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Abstract

For a natural language understanding bench-
mark to be useful in research, it has to con-
sist of examples that are diverse and diffi-
cult enough to discriminate among current
and near-future state-of-the-art systems. How-
ever, we do not yet know how best to select
text sources to collect a variety of challeng-
ing examples. In this study, we crowdsource
multiple-choice reading comprehension ques-
tions for passages taken from seven quali-
tatively distinct sources, analyzing what at-
tributes of passages contribute to the diffi-
culty and question types of the collected ex-
amples. To our surprise, we find that pas-
sage source, length, and readability measures
do not significantly affect question difficulty.
Through our manual annotation of seven rea-
soning types, we observe several trends be-
tween passage sources and reasoning types,
e.g., logical reasoning is more often required
in questions written for technical passages.
These results suggest that when creating a new
benchmark dataset, selecting a diverse set of
passages can help ensure a diverse range of
question types, but that passage difficulty need
not be a priority.

1 Introduction

State-of-the-art systems have shown performance
comparable with humans on many recent natural
language understanding (NLU) datasets (Devlin
et al., 2019; Sun et al., 2021), suggesting that these
benchmarks will no longer be able to measure fu-
ture progress. To move beyond this, we will need
to find better ways of building difficult datasets,
ideally without sacrificing diversity or coverage
(Bowman and Dahl, 2021). To obtain such human-
written examples at scale, there are active lines
of crowdsourcing research on protocols of worker
handling and feedback (Nangia et al., 2021) and
the design of the collection task (Ning et al., 2020;
Rogers et al., 2020). However, we do not have clear

MCTest: Tony walked home from school on his birthday.
He was surprised to see a lot of cars in front of his house.
When he opened the door and entered the house, he heard
a lot of people yell, “Surprise!” It was a surprise party for
his birthday. His parents called all his friends’ parents and
invited them to come to a party for Tony. [...]
Q: Who were invited to the party and by who?
� Tony’s parents invited only his friends
� Tony invited his friends and their parents
� Tony’s parents invited his friends’ parents
X� Tony’s parents invited his friends and their parents

ReClor: Humanitarian considerations aside, sheer eco-
nomics dictates that country X should institute, as country
Y has done, a nationwide system of air and ground trans-
portation for conveying seriously injured persons to special-
ized trauma centers. Timely access to the kind of medical
care that only specialized centers can provide could save
the lives of many people. [...]
Q: What is the economic argument supporting the idea of

a transportation system across the nation of Country X?
� Building the transportation system creates a substantial

increase of jobs for the locals
X� Increasing access to specialized medical centers can

lower the chance of the workforce population dying
� Transportation ticket prices directly contribute to the

government’s revenue
� Country Y was successful with their attempts to poten-

tially save lives so Country X should try it as well

Figure 1: Example questions for passages from simple
narratives (MCTest) and technical arguments (ReClor).

information on what aspects of text sources affect
the difficulty and diversity of examples.

Crowdsourced datasets in reading comprehen-
sion use passages taken from a variety of sources,
such as news articles, exams, and blogs, about
which questions are written (Lai et al., 2017;
Trischler et al., 2017; Rogers et al., 2020). The
first example in Figure 1 is from MCTest (Richard-
son et al., 2013), the passages of which are written
in grade-school-level English. The second example
is from ReClor (Yu et al., 2020), which consists of
passages and questions written for graduate and law
school admission examinations. We hypothesize
that difficult passages, such as those in the second
example, are more suitable for crowdsourcing chal-
lenging questions. Passages that are linguistically
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complex and have dense information could help
facilitate the writing of questions that require un-
derstanding a wide range of linguistic and world
knowledge, following intricate events, and com-
prehending logical arguments. In contrast, easy
passages, as in children’s stories, likely talk about
common situations and simple facts, which might
prevent workers from writing difficult questions.

In this work, we crowdsource multiple-choice
reading comprehension questions to analyze how
question difficulty and type are affected by the
choice of source passage. Using passages extracted
from seven different sources, we ask crowdwork-
ers to write questions about the given passages.
We compute the difference between human and
machine accuracy, using it as a measure of the
question difficulty, to investigate whether there is a
correlation between the question difficulty and lin-
guistic aspects of the passage, such as their source,
length, and readability.

In addition to a standard setting where we di-
rectly accept crowdworkers’ submissions, we use
an adversarial setting in which they have to write
questions that fool a strong reading comprehen-
sion model (Bartolo et al., 2020; Kiela et al., 2021).
Previous work finds that questions that require nu-
merical reasoning frequently appear in the adver-
sarial data collection of the extractive QA task on
Wikipedia articles (Kaushik et al., 2021), but our
aim is to see whether we observe a similar trend in
multiple-choice questions written for different pas-
sage sources or if the adversarial setting is useful
for collecting especially diverse questions.

To our surprise, we find that the difficulty of col-
lected questions does not depend on the differences
of passages in linguistic aspects such as passage
source, passage length, Flesch–Kincaid grade level
(Kincaid et al., 1975), syntactic and lexical sur-
prisal, elapsed time for answering, and the average
word frequency in a passage. Our main positive
finding comes through our manual annotation of the
types of reasoning that each question targets, where
we observe that questions that require numerical
reasoning and logical reasoning are relatively dif-
ficult. In addition, we find several trends between
the passage sources and reasoning types. For ex-
ample, logical reasoning is more often required in
questions written for technical passages, whereas
understanding of a given passage’s gestalt and the
author’s attitude toward it are more frequently re-
quired for argumentative and subjective passages

than expository passages.
These results suggest that when creating a new

benchmark dataset or choosing one for evaluat-
ing NLU systems, selecting a diverse set of pas-
sages can help ensure a diverse range of question
types, but that passage difficulty need not be a pri-
ority. Our collected datasets could be useful for
training reading comprehension models and for fur-
ther analysis of requisite knowledge and compre-
hension types in answering challenging multiple-
choice questions.1

2 Related Work

Crowdsourcing NLU Datasets Crowdsourcing
has been widely used to collect human-written ex-
amples at scale (Rajpurkar et al., 2016; Trischler
et al., 2017). Crowdworkers are usually asked to
write questions about a given text, sometimes with
constraints imposed to obtain questions that require
specific reasoning skills such as multi-hop reason-
ing (Yang et al., 2018) or understanding of tempo-
ral order, coreference, or causality (Rogers et al.,
2020). In this study, to analyze naturally written
examples, we do not consider specific constraints
on questions or answer options.

Current benchmark datasets constructed by
crowdsourcing may not be of sufficient quality
to precisely evaluate human-level NLU. For ex-
ample, Ribeiro et al. (2020) reveal that state-of-
the-art models in traditional NLP benchmarks fail
simple behavioral tests of linguistic capabilities
(checklists). Chen and Durrett (2019) and Min et al.
(2019) show that questions in multi-hop reasoning
datasets such as HotpotQA by Yang et al. (2018) do
not necessarily require multi-hop reasoning across
multiple paragraphs.

To investigate how to collect high-quality, chal-
lenging questions through crowdsourcing, Nangia
et al. (2021) compare different sourcing protocols
and find that training workers and providing feed-
back about their submissions improve the difficulty
and quality of their reading comprehension ques-
tions. To encourage workers to write difficult exam-
ples, Bartolo et al. (2020) propose to collect ques-
tions using a model-in-the-loop setting. Although
this adversarial approach enables us to collect chal-
lenging questions efficiently, Gardner et al. (2020)
point out that the collected examples might be bi-

1Our datasets, annotation instructions and results, and
crowdsourcing scripts are available at https://github.
com/nii-cl/qa-text-source-comparison.
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ased towards the quirks of the adversary models.
Bowman and Dahl (2021) extend this argument,
and point out that adversarial methods can system-
atically eliminate coverage of some phenomena.
This is also supported by Kaushik et al. (2021),
but their findings are limited to extractive QA for
Wikipedia articles. Our motivation is to see if this
argument is applicable to the multiple-choice for-
mat with a wide range of passage sources for which
we expect crowdworkers to write linguistically di-
verse questions and answer options.

Sources of NLU Datasets Reading comprehen-
sion datasets are often constructed with a lim-
ited number of passage sources. Rajpurkar et al.
(2016) sample about five hundred articles from
the top 10,000 articles in PageRank of Wikipedia.
Similarly, Dua et al. (2019) curate passages from
Wikipedia articles containing numeric values to col-
lect questions for mathematical and symbolic rea-
soning. Khashabi et al. (2018) construct a dataset
in which questions are written for various passage
sources such as news articles, science textbooks,
and narratives. However, we cannot use their ques-
tions for our analysis of the variation of naturally
written questions because they are designed to re-
quire local multi-sentence reasoning (such as coref-
erence resolution and paraphrasing) by filtering out
questions answerable only with a single sentence.

Similarly to our work, Sugawara et al. (2017)
find that readability metrics and question difficulty
do not correlate in reading comprehension datasets.
Our study differs in the following two points, which
could cause different findings: First, their obser-
vational study of existing datasets has fundamen-
tal confounding factors because the questions they
examine are constructed using different sourcing
methods (e.g., automatic generation, expert writing,
and crowdsourcing), which could have an impact
on the question difficulty. We aim to investigate
uniformly crowdsourced examples across seven dif-
ferent sources to obtain insights for future data con-
struction research using crowdsourcing. Second,
they define question difficulty using human anno-
tations alone, but this does not necessarily reflect
the difficulty for current state-of-the-art models.
In this study, we define the question difficulty as
the human–machine performance gap using eight
recent strong models, which enables a more fine-
grained analysis of the collected questions for a
better benchmark of current models.

Fisch et al. (2019) propose a shared task consist-

ing of different in-domain and out-domain datasets.
However, they combine datasets in different task
formats and sourcing methods, which prevents us
from comparing questions across passage sources
alone. In contrast, our focus is to compare ques-
tions collected by crowdsourcing for the same task
format to analyze the question difficulty for current
state-of-the-art models. We adopt the multiple-
choice format because, as discussed by Huang et al.
(2019), it allows us to evaluate both human and
machine performance easily.

3 Crowdsourcing Tasks

This study aims to analyze what kinds of passages
make crowdsourced reading comprehension ques-
tions difficult. We use Amazon Mechanical Turk.
To collect difficult and high-quality examples, we
require crowdworkers to take a qualification test
before accepting our question writing and valida-
tion tasks.

3.1 Worker Qualification

The qualification test has two parts, which we run
in separate tasks: question answering and writing.
To take the qualification test, workers have to meet
the following minimum qualifications: based in the
United States, Canada, or United Kingdom, have
an approval rate of at least 98%, and have at least
1,000 approved tasks.

The question answering task is used to identify
workers who answer reading comprehension ques-
tions carefully. A single question answering task
has five questions that are randomly sampled from
the validation set of ReClor in which most ques-
tions are taken from actual exams. Those who cor-
rectly answer at least four out of the five questions
proceed to the next qualification phase.

The question writing task is used to familiarize
workers with the writing of multiple-choice read-
ing comprehension questions and select those who
can carefully write examples. We ask workers to
write two questions given two different passages
randomly sampled from the validation set of RACE
(Lai et al., 2017). This dataset consists of self-
contained passages written for middle- and high-
school exams in various subjects, which we expect
the workers to be able to write questions for eas-
ily. Following Nangia et al. (2021), we then review
the workers’ submissions and grade them using a
rubric with four criteria: the question (1) is answer-
able without ambiguity (yes or no); (2) requires
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reading the whole passage (five-point scale); (3)
is creative and non-obvious (five-point scale); and
(4) has distractor answers that could look correct
to someone who has not read the passage carefully
(more than one, one, or no). We rank workers using
this rubric and allow approximately the top 50% of
workers to proceed to the main writing task. We
make sure that these workers write two unambigu-
ous and answerable questions.

3.2 Writing Task

In the main writing task, a worker is shown a sin-
gle passage and asked to write a question about
it along with four answer options. We provide in-
structions where we describe that questions have
to be challenging but still answerable and unam-
biguous for humans, and we include good and bad
examples to illustrate what kinds of questions we
aim to collect. For example, good examples require
reading the whole passage and ask about characters’
motivations or consequences of described events,
while bad examples only ask about a simple fact
or are answerable without reading the passage (Ap-
pendix P).

Each worker who passes the qualification round
is randomly assigned to either standard or adversar-
ial data collection. In the standard collection, we ac-
cept workers’ submissions without any filtering. In
the adversarial collection, a written question is sent
to a reading comprehension model immediately. If
the model cannot answer that question correctly,
we accept it. We allow workers to submit ques-
tions (i.e., get paid) after three attempts even if they
keep failing to fool the model. We use UnifiedQA
3B v2 (Khashabi et al., 2020) for the adversary
model, which is trained on a wide variety of ques-
tion answering datasets such as MCTest, RACE,
NarrativeQA (Kočiský et al., 2018), and SQuAD.
While the source of training data that we use in
our models will inevitably influence our findings,
focusing on a model with very diverse pretraining
and fine-tuning will minimize this effect.

Passage Sources We use passages from the fol-
lowing seven sources: (1) MCTest children’s nar-
ratives, (2) Project Gutenberg narratives, (3) Slate
online magazine articles from the 1990s sourced
from the Open American National Corpus (Ide and
Suderman, 2006), (4) middle- and high-school ex-
ams from RACE, (5) graduate-level exams from
ReClor, and (6) science and (7) arts articles from
Wikipedia. We use the passages from the training

sets of MCTest, RACE, and ReClor. For Gutenberg,
Slate, and Wikipedia, we split available books and
articles into passages. Details are in Appendix A.
In the writing task, a passage is randomly taken
from a passage pool in which there are the same
number of passages extracted from each source.

3.3 Validation Task
We collect the votes of five workers for each of the
collected questions. Those workers who passed
the question answering task of the qualification
round can accept the validation tasks. To incen-
tivize workers, we use preexisting gold-labeled ex-
amples (from Nangia et al., 2021) as catch trials,
representing about 10% of the tasks, and pay a
bonus of $0.50 USD if a worker can answer those
questions correctly at least 80% of the time. If a
worker fails to answer them at least 60% of the
time, we disqualify the worker from future rounds
of data collection.

Worker Pay and Logistics For the writing tasks,
the base pay is $2.00 per question, which we esti-
mate to be approximately $15.00 per hour based on
measurements from our pilot runs. If a worker suc-
ceeds in fooling the model in adversarial data col-
lection, they receive an additional bonus of $1.00.
For validation, a single task consisting of five ques-
tions pays $2.00, which we estimate to be approxi-
mately $15.00 per hour as well.

4 Crowdsourcing Results

4.1 Dataset Construction
We collect a total of 4,340 questions, with 620
in each of the seven sources, further divided into
310 each for the standard and adversarial methods.
Each passage is paired with only one question. We
randomly sample two out of five validation votes to
validate the collected examples and use the remain-
ing three votes for measuring human performance.
In the validation, we regard a question as valid if
at least one of the two votes is the same as the
writer’s gold answer. If both votes are the same
as the gold answer, the question is regarded as a
high-agreement example. We find that 90.3% of the
collected questions are valid (92.0% for standard
collection and 88.7% for adversarial collection).
In addition, 65.7% of the collected questions are
classified as high-agreement (68.7% and 62.7% for
standard and adversarial collection, respectively).
We present the dataset and worker statistics in Ap-
pendices B and C.
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All valid examples High-agreement portion

Source Method Human UniQA DeBERTa M-Avg. ∆ Human UniQA DeBERTa M-Avg. ∆

MCTest Dir. 89.1 68.3 84.5 78.1 11.0 95.0 71.5 88.2 81.5 13.5
Adv. 93.6 26.5 75.3 66.6 27.1 96.5 27.9 78.6 68.2 28.3
Total 91.4 47.4 79.9 72.3 19.0 95.8 49.3 83.3 74.7 21.1

Gutenberg Dir. 85.2 70.7 84.5 79.9 5.3 92.8 75.0 88.5 83.4 9.4
Adv. 83.0 26.4 80.1 69.7 13.3 87.5 28.3 82.6 72.9 14.6
Total 84.1 48.8 82.3 74.8 9.3 90.3 53.1 85.7 78.4 11.9

Slate Dir. 84.9 72.4 88.9 84.1 0.8 90.7 74.6 91.7 87.0 3.8
Adv. 82.6 26.0 71.7 69.4 13.2 92.9 27.9 76.0 73.8 19.1
Total 83.8 49.8 80.5 77.0 6.8 91.8 52.6 84.3 80.8 11.0

RACE Dir. 91.2 70.4 85.0 80.8 10.3 95.4 74.8 90.4 84.6 10.8
Adv. 89.4 28.9 69.4 65.0 24.4 94.3 31.0 73.8 67.3 27.0
Total 90.3 50.0 77.3 73.1 17.3 94.9 53.3 82.2 76.1 18.8

ReClor Dir. 94.1 72.6 88.5 80.6 13.5 96.9 79.6 91.1 84.4 12.5
Adv. 83.9 29.2 71.5 66.3 17.6 88.8 32.4 74.5 71.3 17.5
Total 89.2 51.7 80.4 73.7 15.5 93.2 58.1 83.5 78.5 14.8

Wiki. Sci. Dir. 90.6 75.9 90.6 83.2 7.3 95.8 79.0 94.9 87.3 8.5
Adv. 84.3 27.4 75.2 65.6 18.8 92.8 29.4 77.2 68.3 24.5
Total 87.5 52.1 83.0 74.6 12.9 94.4 56.3 86.8 78.6 15.8

Wiki. Arts Dir. 88.3 76.2 88.7 84.2 4.1 91.5 77.0 92.5 88.1 3.4
Adv. 83.3 25.5 73.8 69.4 13.9 91.4 25.8 75.8 71.7 19.7
Total 85.8 51.2 81.3 76.9 8.9 91.5 52.3 84.5 80.2 11.2

All sources Dir. 89.0 72.4 87.2 81.6 7.5 94.0 75.9 91.0 85.2 8.8
Adv. 85.7 27.1 73.8 67.4 18.3 92.0 29.0 76.9 70.5 21.5
Total 87.4 50.2 80.7 74.6 12.8 93.1 53.6 84.3 78.2 14.9

Table 1: Accuracy of humans and models and the difference (∆) between human accuracy and the average zero-
shot performance of eight different models (M-avg.) for all valid questions and the high-agreement portion of them.
The highest and lowest gaps are highlighted in bold and underlined. The questions are crowdsourced with (Adv.)
and without (Dir.) adversarial feedback. UniQA is the zero-shot performance by the UnifiedQA 3B model used in
the adversarial data collection. DeBERTa is the performance by the xlarge model fine-tuned on RACE.

4.2 Human Performance

Table 1 displays human and model performance.
We use the questions that are validated using two
out of five human votes in the validation step above
and take the majority vote of the remaining three
votes to measure human performance on them. We
observe 3.3% and 2.0% gaps between the standard
and adversarial collection in the valid and high-
agreement questions, respectively.

4.3 Machine Performance

To establish the model performance that is not bi-
ased towards a single model, we compute the av-
erage accuracy (M-avg.) of eight different models
from the following two classes: RoBERTa large
(four models with different random seeds; Liu et al.,
2019) and DeBERTa large and xlarge (v2; He et al.,
2021) either fine-tuned on MNLI (Williams et al.,
2018) first or not.

The RoBERTa and DeBERTa models are all fine-
tuned on RACE. Among these models, DeBERTa
xlarge (MNLI-fine-tuned) performs best on RACE,

achieving 86.8% accuracy. Because UnifiedQA
3B (72.3% on RACE) is used in the adversarial
data collection, it shows lower accuracy on the
adversarial questions (not included in the average).
The performance of these two models is shown for
comparison in Table 1. Except where noted, we do
not train the models on any collected questions.

Supervised Performance For each dataset, we
evaluate the performance of DeBERTa large trained
on the datasets other than the target dataset in a
leave-one-out manner. Our motivation is to see
whether the accuracy values significantly improve
by training (i.e., the human–model gaps decrease).
If there is a large gain, it would imply that the
datasets have simple patterns among examples that
the models can exploit. The results show no signif-
icant gains in the adversarial datasets, but the stan-
dard datasets show some small gains (Appendix D).

Partial-Input Performance As Kaushik and
Lipton (2018) point out, reading comprehension
datasets might have annotation artifacts that enable
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Figure 2: Passage length, Flesch–Kincaid grade level, syntactic and lexical surprisal, elapsed time for question
answering and writing, and average word frequency of passages in the easy and hard examples.

models to answer questions without passages or
question sentences. To investigate such artifacts
in our collected examples, we evaluate the perfor-
mance of two DeBERTa models (xlarge and large
fine-tuned on MNLI), which are stronger than the
others, with the ablation of questions (P+A), pas-
sages (Q+A), and both questions and passages (A
only). We see large drops in the zero-shot per-
formance of DeBERTa xlarge. In addition, we do
not observe a significant performance improvement
in the supervised performance by DeBERTa large
(MNLI-fine-tuned). These results demonstrate that
the collected questions and answer options do not
have severe annotation artifacts for any passage
source (Appendix E).

4.4 Human–Model Performance Gap

Following Nangia et al. (2021), we compute the
human–model performance gap (∆) between the
human and the average model accuracies to esti-
mate the difficulty of questions for models. We
observe a small variation in the gap for different
passage sources in the high-agreement questions
(∆ = 14.9 ± 3.6). We find the highest human
performance for MCTest questions in the high-
agreement portion and the lowest for Gutenberg,
whereas the model’s highest performance is for
Slate and the lowest for MCTest. Surprisingly,
the questions sourced from MCTest, which con-
sists of simple narrative passages, show the largest
gap out of all sources for the high-agreement ques-
tions. Although ReClor consists of passages for
graduate-level exams, it produces smaller gaps than
RACE, which consists of passages for middle- and
high-school English exams. Gutenberg passages
are written for adults, but the examples written for

those passages do not show larger gaps than those
for MCTest passages. We find a trend in the hu-
man performance: the questions of easy-to-read
sources (e.g., MCTest and RACE) show higher ac-
curacy and those of difficult-to-read sources (e.g.,
Gutenberg and Slate) show lower, but this trend is
not observed either in the machine performance or
human–machine performance gap. These observa-
tions are inconsistent with our initial expectations
in the introduction.

5 Linguistic Analysis

We analyze how the linguistic aspects of the col-
lected examples correlate with the human–model
performance gap computed in the experiments.
To get a better estimate of human performance,
we use the high-agreement examples (Nie et al.,
2020). For ease of comparison, we split these ex-
amples into two subsets: easy (∆ ≤ 20%) and
hard (∆ ≥ 40%). These subsets have 1,970 and
547 examples, respectively. Appendix F provides
the frequency of easy and hard examples across the
passage sources and collection methods.

5.1 Readability Measures

We compute the correlation between the human–
model performance gap and readability measures
across all valid examples (Pearson’s r and p-value)
and independence between the distributions of the
easy and hard subsets about the measures (p-value
in Welch’s t-test). Figure 2 shows the density distri-
butions of the easy and hard subsets, while Appen-
dices G to L provide the plots of all valid examples.

Passage Length We use the number of words
(except for punctuation) as the passage length (top
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left in Figure 2). Across all examples, we ob-
serve r = 0.01 (p = 0.47) (the full plot is in
Appendix G). The t-test shows p = 0.51. We ob-
serve no relationship between the passage length
and question difficulty. We also analyze question
and option length in Appendix H.

Flesch–Kincaid Grade Level We use the
Flesch–Kincaid grade level (Kincaid et al., 1975)
as a basic metric of text readability (top center in
Figure 2). This metric defines readability based
on an approximate US grade level with no upper
bound (higher is more difficult to read). It is com-
puted for a passage using the average number of
words that appear in a sentence and the average
number of syllables in a word (Appendix I). The
correlation between the grade and human–model
performance gap is r = −0.08 (p < 0.001) and the
t-test shows p < 0.001. This result demonstrates
that passage readability has a small negative effect
on the question difficulty, perhaps pointing to an
interfering effect whereby our pre-qualified human
annotators are more likely to make mistakes on
more complex passages.

Syntactic and Lexical Surprisal The Flesch–
Kincaid grade level only considers sentence length
and the number of syllables. To better estimate the
passage difficulty in terms of the psycholinguistic
modeling of human text processing, we use syn-
tactic and lexical surprisal measures (Roark et al.,
2009). These measures are computed using incre-
mental parsing and proved to be useful for predict-
ing human reading time. We observe r = 0.000
(p = 0.99) for syntactic surprisal and r = −0.007
(p = 0.66) for lexical surprisal across all exam-
ples. We do not observe any statistically significant
difference between the easy and hard subsets (syn-
tactic p = 0.52 and lexical p = 0.57 in the t-test;
see top right in Figure 2). Appendix J describes
details of the calculation.

Annotation Speed Inspired by the psycholin-
guistic study of text complexity (Gibson, 1998;
Lapata, 2006), we measure the average time crowd-
workers spent answering questions in the valida-
tion tasks (see bottom left in Figure 2). This mea-
sures the elapsed time of both reading a given pas-
sage and thinking about its question, which is used
as an approximation of reading time (as a proxy
of text readability). The correlation coefficient
(r = −0.06 with p < 0.001) and t-test (p = 0.88)
show that there is only a small negative correla-
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Figure 3: Question words and their two subsequent
words in the (a) easy and (b) hard examples.

tion with question difficulty. We also measure the
elapsed time for writing questions as a reference
(bottom center in Figure 2 and Appendix K), ob-
serving that there is no strong correlation (r = 0.02
with p = 0.27).

Word Frequencies Following Chen and Meur-
ers (2016), we analyze the effect of word frequen-
cies on text readability. Using word frequencies per
one million words in SUBTLEXus (Brysbaert and
New, 2009), we calculate the average frequency
of words appearing in a passage as a measure of
passage difficulty in terms of vocabulary (a lower
average frequency implies greater difficult). We do
not observe any statistically significant difference
by the t-test p = 0.14 (bottom right in Figure 2) or
Pearson’s r = 0.02 with p = 0.27 (Appendix L).
We observe similar trends even when using the
human performance as the difficulty measure (Ap-
pendix N).

5.2 Question Types
We analyze how passage sources and collection
methods affect question types in this section.

Question Words We automatically extract the
first wh-words that appear in each valid question; if
no wh-word is extracted, we count the question as
polar. Figure 3 plots the question words and their
two subsequent words (except articles) in the easy
and hard questions. From this we observe that the
hard questions are generic, not specific to given
passages (e.g., which of the following is correct?)
more often than the easy questions. This probably
results from the difference between the standard
and adversarial data collection. The workers in the
adversarial collection tend to write generic ques-
tions, while those in the standard collection write
questions that are more balanced (e.g., there are
more easy why and how questions). We also notice
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Figure 5: Frequency of comprehension types across
passage sources and collection methods. Because a
question can have multiple labels, the sum of the fre-
quencies may exceed 100%.

that the hard subset has more how many questions.
This is likely due to the fact that it is easy for an-
notators to learn that numeric questions often fool
the adversary model. These observations imply
that adversarial data collection tends to concentrate
the distribution of questions towards a few specific
question types (e.g., generic and numeric). This is
consistent with the observations in Kaushik et al.
(2021). See Appendix M for details.

Comprehension Types Following Bartolo et al.
(2020) and Williams et al. (2020), we analyze what
kind of comprehension is required to answer the
collected questions. We sample a total of 980 high-
agreement questions, 70 from each passage source
and collection method, and then manually annotate
them with one or more labels of seven comprehen-
sion types. The definitions of these types, examples,

and detailed results are presented in Appendix M.
Figure 4 shows the frequency of comprehension
types for different question difficulties (676 easy,
172 hard) and the collection methods. We find
that 868 questions have one label, 110 have two
labels, and two have three labels. We can see that
numeric, spatial/temporal, and logical questions
appear more often in the hard subset in both collec-
tion methods.2 Looking at the frequency across the
passage sources in Figure 5, we find that there are
some trends between the sources and comprehen-
sion types as follows:

• Technical documents, such as those used in
graduate-school-level reading comprehension
exams, tend to yield logical reasoning ques-
tions (e.g., ReClor and Slate).

• Child-level texts tend to yield numerical rea-
soning questions in the standard setting (e.g.,
MCTest and RACE). In the adversarial setting,
passages containing many numerical values
tend to yield such questions (e.g., MCTest and
Wikipedia arts).

• To collect gestalt questions or those consid-
ering the author’s attitude in a given passage,
passages covering subjective or argumentative
topics (e.g., Gutenberg, Slate, and ReClor) are
suitable. In contrast, expository passages such
as Wikipedia articles are not.

• Narratives and related texts (e.g., MCTest,
Gutenberg, and part of RACE) involve events
with characters, which tend to yield spa-
tial/temporal reasoning questions.

Although the definitions of our comprehension
types are coarse and these trends do not ensure
that specific kinds of passages always yield the
target comprehension type, considering passage
sources might be an effective strategy for collect-
ing questions of an intended comprehension type.
Adversarial data collection for this purpose might
not be useful because it may encourage workers
to focus on writing only a few specific types of
questions (e.g., numeric).

6 Conclusion

To make an NLU benchmark useful, it has to con-
sist of examples that are linguistically diverse and

2In contrast, when we use the average human performance
as the question difficulty measure, no comprehension type is
significantly harder than the others (Appendix N).
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difficult enough to discriminate among state-of-
the-art models. We crowdsource multiple-choice
reading comprehension questions for passages ex-
tracted from seven different sources and analyze
the effects of passage source on question difficulty
and diversity.

Although we expect that the difficulty of a pas-
sage affects the difficulty of questions about that
passage, the collected questions do not show any
strong correlation between the human–machine per-
formance gap and passage source, length, or read-
ability measures. Our manual annotation of com-
prehension types reveals that questions requiring
numerical or logical reasoning are relatively diffi-
cult. We also find several trends between passage
sources and comprehension types.

These results suggest that when creating a new
benchmark dataset, we need to select passage
sources carefully, so that the resulting dataset con-
tains questions that require an understanding of
the linguistic phenomena that we are interested in.
This is especially important in the adversarial set-
ting because it could concentrate the distribution of
questions towards a few specific question types.
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Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor Melis, and
Edward Grefenstette. 2018. The NarrativeQA read-
ing comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–
328.

6960

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.1016/S0010-0277(98)00034-1
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
http://www.lrec-conf.org/proceedings/lrec2006/pdf/560_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/560_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/560_pdf.pdf
https://doi.org/10.18653/v1/2021.acl-long.517
https://doi.org/10.18653/v1/2021.acl-long.517
https://doi.org/10.18653/v1/2021.acl-long.517
https://doi.org/10.18653/v1/D18-1546
https://doi.org/10.18653/v1/D18-1546
https://doi.org/10.18653/v1/D18-1546
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023


Jonathan K. Kummerfeld. 2021. Quantifying and
avoiding unfair qualification labour in crowdsourc-
ing. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 343–349, Online. Association for Computa-
tional Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
785–794, Copenhagen, Denmark. Association for
Computational Linguistics.

Mirella Lapata. 2006. Automatic evaluation of infor-
mation ordering: Kendall’s tau. Computational Lin-
guistics, 32(4):471–484.

Tao Li, Daniel Khashabi, Tushar Khot, Ashish Sab-
harwal, and Vivek Srikumar. 2020. UNQOVERing
stereotyping biases via underspecified questions. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3475–3489, Online.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint 1907.11692.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gard-
ner, Hannaneh Hajishirzi, and Luke Zettlemoyer.
2019. Compositional questions do not necessitate
multi-hop reasoning. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4249–4257, Florence, Italy. Asso-
ciation for Computational Linguistics.

Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex
Warstadt, Clara Vania, and Samuel R. Bowman.
2021. What ingredients make for an effective crowd-
sourcing protocol for difficult NLU data collection
tasks? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 1221–1235, Online. Association for Computa-
tional Linguistics.

Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020. What
can we learn from collective human opinions on nat-
ural language inference data? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9131–9143,
Online. Association for Computational Linguistics.

Qiang Ning, Hao Wu, Rujun Han, Nanyun Peng, Matt
Gardner, and Dan Roth. 2020. TORQUE: A reading
comprehension dataset of temporal ordering ques-
tions. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1158–1172, Online. Associa-
tion for Computational Linguistics.

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh
Padmakumar, Jason Phang, Jana Thompson,
Phu Mon Htut, and Samuel R. Bowman. 2022.
BBQ: A hand-built bias benchmark for question an-
swering. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Matthew Richardson, Christopher J.C. Burges, and
Erin Renshaw. 2013. MCTest: A challenge dataset
for the open-domain machine comprehension of text.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
193–203, Seattle, Washington, USA. Association for
Computational Linguistics.

Brian Roark, Asaf Bachrach, Carlos Cardenas, and
Christophe Pallier. 2009. Deriving lexical and syn-
tactic expectation-based measures for psycholinguis-
tic modeling via incremental top-down parsing. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages
324–333, Singapore. Association for Computational
Linguistics.

Anna Rogers, Olga Kovaleva, Matthew Downey, and
Anna Rumshisky. 2020. Getting closer to AI com-
plete question answering: A set of prerequisite real
tasks. In Proceedings of The Thirty-Fourth AAAI
Conference on Artificial Intelligence, pages 8722–
8731. AAAI Press.

Saku Sugawara, Yusuke Kido, Hikaru Yokono, and
Akiko Aizawa. 2017. Evaluation metrics for ma-
chine reading comprehension: Prerequisite skills
and readability. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 806–817,
Vancouver, Canada. Association for Computational
Linguistics.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi
Chen, Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhi-
hua Wu, Weibao Gong, Jianzhong Liang, Zhizhou
Shang, Peng Sun, Wei Liu, Xuan Ouyang, Dianhai

6961

https://doi.org/10.18653/v1/2021.acl-short.44
https://doi.org/10.18653/v1/2021.acl-short.44
https://doi.org/10.18653/v1/2021.acl-short.44
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.1162/coli.2006.32.4.471
https://doi.org/10.1162/coli.2006.32.4.471
https://doi.org/10.18653/v1/2020.findings-emnlp.311
https://doi.org/10.18653/v1/2020.findings-emnlp.311
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1416
https://doi.org/10.18653/v1/P19-1416
https://doi.org/10.18653/v1/2021.acl-long.98
https://doi.org/10.18653/v1/2021.acl-long.98
https://doi.org/10.18653/v1/2021.acl-long.98
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://arxiv.org/abs/2110.08193
https://arxiv.org/abs/2110.08193
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://aclanthology.org/D13-1020
https://aclanthology.org/D13-1020
https://aclanthology.org/D09-1034
https://aclanthology.org/D09-1034
https://aclanthology.org/D09-1034
https://aaai.org/ojs/index.php/AAAI/article/view/6398
https://aaai.org/ojs/index.php/AAAI/article/view/6398
https://aaai.org/ojs/index.php/AAAI/article/view/6398
https://doi.org/10.18653/v1/P17-1075
https://doi.org/10.18653/v1/P17-1075
https://doi.org/10.18653/v1/P17-1075


Yu, Hao Tian, Hua Wu, and Haifeng Wang. 2021.
ERNIE 3.0: Large-scale knowledge enhanced pre-
training for language understanding and generation.
arXiv preprint 2107.02137.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200, Vancouver, Canada. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Adina Williams, Tristan Thrush, and Douwe Kiela.
2020. ANLIzing the adversarial natural language in-
ference dataset. arXiv preprint 2010.12729.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium. Association
for Computational Linguistics.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi
Feng. 2020. ReClor: A reading comprehension
dataset requiring logical reasoning. In International
Conference on Learning Representations.

A Passage Sources

From Project Gutenberg, we use books from the
adventure, fiction, humor, novel, and story genres.3

From Wikipedia articles, we use articles listed
as Level 3 vital articles.4 For science, we include
health, medicine and disease, science, technology,
and mathematics categories. For the arts, we in-
clude history, arts, philosophy and religion, and
society and social sciences categories.

B Dataset Statistics

Table 2 presents the frequencies of valid and high-
agreement examples across the passage sources and
collection methods.

3https://www.gutenberg.org/
4https://en.wikipedia.org/wiki/

Wikipedia:Vital_articles

Source Method Valid High

MCTest Dir. 91.6 71.3
Adv. 91.3 73.9
Total 91.5 72.6

Gutenberg Dir. 91.3 67.1
Adv. 89.0 59.4
Total 90.2 63.2

Slate Dir. 90.0 66.1
Adv. 85.5 59.0
Total 87.7 62.6

RACE Dir. 94.8 70.3
Adv. 91.6 67.7
Total 93.2 69.0

ReClor Dir. 92.9 72.6
Adv. 86.1 60.6
Total 89.5 66.6

Wiki. Sci. Dir. 92.3 69.0
Adv. 88.4 58.1
Total 90.3 63.5

Wiki. Arts Dir. 91.0 64.5
Adv. 88.7 60.0
Total 89.8 62.3

All sources Dir. 92.0 68.7
Adv. 88.7 62.7
Total 90.3 65.7

Table 2: Frequency of valid and high-agreement exam-
ples for different passage sources and collection meth-
ods.

C Worker Statistics

Of the 1,050 workers who joined the question-
answering phase of the qualification round, 259
workers (24.7%) passed it. From them, 157 work-
ers submitted the question writing task, and 72
workers (36 each for the standard and adversar-
ial collection) qualified for the main writing task,
from which 49 workers joined. The workers were
allowed to write up to 250 questions. A total of
167 workers participated in the validation task. No
worker answered more than 730 questions. Data
collection took approximately a month including
the qualification round and the validation task.

D Supervised Model Performance

Table 3 shows the supervised performance of the
DeBERTa large model.

E Partial-Input Model Performance

Tables 4 and 5 report the zero-shot performance of
DeBERTa xlarge and the supervised performance
of DeBERTa large (MNLI).

F Easy and Hard Subsets

Table 6 presents the frequency of easy and hard
examples across passage sources and collection

6962

https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/2107.02137
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://arxiv.org/abs/2010.12729
https://arxiv.org/abs/2010.12729
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=HJgJtT4tvB
https://openreview.net/forum?id=HJgJtT4tvB
https://www.gutenberg.org/
https://en.wikipedia.org/wiki/Wikipedia:Vital_articles
https://en.wikipedia.org/wiki/Wikipedia:Vital_articles


Source Method Valid High

MCTest Dir. 70.7+6.9 72.2+6.6

Adv. 65.6+1.8 68.0+2.5

Gutenberg Dir. 79.2+5.6 82.1+5.5

Adv. 76.0+2.4 79.6+3.0

Slate Dir. 77.1+3.8 79.1+3.1

Adv. 74.2+0.8 77.0+1.0

RACE Dir. 78.2+8.6 79.6+9.3

Adv. 71.8+2.3 72.6+2.2

ReClor Dir. 74.6+1.6 76.1+1.0

Adv. 72.6−0.4 74.6−0.5

Wiki. Sci. Dir. 78.5+7.7 79.4+8.5

Adv. 74.8+4.1 74.9+4.0

Wiki. Arts Dir. 80.7+6.6 79.7+5.4

Adv. 75.3+1.2 75.2+1.0

Table 3: Supervised performance of DeBERTa large.
The accuracy of each row is given by the model trained
on the questions of the other rows (leave-one-out train-
ing). Subscript values show the difference from its zero-
shot accuracy.
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Figure 6: Passage length (number of words) and
human–model performance gap. Pearson’s r = 0.01
with p = 0.54.

methods.

G Passage Length

Figure 6 shows the relationship between the pas-
sage length and the human–model performance
gap.

H Question and Option Length

We plot the average question and option length (the
number of words except for punctuation) in the
high-agreement examples in Figure 7 across the
collection methods and in Figure 8 across the easy
and hard subsets. The distributions of question
and option length have slightly higher variances in
the standard data collection than in the adversarial
data collection. This result is consistent with the

Source Meth. P+A Q+A A only

MCTest Dir. 73.3−14.9 39.8−48.4 29.4−58.8

Adv. 55.5−23.1 41.5−37.1 34.5−44.1

Total 64.2−19.1 40.7−42.7 32.0−51.3

Gutenberg Dir. 75.5−13.0 40.9−47.6 31.7−56.7

Adv. 55.4−27.2 42.4−40.2 34.2−48.4

Total 66.1−19.6 41.6−44.1 32.9−52.8

Slate Dir. 72.7−19.0 45.9−45.9 32.7−59.0

Adv. 54.1−21.9 44.3−31.7 33.9−42.1

Total 63.9−20.4 45.1−39.2 33.2−51.0

RACE Dir. 75.7−14.7 49.5−40.8 36.2−54.1

Adv. 49.0−24.8 43.3−30.5 31.9−41.9

Total 62.6−19.6 46.5−35.7 34.1−48.1

ReClor Dir. 78.7−12.4 44.4−46.7 35.1−56.0

Adv. 55.9−18.6 41.5−33.0 26.6−47.9

Total 68.3−15.3 43.1−40.4 31.2−52.3

Wiki. Sci. Dir. 76.2−18.7 45.8−49.1 33.2−61.7

Adv. 54.4−22.8 35.6−41.7 26.7−50.6

Total 66.2−20.6 41.1−45.7 30.2−56.6

Wiki. Arts Dir. 70.0−22.5 49.0−43.5 44.5−48.0

Adv. 53.8−22.0 44.6−31.2 26.3−49.5

Total 62.2−22.3 46.9−37.6 35.8−48.7

All src. Dir. 74.6−16.5 45.0−46.0 34.7−56.3

Adv. 54.0−22.9 41.9−35.0 30.6−46.3

Total 64.8−19.5 43.6−40.8 32.8−51.6

Table 4: Zero-shot performance of DeBERTa xlarge
trained on RACE with ablation settings. We ablate
questions (P+A), passages (Q+A), or both questions
and passages (A only) from the input. Subscripts show
the difference from the full-input accuracy.

Method P+A Q+A A only

Dir. 71.6 ±0.8
+0.6 46.0 ±2.2

+4.7 38.6 ±1.5
+5.4

Adv. 51.9 ±1.3
+1.2 41.5 ±2.2

+1.5 32.7 ±0.6
+3.3

Table 5: Supervised performance (three-fold cross val-
idation) of DeBERTa large on the partial inputs. Su-
perscripts show standard deviation and subscripts show
gains over the zero-shot performance.

observation in Nangia et al. (2021).

I Readability Level

Figure 9 shows the plot between Flesch–Kincaid
grade level (Kincaid et al., 1975) and the human–
model performance gap. We compute the grade
level (L) of a passage using the following formula:

L = 0.39 ∗m + 11.8 ∗ n− 15.59 (1)

where m is the average length of the sentences and
n is the average number of syllables of the words in
the passage. To estimate the number of syllables in
a word, we use the implementation of the sonority
sequencing principle (Bartlett et al., 2009) in NLTK
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Source Method Easy Hard

MCTest Dir. 8.1 6.4
Adv. 6.5 13.2
Total 14.7 19.6

Gutenberg Dir. 8.1 4.6
Adv. 6.2 7.3
Total 14.3 11.9

Slate Dir. 8.4 2.9
Adv. 5.8 7.7
Total 14.2 10.6

RACE Dir. 8.7 5.7
Adv. 6.2 12.1
Total 14.9 17.7

ReClor Dir. 8.6 5.5
Adv. 5.5 8.0
Total 14.2 13.5

Wiki. Sci. Dir. 8.7 4.4
Adv. 5.1 10.2
Total 13.8 14.6

Wiki. Arts Dir. 8.3 3.1
Adv. 5.7 9.0
Total 14.0 12.1

# Questions 1,970 547

Table 6: Distribution (%) of easy and hard questions
from each passage source and collection method.
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Figure 7: Question and option lengths (number of
words) of examples collected in the standard and ad-
versarial methods.

(Bird et al., 2009).5

J Syntactic and Lexical Surprisal

Figures 10 and 11 show syntactic and lexical sur-
prisal measures, respectively, for all examples. Fol-
lowing Roark et al. (2009), we compute a surprisal
value for each word, then take the average for
each sentence, and finally take the average over
the whole passage. We use an incremental parser
with a lexicalized probabilistic context-free gram-
mar.6

5https://www.nltk.org/_modules/nltk/
tokenize/sonority_sequencing.html

6https://github.com/roarkbr/
incremental-top-down-parser
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Figure 8: Question and option lengths (number of
words) of easy and hard examples.
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Figure 9: Flesch–Kincaid grade level and human–
model performance gap. Pearson’s r = −0.08 with
p < 0.001.

K Elapsed Time for Answering
Questions

Figure 12 shows the plot of time elapsed by hu-
mans while answering questions in the validation
task. We measure the elapsed time from when a
worker opens a task to when they submit their an-
swer. In addition, we measure the elapsed time for
writing questions as a reference (Figure 13). We
observe that workers take slightly longer to write
hard examples than easy examples.

L Average Word Frequencies

Figure 14 plots the average word frequencies of
all examples. We refer to SUBTLEXus (Brysbaert
and New, 2009) for the word frequencies per one
million words in a corpus of American English
subtitles.

M Question and Comprehension Types

Figure 15 shows the frequency of the question
words and the two subsequent words for each col-
lection method. Figures 16 and 17 show the box
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Figure 10: Syntactic surprisal for all valid examples.
Pearson’s r = −0.003 with p = 0.86.
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Figure 11: Lexical surprisal for all valid examples.
Pearson’s r = −0.002 with p = 0.90.

plots between human–model performance gap and
questions words or comprehension types, respec-
tively. Figures 18 and 5 show the frequency of
question words and comprehension types, respec-
tively, across the passage sources and collection
methods. In the comprehension types annotation, a
question can have multiple labels. Therefore, the
sum of the frequencies may exceed 100%.

The definitions of the comprehension types are
as follows:

1. Factuality (true/false/likely) is reasoning of
which answer option most (or least) describes
facts or events in a given passage.

2. Factoid simply asks about described events or
entities, typically with typical what questions.

3. Non-factoid is related to why and how ques-
tions, such as ones asking about causality,
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Figure 12: Elapsed time (s) for answering all examples.
Pearson’s r = −0.08 with p < 0.001.
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Figure 13: Elapsed time (s) for writing all examples.
Pearson’s r = 0.03 with p = 0.03.

a character’s attitude, or the process of de-
scribed events.

4. Gestalt/Attitude asks about the summary,
theme, or conclusion of the content of a given
passage or the author’s attitude towards it.

5. Numeric indicates questions that require
arithmetic reasoning.

6. Spatial/Temporal is related to the under-
standing of places and locations (spatial) or
the temporal order or duration (temporal) of
described events.

7. Logical is pertinent to logical reasoning and
arguments described in a passage.

N Human Accuracy as Question
Difficulty

We compute a similar linguistic analysis using the
average human accuracy as the difficulty of the
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Figure 14: Average word frequencies using SUB-
TLEXus values. Pearson’s r = 0.02 with p = 0.23.
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Figure 15: Question words and their two subsequent
words in the (a) standard and (b) adversarial collection
methods.

questions. Table 7 shows Pearson’s correlation r
and its p-value between the human accuracy (as
the question difficulty) and textual aspects. Just as
when using the human–model gap, we do not ob-
serve any strong correlations except for the elapsed
time for answering that shows a weak negative
correlation, which means difficult-for-human ques-
tions take slightly longer for answering. Figure 19
shows the frequency of comprehension types in
easy and hard examples with regard to the question
difficulty for humans.

O Examples of Collected Questions

Table 8 shows examples of questions and options
for each comprehension type. After extracting the
question words, we review about 100 questions
to collect keywords that determine comprehension
type (e.g., “reason” for non-factoid,“best summa-
rize” for gestalt/attitude and “if” for logical). We
then write simple rules that highlight these key-
words, which help us manually annotate the remain-
ing questions within approximately five hours.
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Figure 16: Question words and human–model perfor-
mance gap. The triangle markers indicate mean values
and the black bars indicate medians.
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Figure 17: Comprehension types and human–model
performance gap. The triangle markers indicate mean
values and the black bars indicate medians.

P Writing Instructions and Examples

Figures 20, 21, and 22 show the instructions, good
and bad examples, and task interface provided to
the crowdworkers in our data collection.
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Figure 18: Frequencies of question words (wh-words) across passage sources and collection methods.

Aspects r p

Passage length 0.009 0.59
Flesch–Kincaid grade -0.06 <0.001
Elapsed time for answering -0.16 <0.001
Elapsed time for writing -0.04 0.007
Syntactic surprisal -0.01 0.53
Semantic surprisal -0.001 0.93
Average word frequency 0.004 0.82

Table 7: Pearson’s correlation r and its p-value between
the human accuracy and textual aspects.
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Figure 19: Frequency of comprehension types in easy
and hard examples as determined by the question diffi-
culty for humans for each collection method.
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Comprehension Type
(source, difficulty)

Example

Factuality
(Gutenberg, easy)

Q: Which of the following is not mentioned in the passage?
A: � An Earl lived in a house that had a relatively low profile. / � There
were some other buildings near the Manor. / � Scroope is a village that is
closely linked to an Earl’s home. / X� Scroope Manor was sold to the village
by the Earl.

Factoid
(Wiki. science, easy)

Q: What helps many fish keep their buoyancy in water?
A: � muscles on either side of the backbone / � fins / X� a swim bladder /
� a streamlined body

Non-factoid
(Wiki. arts, hard)

Q: How did a major portion of English words enter the English language?
A: � French speakers can understand many English words without having
to undergo any orthographical change. / � Many words in Old English
are from Old Norse. / X� About one-third of words in English entered the
language from the long contact between French and English. / � Romance
languages have "Latinate" roots.

Gestalt/Attitude
(Slate, easy)

Q: Which of the following is a criticism the author has about Dick Riordan?
A:�He’s not transparent about his typical lunch looks like, which highlights
his lack of wisdom. / X� He’s okay syphoning resources from elsewhere to
himself for personal gain. / �Much like Hillary Clinton, he lacks any sort
of coherent persona. / � He is responsible for the vast swaths of one-story
buildings that cover the entire landscape of L.A.

Numeric
(RACE, hard)

Q: How old was Mary Shelley when she died?
A: �Mary Shelley was in her thirties when she died. / �Mary Shelley died
when she was forty four years old. /X�Mary Shelley died when she was in
her fifties. / �Mary Shelley lived well into her eighties before she died.

Spatial/Temporal
(MCTest, easy)

Q: When did it start to rain?
A: X� It started to rain after Will ate his biscuit and jam. / � It started to rain
after Will heard the thunder. / � It started to rain while Will was at the store.
/ � It started to rain on Will’s walk home from the store.

Logical
(ReClor, hard)

Q: Which statement, if true, would weaken the conclusion of the passage?
A: � Archaeologists have found remains of shipwrecks from 2000 BC
between Crete and southern Greece. /X� The earliest bronze artifacts found
in southern Greece date to 3000 BC. / � The Minoans were far more
accomplished in producing bronzeware than any other civilization in the area
at the time. / � The capacity of Minoan bronze furnaces was extraordinarily
large compared to other societies in 2000 BC.

Table 8: Examples of each comprehension type taken from our collected data.
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Figure 20: Instructions of the writing task.
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Figure 21: Good and bad examples included in the instructions of the writing task.
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Figure 22: Interface of the writing task.
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