervised
methods, including finetuning as well as post-hoc
methods, to improve calibration using training ex-
amples. In this work, we focus mainly on unsuper-
vised calibration.

Answer-level calibration Brown et al. (2020)
generally perform length normalization over the to-
ken probabilities for a choice, while observing that
for a select few tasks they obtain performance gains
when using an answer-level calibration scheme
(which corresponds to the unscaled version in Equa-
tion 3 of ALC). They use task specific development

sets to choose between length normalization and
answer-level calibration which is undesirable for
few-shot learning (Kann et al., 2019), and specifi-
cally for zero-shot learning. In this work, we show
that unscaled calibration (as in Equation 3) is sub-
optimal, compared to our proposed scaled version.

More recently, Holtzman et al. (2021) also arrive
at a formulation equivalent to the unscaled version
of ALC but are motivated differently. Specifically,
they hypothesize that the possibility of different
surface forms of the same concept causes a compe-
tition between surface forms when scored by the
LM. In contrast, we are motivated by calibration
concerns and the presence of context-independent
biases. We justify this motivation through bias
associated evaluation (Section 5.2) for both the un-
scaled and scaled versions of ALC.

Alternative approaches using enhanced context
One way to make the probability estimates of the
choices more accurate is to enhance the context
using more task-specific cues. For example, Brown
et al. (2020) show that with just a few in-context
examples, significant gains in performance can be
obtained. At the same time, it has been shown that
the order of examples as well as token-level cali-
bration in such prompts can be critical for getting
good performance (Zhao et al., 2021; Kumar and
Talukdar, 2021).

While the gains from enhanced context through
additional examples may be complementary to
answer-level calibration, we focus on the zero-
shot setting in this work. In the zero-shot setting,
Shwartz et al. (2020), working on the question an-
swering format, propose generating textual clarifi-
cations using the pre-trained LM itself, to enhance
the context and improve zero-shot performance of
pre-trained LM on commonsense reasoning tasks.
While their method has a much higher computa-
tional cost, we use it as an unsupervised baseline
and show improvement over it on most tasks we
consider.

3 ALC: Proposed Method

We introduce the problem setting and notation in
Section 3.1. We briefly describe our motivation
in Section 3.2 and discuss the core idea of remov-
ing context-independent biases in Section 3.3. We
provide the natural language formatting used in
our experiments in Section A.3. We discuss bias
associated measures in Section 3.4.

666



3.1 Notation
We consider a problem setting where an exam-
ple consists of a textual context C and K textual
choices (or options) Ok, k ∈ [K], and we need to
predict which choice Ok fits best in context C. For
example, in the case of question answering, this
amounts to answering a question contained in the
context C. Additionally, we define an instance-
independent neutral context Cφ, where we expect
all choices to be equally likely.

Denoting the gold answer by Y , the evaluation
data is comprised of N instances defined by the
tuples (Ci, [Oi

k], Y
i), k ∈ [K], i ∈ [N ].

3.2 Motivation
Our main motivation is to evaluate the suitability
of pretrained LMs for free-form multiple choice
question answering where we contend that raw con-
ditional phrase probabilities do not satisfy a natu-
ral requirement for such tasks (Equation 2). We
suggest and evaluate modifications to meet this
requirement.

3.3 Removing Context-independent Biases
We aim to obtain a probabilistic model M which
provides estimates PM (O|C), the probability of a
choice O given the context C. Predictions y for an
example can subsequently be made using:

y = argmaxk(PM (Ok|C)) (1)

We wish to build such a model using a pretrained
LM, e.g., GPT2. Such a LM, trained on the task
of next word prediction, is expected to provide
estimates of word probabilities given a textual con-
text. For example, given the sequence of words
w1w2...wi, we expect GPT2 to provide probability
estimates PL(wi+1|w1w2...wi). Applying chain
rule, we can obtain estimates of phrases given a
textual context. For example, we could obtain esti-
mates of PL(O|C).

Can PL(O|C) serve as a proxy for PM (O|C)?
It is tempting to expect the LM probabilities
PL(O|C) to serve as a proxy for PM (O|C) when
we can format the task in natural language. How-
ever, under the assumption that all choices Ok are
equally likely given a neutral context Cφ, this ap-
proximation can be sub-optimal. For it to be opti-
mal, we would need

PL(O1|Cφ) = PL(O2|Cφ)... = PL(OK |Cφ)
(2)

However, given that these are task and instance spe-
cific choices, there is no incentive in the language
modeling objective to ensure this condition.

To address this, we define a new score SL(O|C)
to behave as expected with a neutral context:

SL(Ok|C) = logPL(Ok|C)− logPL(Ok|Cφ)
(3)

Predictions can subsequently be made using:

y′ = argmaxk(SL(Ok|C)) (4)

Scaling the bias term: Equation 3, while desir-
able, makes a strong assumption about how the
bias is present in the LM. While valid unquestion-
ably for the neutral context, the bias in a trained
(on task-specific data, or on a task-independent pre-
training corpus) model is likely to depend on the
context as well. For instance, a longer or more
familiar context (in terms of similarity to training
contexts) may mean the model is less reliant on
context-independent cues. We therefore define a
scaled version for removing biases, where the func-
tion g outputs the scaling term (ranging in [0, 1]):

S′
L(Ok|C) =

logPL(Ok|C)− g(C,Cφ) ∗ logPL(Ok|Cφ)
(5)

We would want this formulation to preserve the
requirement in Equation 2 which was satisfied by
the unscaled version in Equation 3. Specifically, we
want g(Cφ, Cφ) = 1 which would assign an equal
score to each choice Ok given a neutral context.

To get a model-agnostic2 estimate of g, we
think of logPL(Ok|C) and logPL(Ok|Cφ) as out-
puts from different models M and Mφ respec-
tively, and g as a measure of similarity between
the models. Note that while M uses the avail-
able context C, Mφ uses only the neutral con-
text Cφ. The intuition is that if M and Mφ are
identical, there is no new information provided by
M and we want to set g(C,Cφ) = 1, leading to
S′
L(Ok|C) = 0. On the other hand, if M and Mφ

are very dissimilar, we can rely on the contextual
scores of M and set g(C,Cφ) = 0, leading to
S′
L(Ok|C) = logPL(Ok|C). Specifically, to esti-

mate g, we compute a similarity metric between
the token probabilities (across the model’s entire
vocabulary) output by the two models.

2By model-agnostic, we mean we only access the proba-
bilities output by the model and don’t rely on any knowledge
of the model architecture.
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g(C,Cφ) = Sim(pfL(C), pfL(Cφ)) (6)

where pfL indicates the probability vector out-
put by the model across the vocabulary for the
first token given the corresponding context. In
this work, we consider Total Variation Distance
(TVD), and Bhattacharyya Coefficient (BC) (Bhat-
tacharyya, 1943).

When using TVD, we subtract it from 1, to ob-
tain a similarity estimate:

gTVD(C,Cφ) = 1− 0.5 ∗ ||pfL(C)− pfL(Cφ)||1
(7)

while we directly use BC:

gBC(C,Cφ) =

V∑
i=1

√
pfL(C)[i] ∗ pfL(Cφ)[i] (8)

3.4 Bias Associated Measures

Consider an instance and choice specific attribute
Ai(Oi

k) which can take values aj , j ∈ [J ]. If we
expect the attribute to be uncorrelated with task per-
formance, we expect a model to perform similarly
when evaluating subsets with different distributions
of attributes Ai(Ok) = aj . If a model relies on
specific values of the attribute and if the evaluation
data has sufficient representation of that value, stan-
dard evaluation metrics which ignore this attribute
may provide an erroneous estimate of the model ca-
pability. As an extreme example, consider A(.) to
denote whether the selected choice corresponds to
the shortest choice among all choice Ok, k ∈ [K],
with the attribute values being true/false. Assume
then that the evaluation data is dominated by in-
stances where Ai(Y i) = true, i.e., with a high
probability, the correct answer in the evaluation
data is the shortest choice. Consider also a model
which always chooses the shortest choice, irrespec-
tive of the content. The model would return close
to perfect scores using standard evaluation metrics
such as accuracy against gold labels.

To analyze the impact of such attributes, we
use a macro F1 score which takes into account
the partitions created by an attribute. Recall-
ing that an instance is represented by the tuple
(Ci, [Oi

k], Y
i), i ∈ [N ], and letting Ŷ i be the

model prediction, we define precision (P), recall
(R) and F1 scores for each attribute value aj , and
subsequently an attribute specific macro F1 score
(F1A).

P(A,aj) =
#{(Ai(Ŷ i) = aj) & (Ŷ i = Y i)}

#{Ai(Ŷ i) = aj}
(9)

R(A,aj) =
#{(Ai(Ŷ i) = aj) & (Ŷ i = Y i)}

#{Ai(Y i) = aj}
(10)

F1(A,aj) =
2 ∗ P(A,aj) ∗R(A,aj)

P(A,aj) +R(A,aj)
(11)

F1A = Average({F1(A,aj)}) (12)

where #{.} denotes the count of the correspond-
ing set. If the model performs similarly irrespective
of the attribute value, the macro F1 score F1A is
equal to the standard measure of accuracy:

Accuracy =
#{Ŷ i = Y i}

N
(13)

4 Experimental Setup

The datasets used and the corresponding prompts
are described in Section 4.1. The LMs used are de-
scribed in Section 4.2 and the baseline approaches
in Section 4.3. Experimental results and analyses
are presented in Section 5.

4.1 Data
We used a series of commonsense reasoning tasks
and evaluated on the publicly available develop-
ment sets. We used the same versions of the data
as Shwartz et al. (2020) to allow for a direct com-
parison — COPA (Gordon et al., 2012), Common-
senseQA (Talmor et al., 2019), MCTACO (Zhou
et al., 2019), SocialIQA (Sap et al., 2019), PIQA
(Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2020). We also report on the adversarially gen-
erated large-scale SWAG dataset (Zellers et al.,
2018).

Further, we report on the AI2 Reasoning Chal-
lenge (ARC) (Clark et al., 2018), which has Easy
and Challenge versions.

As a representative dialog understanding task,
we report on the DREAM (Sun et al., 2019) dataset.

Finally, we report on a recent benchmark intro-
duced for measuring multitask accuracy of pre-
trained models (referred to as Hendrycks in the
following) Hendrycks et al. (2020).

For MCTACO, we used a reduced subset as pro-
vided by Shwartz et al. (2020) where each question
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Model COPA COPA-test CSQA MCTACO MCTACO-test SocialIQA PIQA WG
Accuracy with gpt2-xl (zero-shot)

Majority 55.0 50.0 20.9 50.0 51.32 33.6 50.5 50.4
Self-talk 58.0 - 31.4 59.9 - 46.2 70.1 53.9
Token calibration 57.00 58.60 27.44 52.86 55.05 36.23 60.07 51.62
Uncalibrated 72.00 74.20 37.18 61.89 65.61 40.53 70.67 55.49
Length normalized 68.00 72.80 33.82 55.73 56.05 41.35 71.33 55.01

ALC
Unscaled 70.00 79.20 47.91 57.05 55.87 42.68 59.96 52.80
TVD 74.00 81.60 46.19 64.54 65.97 43.91 71.60 55.25
BC 73.00 80.00 49.71 64.76 64.60 45.14 70.78 54.06

Average gain in accuracy across LMs (zero-shot)
Length normalized -2.60 -0.68 -1.52 -4.05 -7.97 1.55 -0.50 -0.09

ALC
Unscaled -4.20 5.04 8.14 -6.56 -10.03 2.82 -9.43 -0.35
TVD 2.80 5.64 7.67 2.56 1.64 3.06 0.12 0.43
BC -1.00 6.88 10.37 2.86 -0.66 4.08 -0.87 0.38

Accuracy with gpt2-xl (1-shot)
Length normalized - -1.54 0.91 - -3.13 2.65 0.45 -0.50

ALC
Unscaled - 3.55 6.96 - -13.84 2.45 -9.31 -2.03
TVD - 4.58 6.13 - 1.84 3.62 0.92 -0.35
BC - 5.43 9.72 - 1.32 3.77 -0.07 -0.90

Accuracy with gpt2-xl (4-shot)
Length normalized - -0.63 1.74 - -0.79 4.46 0.43 -0.28

ALC
Unscaled - 3.85 8.67 - -11.30 3.22 -9.02 -2.05
TVD - 4.71 5.19 - 2.43 4.27 1.00 -0.63
BC - 5.53 9.32 - 2.25 4.47 0.32 -1.09

Table 1: Standard evaluation results on unsupervised commonsense question answering tasks: (Top) Dev set
accuracies (unless specified otherwise) with gpt2-xl are presented for baselines and ALC along with an unscaled
version of ALC where the bias term is not scaled. The highest accuracies are marked in bold font. Note that while
the unscaled version provides gains over the uncalibrated baseline, on the CommonsenseQA and SocialIQA tasks,
there is also a drop in performance on some datasets, notably on PIQA. The scaled version, on the other hand,
outperforms the LM-Baseline on all datasets except WinoGrande (on which all models perform close to majority
accuracy). While token calibration improves over the majority accuracy on all datasets, it performs worse than the
uncalibrated baseline. Finally, ALC outperforms or is competitive with Self-talk, while being computationally more
efficient. (Middle) We also report on the gain over the uncalibrated baseline over different gpt2 variants and observe
similar trends. (Bottom) Finally, we report on few-shot evaluation with gpt2-xl and again observe similar trends.
Please see Section 5.1 for more details.

is associated with only one correct choice. For
COPA, we also report on the test split due to the
small size of COPA dev set. The sizes of the
datasets used are reported in Appendix Table 8.
All datasets contain questions in English language.
We briefly describe these datasets in Section A.2.
Examples for each dataset along with contextual
(C) and neutral (Cφ) prompts used in this work are
captured in Section A.3.

4.2 Models

We experiment with GPT2 (Radford et al., 2019)
variants - distilgpt2, gpt-small, gpt-medium, gpt2-
large and gpt2-xl. The size of models used is re-
ported in Appendix Table 9. While the gpt-* mod-
els have been trained similarly as described in Rad-
ford et al. (2019), distilgpt2 has been pretrained

with the supervision of GPT23 (Wolf et al., 2020).
For most of our experiments, we utilize the gpt2-xl
model.

Please refer Section A.1 for additional details
about the experimental setup.

4.3 Baselines

Uncalibrated: Predictions are made using uncali-
brated probabilities from a LM, logPL(O|C), com-
puted as the sum of conditional log-probabilities
output by the model for the tokens in O.
Length normalized: Predictions are made us-
ing length-normalized probabilities from a LM,
logPL(O|C), computed as the mean of conditional
log-probabilities output by the model for the tokens
in O.

3https://huggingface.co/distilgpt2
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Model ARC DREAM SWAG Hendrycks-test
Easy Challenge Humanities STEM Social sciences Other

Token calibration 35.09 20.40 40.20 29.53 23.38 22.70 25.45 25.51
Uncalibrated 58.25 27.76 48.14 49.30 26.99 24.16 31.52 31.55
Length normalized 50.70 29.43 48.77 65.36 29.33 26.47 30.84 32.85

ALC
Unscaled 53.33 33.11 52.99 57.04 31.05 29.13 32.76 35.26
TVD 60.00 29.43 52.50 53.77 28.80 25.98 32.24 33.07
BC 56.49 33.78 53.14 59.16 30.31 27.60 32.60 34.58

Table 2: Standard evaluation results on additional tasks: Dev set accuracies (unless specified otherwise) are
reported. The trends are similar to Table 1, except for SWAG (see Section 5.2 and Table 6 for an explanation).
Please see Section 5.1 for more details.

Model Shortest=true Longest=True
P R F1 P R F1

Commonsenseqa
Size 213 266
Uncalibrated 25.94 51.64 34.54 49.63 25.19 33.42
Length normalized 41.3 17.84 24.92 28.94 55.26 37.98
ALC (Unscaled) 48.91 31.46 38.29 46.2 57.14 51.09
ALC (BC) 42.27 38.5 40.29 51.16 49.62 50.38

SocialIQA
Size 665 667
Uncalibrated 38.27 68.72 49.17 48.36 15.21 23.15
Length normalized 51.82 10.68 17.71 38.69 78.29 51.78
ALC (Unscaled) 49.2 27.82 35.54 40.76 58.94 48.19
ALC (BC) 47.92 38.05 42.41 44.06 52.58 47.95

Table 3: Length bias analysis: We consider subsets of data where the shortest/longest choice is correct, and report
on P, R and F1 scores (lowest values are underlined). We compare ALC against the uncalibrated as well as length
normalized baselines. While length normalization is commonly used to overcome length bias, we find that it
overcompensates and severely penalizes short answers (see recall with Shortest=true; the recall is lower than that
for a random baseline). On the other hand, the uncalibrated baseline severely penalizes longer answers as expected.
ALC improves on both subsets and provides a better alternative to length normalization. Please see Section 5.2.1 for
details.

Self-talk: We use the official code repository4 of
self-talk (Shwartz et al., 2020) using gpt2-xl as
both the scoring model and the knowledge source.
Token calibration: Following Zhao et al. (2021),
we use the probability vector output, pfN by the
model at the first token given the neutral context
to calibrate the model probabilities. Specifically,
each token probability p is offset by pfN and re-
normalized: p′ = softmax(p − pfN ). We also
tried an alternative variant suggested by Zhao et al.
(2021) where p′ = softmax(p/pfN ) but this gen-
erally did worse and we skip the corresponding
results.

5 Experimental Results

We aim to answer the following questions:

4https://github.com/vered1986/self_
talk

Q1 How does ALC compare with baselines using
standard evaluation (accuracy) on free-form
multiple choice question answering tasks?
(Section 5.1)

Q2 Does the aforementioned evaluation reflect
true model capability? To answer this ques-
tion, we perform a series of bias associated
evaluations (see Section 3.4) and also evalu-
ate whether ALC helps overcome such biases.
Specifically, we evaluate on biases related to
answer length, POS tag and context-ignorant
LM probability. (Section 5.2)

Q3 Does ALC improve expected calibration error
(Guo et al., 2017)? (Section 5.3)

5.1 Standard Evaluation

The overall results for the commonsense reasoning
tasks (considered by Shwartz et al. (2020)) using
standard evaluation of ALC, as well as the base-
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Model POS = noun POS = verb POS = adj
P R F1 P R F1 P R F1

Commonsenseqa
Size 902 149 142
Uncalibrated 36.93 39.47 38.16 39.57 36.91 38.19 40.48 23.94 30.09
Length normalized 35.07 31.37 33.12 33 44.97 38.07 33.33 33.8 33.57
ALC (Unscaled) 48.68 45.01 46.77 43.75 56.38 49.27 52.74 54.23 53.47
ALC (BC) 49.32 48.34 48.82 48.84 56.38 52.34 59.32 49.3 53.85

Table 4: POS bias analysis: We consider subsets of data using the POS tag of the first token and report on P, R
and F1 scores (lowest values are underlined). We limit to the larger subsets of nouns, verbs and adjectives (adj).
We note that the uncalibrated baseline does worse on adjectives when compared to nouns and verbs. Both length
normalized and ALC provide more even scores across POS tags. Please see Section 5.2.2 for details.

lines, with gpt2-xl are presented in Table 1 (top).
We also report on an unscaled ablation of ALC.
Note that ALC outperforms the uncalibrated base-
line on all datasets except WinoGrande (where all
models perform poorly and we drop it from further
discussions). Further, the significant gains com-
pared to token calibration (which generally does
worse than the uncalibrated baseline) show that
answer-level calibration is more suited for unsu-
pervised commonsense question answering when
there is no constraint on the lengths of candidate
choices. Finally, ALC outperforms or is compet-
itive with self-talk5 while being significantly less
computationally intensive. ALC requires scoring
two strings (context input and neutral input) for
each choice, while self-talk requires generating
hundreds of clarification texts using data-dependent
templates and subsequently scoring them.

We also report on the average gain over the un-
calibrated baseline across gpt2 models of varying
sizes (Table 9) in Table 1 (middle) and observe
similar trends as in the case of gpt2-xl.

While our focus is zero-shot unsupervised evalu-
ation, we also perform few-shot (1-shot and 4-shot)
evaluation In general, for k-shot evaluation, we
sample 100 sets of size k from an unseen split6 of
the dataset. A few-shot context is obtained by con-
catenating training examples with a newline token.
We report the average performance on the evalu-
ation set in Table 1 (bottom) and observe similar
trends as before.

We present the standard zero-shot evaluation on
additional datasets in Table 2. The trends are sim-

5Please see Section A.4 for a note explaining the unusually
high relative performance of baselines on some tasks when
compared to self-talk.

6For few-shot evaluation, we sample from the training split
for all except COPA and MCTACO datasets where we sample
from the dev set and report on the test set.

ilar except for the SWAG (see Section 5.2 for an
explanation) and the Hendrycks datasets (see Ta-
ble 11).

Finally, while our focus is causal language mod-
els, we also present results using RoBERTa-large
(a masked language model) in Table 10. Again, we
observe similar trends.

In the subsequent sections, we show that the
evaluation using the accuracy metric may not reveal
true model capabilities as the datasets may favor
models which utilize easy cues for predicting the
answer.

5.2 Bias Associated Evaluation

Next, to gain a better understanding of the model
capabilities, we analyze the performance associated
with undesirable biases related to length, POS tag
and context-ignorant LM probability. Specifically,
we define the following attributes (see Section 3.4):
Shortest Attribute Ai(Oi

k) is set to true if Oi
k is

the shortest (number of tokens) choice among the
choices Oi

k′ , k
′ ∈ [K]. Otherwise, the attribute is

set to false.
Longest Defined similar to Shortest, but set to true

if Oi
k is the longest answer and false otherwise.

POS Attribute Ai(Oi
k) is set to the POS tag of the

first token in the choice Oi
k. We don’t consider

POS tags which occur less than a threshold (25)
in the evaluation data.

LM-Best Attribute Ai(Oi
k) is set to true if Oi

k is
the most likely choice using context-ignore (neu-
tral input) LM probability. Otherwise, it is set to
false.

LM-Worst Defined similar to LM-Best, but set to
true when Oi

k is the least likely choice and false
otherwise.
Finally, we consider length-normalized versions

of LM-Best and LM-Worst, referred to as LM-
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Model LM-Best = true LM-Worst = True
P R F1 P R F1

PIQA
Size 1195 643
Uncalibrated 70.53 94.31 80.7 71.67 26.75 38.96
Length normalized 73.96 86.28 79.64 63.06 43.55 51.52
ALC (Unscaled) 77.42 54.23 63.78 45.35 70.61 55.23
ALC (BC) 75.74 81 78.29 59.46 51.79 55.36

ARC (Easy)
Size 183 109
Baseline 52.96 83.06 64.68 72.22 23.85 35.86
Length normalized 60.56 59.56 60.06 39.47 41.28 40.36
ALC (Unscaled) 81.71 36.61 50.57 36.2 73.39 48.48
ALC (BC) 64.15 55.74 59.65 45.04 54.13 49.17

ARC (Challenge)
Size 64 86
Uncalibrated 23.78 68.75 35.34 28.57 4.65 8
Length normalized 27.55 42.19 33.33 29.03 20.93 24.32
ALC (Unscaled) 38.71 18.75 25.26 33.87 48.84 40
ALC (BC) 29.76 39.06 33.78 36.99 31.4 33.96

Table 5: Context-ignorant LM bias analysis: We consider subsets of data where the correct choice corresponds to
the best/worst choice as per the context-ignorant (neutral context) LM probability and report on P, R and F1 scores
(lowest values are underlined). Note that the F1 performance of uncalibrated and length-normalized baselines on
PIQA and ARC (Easy) is much higher when LM-Best=true, i.e., when the correct choice is also the most likely
choice without considering the context. An important takeaway here is that while standard evaluation did not
distinguish ALC from the baselines, ALC is not overly reliant on context-ignorant LM probabilities. Please see
Section 5.2.3 for more details.

Norm-Best and LM-Norm-Worst respectively.
Briefly, our experiments reveal that while the

datasets considered don’t share a similar bias pat-
tern, each usually suffers from at least one bias
considered in this work, i.e., there is a drop in per-
formance when measured using the bias associated
score. We present the detailed results for com-
monsense reasoning tasks in Appendix Table 12,
using gpt2-xl model, while highlighting the key
takeaways here. Recall that in the absence of bi-
ases in the model, the F1 score should match the
accuracy score.

In the following sections, we provide a more
directed analysis on the presence of such biases,
on datasets where such biases are most prominent,
and if ALC helps alleviate such biases.

5.2.1 Length

We create subsets of the CommonsenseQA and
SocialIQA dev set with specific properties to eval-
uate if the LM-Baseline has the associated biases
and if they are addressed by ALC. First, we cre-
ate subsets of examples where the shortest/longest
answer is the correct answer. We expect longer
sentences to have lower probabilities than shorter

sentences with the uncalibrated baseline. Addi-
tionally, with the length normalized variant, where
the final score is obtained as the mean of condi-
tional log-probabilities instead of the sum (as in
the uncalibrated baseline), longer sentences could
potentially be favored. We report the uncalibrated
and ALC’s performance in Table 3. Note that both
uncalibrated baseline and the length-normalized
variants favor one subset at the cost of the other,
while ALC improves on both. In particular, the un-
calibrated baseline has a much poorer recall when
the longest answer is correct. On the other hand,
the length normalized variant has a much poorer re-
call when the shortest answer is correct. The results
indicate that ALC provides a viable alternative to
length normalization for handling length biases.

5.2.2 POS

We analyze potential part of speech (POS) tag bi-
ases in Table 4. Considering the CommonsenseQA
dataset, we create subsets of the data where the
correct answer is of the POS tag noun, verb or
adjective. Note that ALC shows less variation in
performance (F1) across these subsets when com-
pared to uncalibrated baseline while improving on
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Model PIQA SWAG
LM-Norm-Best

Baseline 65.38 49.38
Length normalized 60.16 60.97
ALC (Unscaled) 58.89 58.12
ALC (BC) 67.92 59.48

LM-Norm-Worst
Baseline 65.38 39.90
Length normalized 60.16 46.99
ALC (Unscaled) 58.89 49.48
ALC (BC) 67.92 51.14

Table 6: Context-ignorant normalized scores: LM-
Norm-Best (top) and LM-Norm-Worst (bottom) macro
F1 evaluation on SWAG and PIQA datasets (lowest
values are underlined and highest values are in bold).
The macro F1 scores for LM-Norm-Best and LM-Norm-
Worst are identical for PIQA as the dataset contains only
two candidate answers for a question and the subsets
created by the two measures are identical. Note that
while length-normalization has a higher accuracy than
ALC on the SWAG dataset (Table 2), it does worse
than ALC on the LM-Norm-Worst F1 score. Please see
Section 5.2.3 for more details.

each subset. In particular, the maximum difference
in F1 scores is 8.1 for the uncalibrated baseline
while it is 5.03 for ALC (BC). ALC also improves
over the length normalized variant for each subset.

5.2.3 Context-ignorant LM Probability
To understand how much of the unsupervised per-
formance comes from context-independent LM bi-
ases, we analyze subsets where the correct answer
is most/least likely without the context. We report
the performance on the PIQA and ARC datasets in
Table 5 and show that such biases indeed exist. The
key takeaway is that the standard evaluation metrics
may not give an accurate estimate of performance
and that ALC provides more reliable estimates.

Finally, we report macro F1 scores for LM-
Norm-Best and LM-Norm-Worst evaluation in Ta-
ble 6 on PIQA and SWAG datasets. The results
indicate that the datasets favours length normal-
ization aware scoring irrespective of the context.
When we measure the bias associated score, ALC
generally performs better.

5.3 Expected Calibration Error

Given a score S(Ok|C) for each choice Ok, we can
compute a confidence estimate conf(Ok|C) as:

conf(Ok|C) =
eS(Ok|C)∑

k′∈[K] e
S(Ok′ |C)

(14)

Model Accuracy (↑) ECE (↓)
Length normalized -0.46 (5.90) -0.21 (0.13)
ALC (Unscaled) +1.17 (6.23) -0.07 (0.06)
ALC (BC) +3.73 (3.86) -0.09 (0.04)

Table 7: Expected Calibration Error: Mean (and stan-
dard deviation) of difference with the uncalibrated base-
line in accuracy and ECE over different evaluation
datasets are reported. ALC improves both ECE and
accuracy. Please see Section 5.3 for more details.

Guo et al. (2017) compute expected calibration
error (ECE) by partitioning N confidence predic-
tions into R equal bins Br, r ∈ [1, R] and comput-
ing the weighted average of the absolute difference
between the confidence and accuracy in each bin:

ECE =
R∑
r=1

|Br|
N
|acc(Br)− conf(Br)| (15)

where acc() and conf() measure the accuracy and
mean confidence respectively in a bin. We set the
number of bins to be 20.

We report the average difference in accuracy and
ECE compared to the uncalibrated baseline across
the evaluation datasets (except WinoGrande) in Ta-
ble 7. When compared to the uncalibrated baseline,
ALC provides gains in calibration error while also
improving performance. Length-normalization
also improves ECE, presumably by correcting for
length bias. However, length-normalization does
not improve performance on an average. The rel-
ative performance gains of ALC can be explained
through the handling of additional biases beyond
length bias.

6 Conclusion

We propose ALC (Answer-Level Calibration), an
unsupervised method to improve performance of
pretrained language models. We show that, when
compared to existing baselines, ALC is more suit-
able for free-form multiple choice question answer-
ing, including commonsense reasoning tasks. We
also show that popular datasets favor models which
rely on easy cues for predictions, and that ALC pro-
vides more reliable estimates of model capabilities
by getting rid of some of these biases.
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Data Size

COPA (Gordon et al., 2012) 100
COPA-test (Gordon et al., 2012) 499
CommonsenseQA (Talmor et al., 2019) 1221
MCTACO (Zhou et al., 2019) 454
SocialIQA (Sap et al., 2019) 1954
PIQA (Bisk et al., 2020) 1838
Winogrande (Sakaguchi et al., 2020) 1267
ALC (Easy) (Clark et al., 2018) 570
ALC (Challenge) (Clark et al., 2018) 299
SWAG (Zellers et al., 2018) 20000
DREAM (Sun et al., 2019) 2040
Hendrycks (Hendrycks et al., 2020) 14042

Table 8: Number of examples in the datasets used

Model Size
(Million parameters)

distilgpt2 82
gpt2-small 117
gpt2-medium 345
gpt2-large 774
gpt2-xl 1558

Table 9: Size of models used

A Appendix

A.1 Experimental Setup

We leverage the transformers library (Wolf et al.,
2020) for accessing the LMs. All experiments were
conducted using a single Nvidia GeForce GTX
1080 Ti Graphics Card. There was no training
required. A typical experiment using gpt2-xl for
CommonsenseQA task took around 15 minutes.

The model sizes are captured in Table 9. Size of
evaluation datasets is captured in Table 8.

We used the nltk pos-tagger with the universal
tagset for pos-tagging.

A.2 Datasets

COPA: The COPA dataset (Gordon et al., 2012)
contains a premise associated with two alternatives
where one has a more plausible causal connection
with the premise. There are two types of examples,
depending on whether the connection is of “effect"
or “cause".
CommonsenseQA: The CommonsenseQA dataset
(Talmor et al., 2019) contains common sense ques-
tions extracted from ConceptNet (Liu and Singh,
2004). The alternative choices are made challeng-
ing by selecting from related concepts in Concept-
Net or through suggestions through crowdsourcing.

MCTACO: The MCTACO dataset (Zhou et al.,
2019) contains common sense questions related to
understanding of time. Difficult adversarial candi-
dates are selected using BERT (Devlin et al., 2019)
predictions.
SocialIQA: The SocialIQA dataset (Sap et al.,
2019) contains questions about social interactions
with crowdsourced answers.
PIQA: The PIQA dataset (Bisk et al., 2020) con-
tains questions about common sense. The question
corresponds to a goal derived from an instruction
website and the answers were crowdsourced.
WinoGrande: The WinoGrande dataset (Sak-
aguchi et al., 2020) is based on the Winograd
Schema Challenge (Levesque et al., 2012), where
a pair of sentences differ in one or two words con-
taining a referential ambiguity.
ARC: The ARC dataset (Clark et al., 2018) con-
tains natural grade-school science questions. The
authors provide Easy and Challenge splits. The
Challenge version is created using examples where
retrieval-based and word-occurrence based meth-
ods fail (Clark et al., 2018). The Easy version
contains the remaining questions.
DREAM: DREAM (Dialogue-based REAding
comprehension exaMination) (Sun et al., 2019)
provides a benchmark for reading comprehension
focusing on multi-turn multi-party dialog under-
standing.
SWAG: SWAG (Situations With Adversarial Gen-
erations) (Zellers et al., 2018) provides a large-
scale dataset for grounded commonsense inference
where different possible endings of a context are
provided where the correct answer is derived from
video captions while alternatives are adversarially
generated.
Hendrycks: Hendrycks et al. (2020) provide a test
suite containing 57 tasks to test the multitask accu-
racy of pretrained models. The tasks are broadly
categorized into Humanities, STEM, Social Sci-
ences and Other. We run our experiments on sub-
sets associated with these categories.

A.3 Data Formatting

In this section, we provide the formatting used
to convert task-specific examples into natural lan-
guage prompts as used in our experiments. We first
give examples of the Context (if any), the Ques-
tion and Choices as present in the corresponding
dataset, followed by the Context input and Neu-
tral input as fed to the pretrained LM.
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Model COPA COPA-test CSQA MCTACO MCTACO-test SocialIQA PIQA WG
Accuracy with roberta-large

Uncalibrated 59.00 63.20 30.47 51.32 54.41 37.51 55.06 51.07
Length normalized 59.00 67.40 44.23 54.85 55.14 41.71 54.46 51.14

ALC
Unscaled 61.00 65.40 44.23 48.68 47.77 42.43 53.59 50.83
TVD 63.00 65.60 44.47 53.74 55.60 40.63 56.64 51.30
BC 63.00 67.60 47.50 54.63 56.41 42.89 57.18 51.62

1 shot
Length normalized - 3.19 12.97 - 1.53 4.41 -0.84 0.00

ALC
Unscaled - 6.09 14.94 - -7.33 5.65 1.61 0.14
TVD - 5.71 10.71 - 2.65 4.35 2.20 0.22
BC - 6.29 17.60 - 0.22 5.82 2.78 0.25

4 shot
Length normalized - 2.28 13.30 - 1.98 3.96 -1.14 -0.11

ALC
Unscaled - 6.71 17.37 - -7.26 5.69 3.63 0.34
TVD - 6.54 10.28 - 2.81 4.62 2.68 0.38
BC - 7.14 17.74 - 0.41 6.27 3.86 0.39

Table 10: Standard evaluation results on unsupervised commonsense question answering tasks using RoBERTa-
large. As in Table 1, dev set accuracies (unless specified otherwise) are presented for ALC along with an unscaled
version where the bias term is not scaled. The highest accuracies are marked in bold font. The trends are similar as
observed in Table 1. Please see Section 5.1 for more details.

Model Hendrycks

Humanities STEM Social
sciences

Other

Baseline 27.28 25.11 32.03 32.62
Length
normalized

29.26 27.52 32.00 34.16

ALC
(Unscaled)

25.39 24.95 29.12 32.66

ALC (BC) 31.40 27.52 33.81 35.68

Table 11: LM-Best macro F1 evaluation on the
Hendrycks Test using categories defined by Hendrycks
et al. (2020).

• CommonsenseQA
Question: A revolving door is convenient for
two direction travel, but it also serves as a
security measure at a what?
Choices: (A) bank (B) library (C) department
store (D) mall (E) new york
Context input: Question: A revolving door
is convenient for two direction travel, but it
also serves as a security measure at a what?
Answer:
Neutral input: Answer:

• MCTACO
Context: He layed down on the chair and
pawed at her as she ran in a circle under it.
Question: How long did he paw at her?
Choices: (A) 2 minutes (B) 2 days (C) 3.5
hours (D) 1 day (E) 1.4 hours (F) 90 minutes

(G) 7 hours (H) 7 days
Context input: He layed down on the chair
and pawed at her as she ran in a circle under
it. Question: How long did he paw at her?
Answer:
Neutral input: Answer:

• PIQA
Context: Remove soap scum from shower
door.
Choices: (A) Rub hard with bed sheets, then
rinse. (B) Rub hard with dryer sheets, then
rinse.
Context input: Question: Remove soap
scum from shower door. Answer:
Neutral input: Answer:

• ARC
Question: Which technology was developed
most recently?
Choices: (A) cellular telephone (B) television
(C) refrigerator (D) airplane
Context input: Question: Which technology
was developed most recently? Answer:
Neutral input: Answer:

• COPA-effect
Context: The man turned on the faucet.
Choices: (A) The toilet filled with water. (B)
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Water flowed from the spout.
Context input: The man turned on the faucet,
so
Neutral input: , so

• COPA-cause
Context: The hamburger meat browned.
Choices: (A) The cook froze it. (B) The cook
grilled it.
Context input: The hamburger meat
browned, because
Neutral input: , because

• SocialIQA
The formatting follows Shwartz et al. (2020).
Context: Tracy didn’t go home that evening
and resisted Riley’s attacks.
Question: What does Tracy need to do before
this?
Choices: (A) make a new plan (B) Go home
and see Riley (C) Find somewhere to go
Context input: Tracy didn’t go home that
evening and resisted Riley’s attacks. Before,
Tracy needed to
Neutral input: Before, Tracy needed to

• WinoGrande
Context: Sarah was a much better surgeon
than Maria so _ always got the easier cases.
Choices: (A) Sarah (B) Maria
Context input: Sarah was a much better
surgeon than Maria so
Neutral input: so

• DREAM
Context: W: I wish I knew the times of the
trains to London. But our phone’s out of
order.
M: Don’t worry, Grandma. I’ll find out for
you on the Internet.
W: Thank you!
Question: What is the man going to do?
Choices: (A) Go on the Internet. (B) Make a
phone call. (C) Take a train trip.
Context input: W: I wish I knew the times of
the trains to London. But our phone’s out of
order.
M: Don’t worry, Grandma. I’ll find out for
you on the Internet.

W: Thank you! Question: What is the man
going to do? Answer:
Neutral input: Question: What is the man
going to do? Answer:

• SWAG
Context: The person plays a song on the
violin. The man
Choices: (A) finishes the song and lowers
the instrument. (B) hits the saxophone and
demonstrates how to properly use the racquet.
(C) ....
Context input: The person plays a song on
the violin. The man
Neutral input: The man

• Hendrycks
Question: If 4 daps = 7 yaps, and 5 yaps = 3
baps, how many daps equal 42 baps?
Choices: (A) 28 (B) 21 (C) 40 (D) 30
Context input: Question: If 4 daps = 7 yaps,
and 5 yaps = 3 baps, how many daps equal 42
baps? Answer:
Neutral input: Answer:

A.4 Note on Comparison with Self-talk
While it seems surprising that the self-talk results
in Table 1 are generally lower than the uncalibrated
baseline, we note that we haven’t underestimated
the performance of self-talk. Self-talk performance
was obtained using the official repository of the
project and the results align well with those re-
ported in the original work. What has changed is
the performance of the baseline, which is higher
here (which in turn shows the significane of the
numbers reported in this work). We note two dif-
ferences with respect to the self-talk repository.
First, self-talk uses a length-normalized baseline,
while we evaluate both uncalibrated and length-
normalized baselines. Second, there is a bug in the
self-talk repository regarding calculating baseline
performance, also noted in a GitHub issue7.

A.5 Additional Results
We show results across commonsense reasoning
datasets for bias-associated F1 scores in Table 12.

7https://github.com/vered1986/self_
talk/issues/1
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Model Acc F1Shortest F1Longest F1POS F1LM−Best F1LM−Worst

COPA-dev
Uncalibrated 72 71.9 71.96 71.36 68.81 68.81
Length normalized 68 67.68 67.68 68.1 66.04 66.04
ALC (Unscaled) 70 69.81 69.89 68.2 69.95 69.95
ALC (BC) 73 72.78 72.78 71.64 72.67 72.67

COPA-dev
Uncalibrated 74.2 73.95 74.04 74.15 71.3 71.3
Length normalized 72.8 72.73 72.66 72.45 71.31 71.31
ALC (Unscaled) 79.2 79.18 79.2 78.2 79.18 79.18
ALC (BC) 80 79.97 80 78.96 79.78 79.78

CSQA
Uncalibrated 37.18 36.33 35.67 35.48 36.9 33.1
Length normalized 33.82 30.01 34.94 34.92 29.33 34.68
ALC (Unscaled) 47.91 43.9 48.99 49.84 43.1 48.9
ALC (BC) 49.71 45.95 49.96 51.67 45.97 50.47

MCTACO
Uncalibrated 61.89 61.24 64.65 63.16 59.03 66.77
Length normalized 55.73 58.01 57.76 55.45 57.28 61.87
ALC (Unscaled) 57.05 59.51 60.07 57.4 59.39 61.49
ALC (BC) 64.76 65.89 67.52 66.07 64.99 69.64

SocialIQA
Uncalibrated 40.53 40.93 34.4 35.77 37.77 29.25
Length normalized 41.35 32.58 40.83 41.63 39.19 42.09
ALC (Unscaled) 42.68 40.41 43.41 42.56 40.14 43.42
ALC (BC) 45.14 44.37 45.68 45.04 44.69 45.82

PIQA
Uncalibrated 70.67 69.9 69.79 74.3 59.83 59.83
Length normalized 71.33 71.33 71.33 74.79 65.58 65.58
ALC (Unscaled) 59.96 59.95 59.95 56 59.51 59.51
ALC (BC) 70.78 70.39 70.33 73.95 66.82 66.82

Table 12: Overall bias associated evaluation results: We present bias-associated F1 scores for each attribute
considered. We note that ALC consistently performs better or as competitive with the baselines. Please see
Section 5.2 for details.
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