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Abstract

Prompt-based tuning for pre-trained language
models (PLMs) has shown its effectiveness in
few-shot learning. Typically, prompt-based tun-
ing wraps the input text into a cloze question.
To make predictions, the model maps the out-
put words to labels via a verbalizer, which
is either manually designed or automatically
built. However, manual verbalizers heavily
depend on domain-specific prior knowledge
and human efforts, while finding appropriate
label words automatically still remains chal-
lenging. In this work, we propose the proto-
typical verbalizer (ProtoVerb) which is built
directly from training data. Specifically, Pro-
toVerb learns prototype vectors as verbalizers
by contrastive learning. In this way, the proto-
types summarize training instances and are able
to enclose rich class-level semantics. We con-
duct experiments on both topic classification
and entity typing tasks, and the results demon-
strate that ProtoVerb significantly outperforms
current automatic verbalizers, especially when
training data is extremely scarce. More surpris-
ingly, ProtoVerb consistently boosts prompt-
based tuning even on untuned PLMs, indi-
cating an elegant non-tuning way to utilize
PLMs. Our codes are avaliable at https:
//github.com/thunlp/OpenPrompt.

1 Introduction

The massive-scale pre-trained language models
(PLMs) (Han et al., 2021a) have been proven
to be backbones for solving a variety of NLP
tasks (Kowsari et al., 2019; Rajpurkar et al., 2016).
To further adapt these PLMs to downstream tasks
such as classification, traditional approaches fine-
tune the language models through an extra classi-
fier (Howard and Ruder, 2018). However, when
task-specific data is limited (Bragg et al., 2021),
training the extra classifier effectively is challeng-
ing due to the gap between pre-training tasks (e.g.,
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A [MASK] news: Tokyo Olympic Daily Preview, July 26th.
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Figure 1: Illustration of three verbalizer construction
methods.

masked language modeling) and fine-tuning tasks
(e.g., classification and regression). This gap im-
pedes the fast adaptation of PLMs to downstream
tasks.

Recently, prompt-based tuning (Schick and
Schütze, 2021; Liu et al., 2021) has risen to be
a powerful way for few-shot learning by bridging
the gap between the pre-training stage and down-
stream task stage. In prompt-based tuning, the in-
put texts are wrapped with task-specific templates
to re-formalize the original task as a cloze-style
task. For example, in topic classification task, we
can use template “<text> This topic is about
[MASK]”, where <text> is the placeholder for
input sentences. The PLMs are asked to infer the
words to fill in [MASK] and the words are further
mapped to corresponding labels through a verbal-
izer (e.g. “sports” for label “Sports”). Verbaliz-
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ers are of great importance in prompt-based tun-
ing (Gao et al., 2021) since they are the bridges
between model outputs and the final predictions.
How to build effective verbalizers for prompt-based
tuning—especially for many-class classification, is
a critical issue in prompt-based tuning.

Typically, most current works adopt three kinds
of verbalizers: manual verbalizers, search-based
verbalizers, and soft verbalizers. We show them
by an example in Figure 1. Human-designed man-
ual verbalizers pick some label words (e.g. label
names) to depict classes. These verbalizers are
powerful across multiple tasks (Schick and Schütze,
2021). Despite their success, a major drawback
roots in the strong assumption that we own precise
understandings of downstream tasks and are able
to sum up each class with several words. Without
task-specific prior knowledge, selecting appropri-
ate label words is non-trivial. Further, they also
need intensive human labors when facing many
classes. To mitigate these issues, search-based ver-
balizers aim at finding suitable label words from
vocabulary with algorithms (Schick et al., 2020;
Shin et al., 2020; Gao et al., 2021) and soft ver-
balizers use trainable tokens which are optimized
during tuning (Hambardzumyan et al., 2021; Zhang
et al., 2021). However, it is challenging to search
or optimize adequately in a large vocabulary or em-
bedding space under a low-data regime, making
automatic verbalizers suboptimal compared with
manual ones.

Intuitively, class proxies in verbalizers should
encapsulate class-level semantic features, which
are expressed implicitly by instances. To obtain
these semantic representatives with few data, one
promising approach is computing central points of
class instances, namely prototypes, as approxima-
tion. To this end, we manage to estimate prototype
vectors for each class to serve as verbalizer. Sum-
marized from instances, prototypes are supposed
to establish concepts similar with human-designed
labels.

In this work, we introduce prototypes into this
problem and propose prototypical verbalizer (Pro-
toVerb), which learns class prototypes from train-
ing data to build verbalizers automatically. For
prototype learning, inspired by the idea of PCL (Li
et al., 2021), ProtoVerb trains the prototype vec-
tors by contrastive learning with the InfoNCE es-
timator (Oord et al., 2018). Specifically, our opti-
mization objective includes two components: The

first part is an instance-instance loss to cluster
intra-class instances and separate inter-class in-
stances; The second part is an instance-prototype
loss which enforces the prototypes to be center
points of classes. Compared with other verbalizer
construction methods, ProtoVerb learns continuous
vectors straight from training instances efficiently,
which makes it a plug-in-and-play algorithm with
high flexibility.

To verify the effectiveness of ProtoVerb, we con-
duct extensive experiments on topic classification
and entity typing tasks. We study two different
settings where ProtoVerb can work: (1) When man-
ual verbalizers are available, ProtoVerb can play
as an extra verbalizer in the inference stage. Re-
sults show that ProtoVerb consistently improves
the classification performance with low cost, and
even untuned PLMs benefit largely. (2) Consider
a realistic setting where only a limited number of
samples are provided with no manual verbalizers,
ProtoVerb also produces verbalizers of high quality.
Experimental results demonstrate that ProtoVerb
significantly outperforms existing search-based and
soft verbalizers.

2 Related Work

2.1 Prompt-based Tuning

Despite the success of PLMs (Devlin et al., 2019;
Liu et al., 2019; Raffel et al., 2019) in massive NLP
tasks, few-shot fine-tuning of PLMs was subopti-
mal due to the gap between pre-training and down-
stream tasks. Inspired by the “in context learning”
proposed by GPT-3 (Brown et al., 2020), stimulat-
ing model knowledge with a few prompts has re-
cently received much attention. A series of prompt-
based work on knowledge probing (Trinh and Le,
2018; Petroni et al., 2019; Davison et al., 2019),
text classification (Schick and Schütze, 2021; Gao
et al., 2021), relation extraction (Han et al., 2021b),
and entity typing (Ding et al., 2021a) emerge and
achieve impressive progress. Typically, a piece of
prompt contains a template and a verbalizer. Early
prompts employ human-picked prompts which de-
mand human knowledge and manual efforts. To
alleviate this issue, later works explore automatic
designing and optimizing prompts (Liu et al., 2021;
Gao et al., 2021; Zhang et al., 2021). Recently re-
search works further propose continuous prompts
to replace the discrete phrases (Lester et al., 2021;
Li and Liang, 2021). However, the designation of
verbalizers, an important part of prompts, is less ex-
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plored. In this work, we investigate the automatic
verbalizer construction in prompt-based tuning.

2.2 Verbalizer Design

Verbalizers bridge between model outputs and la-
bels and make great impact on prompt-based tun-
ing (Gao et al., 2021). With task-specific knowl-
edge, human-picked words are widely used and
proved effective (Schick and Schütze, 2021). The
major drawback of manual verbalizers is the as-
sumption that we possess sufficient knowledge of
downstream tasks, which is not always satisfied. To
avoid intensive human labor and expert knowledge
dependency in manual verbalizers, some works ex-
plore search-based verbalizers (Schick et al., 2020;
Gao et al., 2021; Shin et al., 2020) that identify
label words automatically with training data. How-
ever, with a large vocabulary and few examples,
it is non-trivial to find suitable words. Another
line of researches focuses on soft verbalizers (Ham-
bardzumyan et al., 2021; Zhang et al., 2021), which
insert continuous embeddings as soft labels. The
label embeddings are optimized along with model
tuning. Similarly, soft verbalizers require abun-
dant data for sufficient optimization, which can not
be satisfied with the few-shot setting. In contrast,
our approach learns prototype vectors from scratch,
hence is more effective for few-shot tuning.

2.3 Prototype-based Few-shot Learning

In few-shot learning, prototype-based metric-
learning methods have been promising approaches
for their simplicity and effectiveness. Prototypical
Networks (ProtoNet) (Snell et al., 2017) is the pio-
neering work that introduces prototypes into deep
learning. Specifically, ProtoNet calculates proto-
type vectors by taking the average of instance vec-
tors and makes predictions by metric-based com-
parisons between prototypes and query instances.
A set of following works concentrates on the ad-
vancement of prototype estimation (Li et al., 2021;
Gao et al., 2019; Ding et al., 2021c). Among them,
PCL (Li et al., 2021) achieves remarkable results
on self-supervised few-shot learning by using pro-
totypes as latent variables and inspires us in design-
ing training objectives. The success of prototype-
based models indicates that prototypes, which are
representative embeddings of instances from the
same classes, encapsulate some class-level seman-
tic features. Inspired by the intrinsic similarity of
prototypes and verbalizers, we find it natural and

elegant to introduce prototypes into verbalizer con-
struction for prompt-based tuning.

3 Background

Given a pre-trained language model M, our goal
is to tune it for specific downstream tasks. Take
N way K shot few-shot text classification as
an example, the support set for class n Dn =
{xn1 , · · · , xnK} contains K sentences. We aim to
predict the label y ∈ Y for each sentence, where Y
is the label set with N distinct classes.

3.1 Fine-tuning
For a sentence concatenated with special to-
kens x = {[CLS], t1, · · · , tT ,[SEP]}, language
model M encodes it into hidden representations
{h[CLS],h1, · · · ,hT ,h[SEP]}. Conventional fine-
tuning trains an extra classifier F over the [CLS]
embedding h[CLS] and output the probability dis-
tribution on label set Y .

P (·|x) = Softmax(F (h[CLS])). (1)

The classifier and PLM are tuned by maximizing
1
N

∑N
i=1 logP (yi|xi), where yi is the label of xi.

3.2 Prompt-based Tuning
The vanilla prompt-based tuning converts the down-
stream task to a cloze-style mask language mod-
eling problem. For example, to formulate the text
classification task, we can modify the original in-
put x with a template T (·) = A [MASK] news: to
get the prompt input T (x) = A [MASK] news: x.
With T (x), M produces the hidden vector at the
[MASK] position h[MASK]. To calculate the proba-
bility distribution over the label set, a manual ver-
balizer stores a set of label words V and the score
for label y is

PM(y|x) = g(PM([MASK] = v|T (x))|v ∈ Vy),
(2)

where Vy is the label words of y and g(·) is to
aggregate multiple scores.

4 Prototypical Verbalizer

In previous sections, we introduce the general
pipeline of prompt-based tuning. As manually
defining or automatically searching for appropriate
verbalizers can be challenging, here we propose to
learn prototypes directly from training instances.
Inspired by PCL (Li et al., 2021), the prototypes
are trained with contrastive learning. As shown in
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A [MASK] news: Stocks Fall as Oil Hits High.

A [MASK] news: Technology as Fashion.

A [MASK] news: Arsenal Beats Everton.

A [MASK] news: Tokyo Olympic Daily Preview, July 26th.
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Figure 2: Illustration of ProtoVerb. Left: We project the hidden states of [MASK] tokens to the embedding space and
learn prototypes. Right: The learned prototypes constitute the verbalizer and map the PLM outputs to corresponding
labels.

Figure 2, we first get the hidden states of [MASK]
tokens to represent instances, then project them
to another embedding space for prototype learn-
ing. The prototypes are used as verbalizers for
prediction. Next, we will introduce the learning
and inference stages of ProtoVerb in detail.

4.1 Instance Representation and Similarity
Function

Given a piece of training text x wrapped with a
template, we take the last layer’s hidden state of
the [MASK] token h[MASK] as the initial represen-
tation of the text. With an encoder Eϕ(·) param-
eterized by ϕ, the instance representation of x is

v = Eϕ(x) = Wh[MASK]. (3)

In practice, we simply adopt a linear encoder
with weight W. To measure the similarity between
instances, we adopt cosine similarity function S(·),
where

S(vi,vj) =
vi

||vi||
· vj

||vj ||
. (4)

4.2 Loss Function
With the instance representation and similarity
function, we discuss how to define our training ob-
jective. Denote C = {c1, · · · , cN} as the set of pro-
totype vectors. Intuitively, there are two goals we
need to achieve by optimization: (1) For instance-
instance pairs, intra-class pairs should get higher
similarity scores than inter-class pairs. (2) For
instance-prototype pairs, the similarity scores be-
tween prototype cn and instances of class n should
be higher than cn and other instances. To realize
these two goals, we define the objective function
based on the InfoNCE estimator (Oord et al., 2018),
which is widely adopted in contrastive learning.

For the instance-instance objective, we minimize
the following loss function

Lins =
−1

N2K2

∑
n

∑
i,j

log
expS(vn

i ,v
n
j )∑

n′,j′ expS(v
n
i ,v

n′
j′ )

,

(5)
where (vn

i ,v
n
j ) are instance pairs of the same class.

This loss function maximizes intra-class similar-
ity and minimizes inter-class similarity between
instances.

Similarly, the instance-prototype loss function is
defined as

Lproto =
−1

N2K

∑
i,n

log
expS(vn

i , cn)∑
n′ expS(v

n
i , cn′)

, (6)

and vn
i is of class n. This objective forces each

prototype to lie at the center point of its instances.
Overall, combining the instance-instance loss

and instance-prototype loss, our final training ob-
jective is

L = Lins + Lproto. (7)

4.3 Inference
During inference, following the same metric, we
calculate the similarity scores of query and proto-
types. The probability score for class k is

PM(yk|x) =
expS(v, ck)∑
k′ expS(v, ck′)

. (8)

Then we make prediction by argmax function

ỹ = argmax
k

PM(yk|x). (9)

When there are other verbalizers (e.g. manual
verbalizers), we first process the logits from differ-
ent verbalizers with a standard scaler (minus mean
then divide by standard deviation). Then we take
the mean value of the scores to get the final score.
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5 Experiments

We conduct extensive few-shot learning experi-
ments to illustrate the effectiveness of ProtoVerb.
In this section, we first introduce the experimental
settings in use. Then we present and discuss the
experiment results.

5.1 Datasets and Templates

Verbalizers in many-class classification tasks are
difficult to get precise definitions. Hence we adopt
three topic classification datasets: AG’s News, Ya-
hoo (Zhang et al., 2015), and DBPedia (Lehmann
et al., 2015) and one entity typing dataset: FewN-
ERD (Ding et al., 2021d) as benchmarks, and their
statistics are summarized in Table 1.

To focus on the verbalizer and alleviate the influ-
ence of templates, we adopt multiple fixed man-
ual templates. For topic classification, follow-
ing (Hu et al., 2021), we use four templates on
each dataset. For entity typing, we use three tem-
plates from (Ding et al., 2021a). Details about the
templates can be found in Appendix A.

Dataset Task #Class #Test

AG’s News TC 4 7,600
DBPedia TC 14 70,000
Yahoo TC 10 60,000
FewNERD ET 66 96,901

Table 1: Dataset statistics. TC is for topic classification
and ET is for entity typing.

5.2 Experimental Settings

Under the few-shot setting, we randomly sample
k = 1, 2, 4, 8, 16 instances in each class from the
training set and test the model on the entire test set.
As for the evaluation metric, we use accuracy in all
experiments. For the different usages of ProtoVerb,
we consider two specific settings:

(1) ProtoVerb as a single verbalizer (§ 5.5).
When manual verbalizers are not available, we can
tune the model with ProtoVerb. Under this setting,
we want to evaluate the performance of ProtoVerb
compared with other automatic verbalizer construc-
tion methods.

(2) ProtoVerb as an extra verbalizer (§ 5.6). Nat-
urally, we suppose that there exists a manual ver-
balizer and we append ProtoVerb to strengthen the
performance. Under this setting, ProtoVerb is a

plug-in-and-play component and does not partici-
pate in the tuning process. We compare ProtoVerb
with manual verbalizers and other verbalizer en-
sembles.

5.3 Implementation Details

All our models and baselines are implemented with
PyTorch (Paszke et al., 2019) framework, Hugging-
face transformers (Wolf et al., 2020), and Open-
Prompt toolkit (Ding et al., 2021b). We optimize
PLMs with AdamW optimizer (Loshchilov and
Hutter, 2019). For prototype learning, we set the
prototype dimension to 128 and optimize the loss
function with Adam optimizer (Kingma and Ba,
2015). For topic classification, we use RoBERTa-
large (Liu et al., 2019) as our PLM backbone and
tune the model for 5 epochs. The batchsize is 2
and the learning rate is 3e-5. For entity typing, we
tune a BERT-base (Devlin et al., 2019) model for
30 epochs and set the batchsize to 16. The learning
rate here is 5e-5.

5.4 Baselines

The vanilla prompt-based tuning method fuses the
input text with a task-specific template and maps
the model outputs to labels through a verbalizer.
For fair comparisons, all our baselines and pro-
posed models are built on this pipeline and they
merely differ from the verbalizers in use.

Manual verbalizers (ManualVerb) are defined
by human with domain knowledge. Here we
simply employ the verbalizers provided by Open-
Prompt (Ding et al., 2021b).

Search-based verbalizers (SearchVerb) search
for suitable words from vocabulary automatically.
We adopt the implementation in PETAL (Schick
et al., 2020), which finds the words that maximize
the likelihood of the training data. To combine
SearchVerb with ManualVerb, we merge their ver-
balizer words together.

Soft verbalizers (SoftVerb) introduce trainable
tokens as verbalizers in prompt-based tuning. We
follow the approach in WARP (Hambardzumyan
et al., 2021) that applies soft tokens as a linear de-
coding layer, and the token embeddings are learned
along with model tuning. Note that the templates in
WARP are also trainable, but here we only use its
soft verbalizers. In single verbalizer experiments,
we initialize the token embeddings randomly for
fairness. And in extra verbalizer experiments, they
are initialized with label names.
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K Method AG DB Yahoo Few

0 ManualVerb 75.13 67.06 43.11 20.00

1

ManualVerb 76.67 85.47 50.22 41.68
SearchVerb 41.50 60.06 27.39 20.88
SoftVerb 49.79 65.35 22.72 18.78

ProtoVerb 64.19 72.85 36.12 25.00

2

ManualVerb 81.06 93.61 58.65 46.44
SearchVerb 65.82 78.21 40.71 31.28
SoftVerb 56.37 80.69 30.72 32.80

ProtoVerb 77.34 85.49 46.30 35.72

4

ManualVerb 84.73 95.83 61.41 52.54
SearchVerb 77.43 86.40 51.58 43.10
SoftVerb 74.38 89.12 41.62 48.77

ProtoVerb 81.65 90.91 55.08 48.28

8

ManualVerb 85.85 96.46 64.12 56.59
SearchVerb 82.17 88.41 58.64 50.78
SoftVerb 79.35 93.69 46.82 53.78

ProtoVerb 84.03 95.75 61.40 56.06

16

ManualVerb 84.74 96.05 58.77 61.17
SearchVerb 83.40 92.00 59.66 55.49
SoftVerb 80.57 86.90 58.20 58.87

ProtoVerb 84.48 96.30 64.35 61.29

Table 2: Results for single verbalizer experiments. We
report the mean accuracy scores (%) over 3 random
seeds. Italic: results with task-specific knowledge.
Bold: best results without task-specific knowledge.

5.5 Single Verbalizer Results

Table 2 presents the performance of different ver-
balizers. Overall, ManualVerb is the most powerful
verbalizer, which is reasonable because it is picked
by human with domain knowledge. ProtoVerb out-
performs SearchVerb and SoftVerb remarkably and
consistently, especially when only 1 or 2 instances
per class are given. The poor performances of the
two baselines under extreme data scarcity corrobo-
rate the issues we claim in § 1. As the training data
become sufficient, ProtoVerb gets comparable or
even exceeding scores compared with ManualVerb,
showing that ProtoVerb is able to learn prototypes
that well represent the classes. At the same time,
the gaps between ManualVerb and other verbalizers
narrow, which also indicates that we can summa-
rize data across various ways.

Across tasks, ProtoVerb gets better results on
topic classification than entity typing. A possible
reason is that FewNERD is a fine-grained entity typ-
ing dataset, in which the differences across classes
are subtle. For example, it is hard for ProtoVerb

K Method AG DB Yahoo Few

0 ManualVerb 75.13 67.06 43.11 20.00

1

Fine-tuning 25.45 10.80 10.59 7.48
ManualVerb 76.67 85.47 50.22 41.68
SearchVerb+ 51.82 81.31 43.24 35.64
SoftVerb+ 76.34 85.85 49.11 37.66

ProtoVerb+ 77.71 88.16 50.08 43.20
w/o tuning 76.28 78.32 45.01 29.51

2

Fine-tuning 25.78 49.01 11.26 19.03
ManualVerb 81.06 93.61 58.65 46.44
SearchVerb+ 77.56 91.79 52.46 42.13
SoftVerb+ 79.95 93.68 55.73 42.17

ProtoVerb+ 84.09 94.77 59.33 48.69
w/o tuning 82.13 86.11 50.34 34.44

4

Fine-tuning 28.14 94.08 26.02 20.98
ManualVerb 84.73 95.83 61.41 52.54
SearchVerb+ 81.25 95.16 58.98 50.61
SoftVerb+ 84.22 94.90 59.01 49.45

ProtoVerb+ 85.71 96.74 66.14 54.16
w/o tuning 83.05 89.56 55.59 35.55

8

Fine-tuning 72.78 96.83 54.76 49.77
ManualVerb 85.85 96.46 64.12 56.59
SearchVerb+ 85.68 97.57 65.32 56.58
SoftVerb+ 86.54 97.40 63.48 54.30

ProtoVerb+ 87.25 97.64 66.61 58.30
w/o tuning 83.79 92.61 59.42 34.37

16

Fine-tuning 84.14 97.25 64.27 52.66
ManualVerb 84.74 96.05 58.77 61.17
SearchVerb+ 85.30 95.08 59.34 61.70
SoftVerb+ 85.65 96.34 58.68 59.23

ProtoVerb+ 87.98 97.22 65.65 62.55
w/o tuning 84.78 93.46 60.89 33.96

Table 3: Results for multiple verbalizer experiments.
We report the mean accuracy scores (%) over 3 random
seeds. ProtoVerb+ w/o tuning: apply ProtoVerb to un-
tuned PLMs. Bold: best results.

to discriminate between “person-artist/author” and
“person-director” with only a few instances. How-
ever, ProtoVerb can also catch up with ManualVerb
with enough samples.

5.6 Multiple Verbalizer Results
Table 3 shows the experiment results when we
ensemble manual verbalizers with automatic ver-
balizers. The ensembled versions are denoted as
SearchVerb+, SoftVerb+, and ProtoVerb+ respec-
tively. From the table, we have the following ob-
servations: (1) Basically, prompt-based tuning out-
performs fine-tuning by a large margin with few

7019



samples (1∼2 per class). When sufficient training
data is available, fine-tuning models will produce
comparable results. (2) Overall, ProtoVerb+ cer-
tainly improves the performance of prompt-based
tuning under most cases, which demonstrates the
effectiveness of ProtoVerb+. At the same time,
SearchVerb+ and SoftVerb+ seldom show enhance-
ment compared with ManualVerb. As ProtoVerb+
does not introduce any external knowledge, this
illustrates that ProtoVerb+ provides a better way to
utilize training data.

Finally, we also present the results of applying
ProtoVerb+ on untuned PLMs. It is worth not-
ing that even for untuned models, ProtoVerb+ also
boosts them considerably on all tasks. For exam-
ple on DBPedia, showing only one instance per
class to PLMs with ProtoVerb+ leads to 11.26%
absolute accuracy improvement. On topic classi-
fication, when more training samples are given,
untuned PLMs achieve competitive scores. This
observation indicates a new cost-efficient way to
leverage training data, which we highlight as valu-
able for future study of none-tuning methods for
PLMs. Compared to the “in context learning” in
GPT-3 (Brown et al., 2020), ProtoVerb+ is not lim-
ited by input length and can deal with arbitrary
number of samples. We further study this “fixed
model” scenario in § 6.1.

6 Analysis

In this section, we discuss several analytical top-
ics for further understandings of ProtoVerb. For
simplicity, we conduct experiments on AG’s News
dataset.

6.1 Fixed Model Experiments

In § 5.6, we see ProtoVerb is still powerful with
fixed PLMs. For further comparisons, we conduct
experiments to quantitatively evaluate verbalizers
when PLMs are fixed. Figure 3 gives the results.
To clarify, using ManualVerb on fixed PLMs equals
the zero-shot setting, which we plot with a dashed
line. Meanwhile, different from § 5.6, ProtoVerb
here is a single verbalizer. From the figure we can
conclude that (1) Similar with § 5.5, ProtoVerb out-
performs SoftVerb and SearchVerb by a large mar-
gin under low-shot settings. Notably, ProtoVerb
exceeds ManualVerb with only 2 shots per class,
illustrating the experessive power of prototypes.
(2) SoftVerb is also better than SearchVerb under
this setting, demonstrating that tunable verbalizers

could exploit training data better with PLMs fixed.

1 2 4 8 16
Shot

40

50

60

70

80

Ac
c

SearchVerb
SoftVerb
ProtoVerb
ManualVerb

Figure 3: Experiment results with fixed PLMs. We
report the mean accuracy (%) with 95% confidence
interval on AG’s News.

Method K = 2 K = 4 K = 8

Lins + Lproto 77.34 81.65 84.03
Lproto 76.37 81.06 82.91
Instance Mean 73.36 77.76 82.57

Table 4: Ablation study of ProtoVerb on AG’s News.
Instance Mean: using the mean embeddings of instances
as prototype embeddings. Bold: best results

K Method
# Noisy Samples

1 2 3

8
SearchVerb 4.86 5.96 5.19
SoftVerb 4.84 7.80 11.71
ProtoVerb 2.34 3.11 4.37

16
SearchVerb 0.80 2.93 5.18
SoftVerb 2.01 4.17 4.58
ProtoVerb 0.04 2.13 3.16

Table 5: Accuracy drop (%) with noisy samples. Lower
is better. Bold: best results.

6.2 Ablation Study
To validate the effect of each part in the loss func-
tion, we conduct an ablation study on AG’s News
dataset. For comparison, we consider two variants
of prototype calculation methods: (1) ProtoVerb
with Lproto only. (2) Following ProtoNet (Snell
et al., 2017), take the average of instance embed-
dings for prototype embeddings. Table 4 shows the
results. Compared to taking the mean embedding
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Class K = 1 K = 16

World Qaida, Syria, Iraq, Nusra, TPP Taliban, Iraq, Afghan, militants, rebellion
Sports Steelers, Raptors, Knicks, Dodgers ball, ESPN, baseball, Fifa, Sports
Business cash, earnings, Securities, NYSE Dow, dividend, investing, markets
Tech LTE, Tel, Huawei, Mbps, VPN Vault, IBM, Qualcomm, Technologies

Table 6: Words that are most similar with prototypes of each class on AG’s News.

vectors directly, optimizing the embedding vectors
of prototypes using our loss functions leads to bet-
ter performances and stability. Adding Lins is also
beneficial, meaning that Lins helps ProtoVerb in
learning instance embeddings.

6.3 Robustness on Noisy Samples
Noisy data are commonly seen as threats in real-
world datasets for few-shot learning systems. For
automatic verbalizers, noisy data are more harmful
because of the effect on both the quality of ver-
balizers and the training process. In this section,
we evaluate the robustness of different automatic
verbalizers against noisy samples on AG’s News.
For training stability, we set K = 8, 16. Table 5
presents the accuracy drop when there are 1, 2, or
3 samples having wrong labels. It is clearly seen
that a limited number of noisy samples will hinder
the performance greatly, showing the vulnerability
of automatic verbalizers. Meanwhile, we can also
find that ProtoVerb is more robust than baseline
methods when facing noisy samples.

6.4 Prototype Discretization
Since ProtoVerb learns continuous prototype vec-
tors, their meanings are implicit. Here we man-
age to investigate which words are most similar to
the learned prototypes. Due to word embeddings
and prototype vectors lying in different embedding
spaces, we can not directly calculate their similar-
ity. Hence we use the vocabulary as the input texts
(one word at a time) to get the top-scored word for
each class. On AG’s News dataset, we collect some
most similar words for each class and list them in
Table 6.

To investigate the property of prototypes learned
with different numbers of samples, we present
words for K = 1 and K = 16. With the table, we
see that: (1) Even when only one example is avail-
able, the learned prototypes are meaningful. Most
of the similar words are proper nouns and entity
names closely related to class topics. For example,
“Steelers”, “Raptors”, “Knicks”, and “Dodgers” are

all baseball or basketball teams that appear fre-
quently in sports news. We attribute this to prompt
mechanism that allows PLMs to extract the most
conclusive information and fill the [MASK] with
it. Then the relevant words are also included. (2)
With more training instances, prototypes show di-
verse interests. Despite entity names, more “con-
ceptual” words show up on the list, such as “ball”
and “Sports” for class Sports. We interpret this as
the summarization and abstraction ability of pro-
totypes. Given many instances, prototypes are en-
forced to capture their common features, hence
some abstract concepts are found automatically. In
this way, ProtoVerb encapsulates class-level, rather
than entity-level, semantics, which leads to better
performance on unseen data.

6.5 Is ProtoVerb Similar with ManualVerb?

1 2 4 8 16
Shot

0.30

0.35

0.40

0.45

0.50

Sc
or

e

World
Sports
Business
Tech

Figure 4: Similarity scores between ProtoVerb and Man-
ualVerb on AG’s News.

To give further analyses for the inner workings of
prototypes, we measure the similarity between Pro-
toVerb and ManualVerb to see whether ProtoVerb
is able to learn abstract concepts as humans do.
On AG’s News dataset, we calculate the similarity
scores between prototypes and manual verbalizers
and normalize the scores using the softmax func-
tion across the four classes. In Figure 4 we plot the
scores with various shots. It is clearly seen that the
similarity of prototypes and corresponding verbal-
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izers are above average (0.25). As shot increases,
the scores also gradually grow, which illustrates
that prototypes can capture the conceptual informa-
tion better from more instances. This observation
matches our findings in § 6.4. Among the four
classes, Business and Sports get higher scores than
World and Tech. A reasonable guess is that World
and Tech news includes diverse sub-topics that are
hard to summarize.

7 Conclusion

In this paper, we propose a novel approach for au-
tomatic verbalizer construction in prompt-based
tuning. The proposed ProtoVerb learns class pro-
totypes from training instances using contrastive
learning. We explore the performance of ProtoVerb
on few-shot topic classification and entity typing
tasks. As a single verbalizer, ProtoVerb outper-
forms state-of-the-art automatic verbalizers consid-
erably. Working together with manual verbalizers,
ProtoVerb can also consistently improve prompt-
based tuning with minor effort. The results validate
the effectiveness of ProtoVerb. Our analysis further
reveals the intrinsic properties of prototypes. For
future work, we will focus on extending ProtoVerb
for effective non-tuning algorithms of PLMs and
prompt-tuning with soft templates. Moreover, we
are finding proper ways to combine label words
and prototypes for verbalizer construction.
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A Templates

For topic classification, we use the default tem-
plates and verbalizers in OpenPrompt (Ding et al.,
2021b).

AG’s News is a news’ topic classification dataset.
There are four categories: World, Sports, Business,
and Tech. We use the following templates.

T1(x) = A [MASK] news: x

T2(x) = x This topic is about [MASK].

T3(x) = [ Category : [MASK] ] x

T4(x) = [ Topic : [MASK] ] x

DBPedia is an ontology classification dataset.
Each sample contains an article title x and abstract
y extracted from Wikipedia, and the task is to clas-
sify the subject’s ontology class. There are 14
classes in total. We employ four templates shown
below:

T1(x, y) = x y x is a [MASK].

T2(x, y) = x y In this sentence,xis a [MASK].

T3(x, y) = x y The type ofxis [MASK].

T4(x, y) = x y The category ofxis [MASK].

Yahoo is a question classification dataset with
10 classes. Each piece of text consists of a question
and an answer. We use the templates in AG’s News
where “news” is replaced with “question” in T1(·)

T1(x) = A [MASK] question: x

T2(x) = x This topic is about [MASK].

T3(x) = [ Category : [MASK] ] x

T4(x) = [ Topic : [MASK] ] x

FewNERD is a large-scale fine-grained entity
typing dataset with 66 types and we use the official
split of its supervised setting. Following (Ding
et al., 2021a), we employ 3 templates as below

T1(x) = x [ENT] is [MASK].

T2(x) = x [ENT] is a [MASK].

T3(x) = x In this sentence, [ENT] is a [MASK].

where [ENT] copies the entity mention in the sen-
tence.
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