
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6939 - 6950

May 22-27, 2022 c©2022 Association for Computational Linguistics

MILIE: Modular & Iterative Multilingual Open Information Extraction

Bhushan Kotnis1, Kiril Gashteovski1, Daniel Oñoro-Rubio1,
Ammar Shaker1, Vanesa Rodriguez-Tembras2, Makoto Takamoto1,

Mathias Niepert1,3, Carolin Lawrence1
1NEC Laboratories Europe, Heidelberg, Germany.

firstname.lastname@neclab.eu
2Heidelberg University, Center for Iberoamerican Studies, Germany.

3University of Stuttgart, Germany

Abstract

Open Information Extraction (OpenIE) is the
task of extracting (subject, predicate, object)
triples from natural language sentences. Cur-
rent OpenIE systems extract all triple slots in-
dependently. In contrast, we explore the hy-
pothesis that it may be beneficial to extract
triple slots iteratively: first extract easy slots,
followed by the difficult ones by conditioning
on the easy slots, and therefore achieve a better
overall extraction.

Based on this hypothesis, we propose a neural
OpenIE system, MILIE, that operates in an it-
erative fashion. Due to the iterative nature, the
system is also modular—it is possible to seam-
lessly integrate rule based extraction systems
with a neural end-to-end system, thereby al-
lowing rule based systems to supply extraction
slots which MILIE can leverage for extracting
the remaining slots. We confirm our hypothe-
sis empirically: MILIE outperforms SOTA sys-
tems on multiple languages ranging from Chi-
nese to Arabic. Additionally, we are the first to
provide an OpenIE test dataset for Arabic and
Galician.

1 Introduction

Open Information Extraction (OpenIE) aims to ex-
tract structured facts in the form of (subject, re-
lation, object)-triples from natural language sen-
tences (Etzioni et al., 2008). For example, given
a sentence, "Barrack Obama became the US Pres-
ident in the year 2008", an OpenIE system is
expected to extract the following triples: (Bar-
rack Obama; became; US President) and (Barrack
Obama; became US President in; 2008). We refer
to subject, predicate and the object of the triple as
slots of a triple. OpenIE extractions are schema-
free, human understandable intermediate represen-
tations of facts in source texts (Mausam, 2016).
They are useful in a variety of information extrac-
tion end tasks such as summarization (Xu and Lap-
ata, 2021), question answering (Khot et al., 2017;

Yan et al., 2018) and automated schema extraction
(Nimishakavi et al., 2016).

The various slots of a triple are dependent on
each other and hence an error in one slot renders
the entire extraction unusable. We hypothesize that
triple extraction errors largely stem from the diffi-
culty of extracting certain slots of a triple and said
difficulty may depend on the sentence construction
and the language. For example, "Barrack Obama
became the US President in the year 2008" con-
tains two triples (Barrack Obama; became; US
President) and (Barrack Obama; became US Presi-
dent in; 2008). Extracting the predicate, "became
US President in", for the second triple is tricky,
because the object of the first triple (US President)
overlaps with the predicate of the second triple.
But if the extraction system was provided with the
object, (2008), and then asked to extract a triple
conditioned on this object, the predicate extraction
would be easier.

This is precisely the hypothesis we wish to in-
vestigate —is it easier to extract certain slots of a
triple, say subjects, compared to other slots, such as
objects, and is it possible to improve performance
by leveraging specific slot extraction orders?

Given the hypothesis, we propose MILIE, a
Modular & Iterative multiLingual open Information
Extraction system, which iteratively extracts the
different slots of a triple. The iterative nature al-
lows for (1) studying the effects of a slot extractions
on the remaining extractions, (2) extracting easier
triple slots followed by harder ones, (3) aggregat-
ing different slot extraction orders as a mixture of
experts, and (4) integrating slots supplied by an
external rule-based system, resulting in a hybrid
system. The latter offers a system that combines
the best of neural and rule based systems, e.g. by
using a rule-based system to extract high precision
slots on which the neural system is conditioned.

We empirically confirm our hypothesis: the iter-
ative nature of MILIE outperforms several SOTA

6939

systems. It proves especially useful for zero-shot
multilingual extraction, which we evaluated on five
different low resource languages. Additionally we
show how MILIE can leverage rule-based slot ex-
traction by conditioning on them to predict the
remaining parts of the triple. Therefore MILIE is a
boon for existing applications wishing to transition
from a rule based information extraction system
to a neural one, because MILIE would allow using
the rule-based system to compensate for the lack
of exhaustive training data. Finally, we perform
linguistic analyses that uncovers useful insights
on how different languages either make it easy or
difficult for OpenIE systems to extract individual
elements of the triple.

Our contributions are summarized as follows:

1. We propose MILIE, a multilingual OpenIE
system that iteratively extracts the different
slots of a triple.

2. We carry out extensive experiments on a vari-
ety of languages (English, Chinese, German,
Arabic, Galician, Spanish and Portuguese)
and demonstrate that MILIE outperforms re-
cent SOTA systems by a wide margin, espe-
cially on languages other than English.

3. We perform an extensive analysis based on ab-
lation studies and uncover interesting insights
about the nature of OpenIE task in different
languages.

2 MILIE

The backbone of our system is the iterative proce-
dure (Section 2.1), which allows us to investigate
our hypothesis. The iterative procedure allows us
to extract triple slots in various pathway orders,
which results in a series of possible aggregation
schemes (Section 2.2). To create a strong iterative
system, the training paradigm (Section 2.3 needs
to consider two aspects: (1) it needs to prepare
incomplete triple extractions which represent in-
complete triple extractions the system is expected
to predict; (2) it creates negative samples that allow
for teaching the system when to not continue with
an extraction due to a prior error. With the iterative
nature we also integrate rule-based systems (Sec-
tion 2.4) as well as elegantly handle the specific
case of n-ary extractions, where more than 3 slots
need to be extracted (Section 2.5).

Figure 1: MILIE system architecture. An input se-
quence is is tokenized and, optionally, dependency
parsed. This is given to a BERT-based transformer,
which outputs a hidden state for each token. The hidden
states are given to each of the extraction heads, here to
the predicate head. This head marks the location of the
predicate in the sequence. The system then proceeds to
extract the other slots, see Figure 2.

2.1 Iterative Prediction

To implement the iterative nature of our system,
we use a BERT-based transformer (Devlin et al.,
2019) as the base building block. On top of this
block, we add a total of four neural networks blocks
in parallel, which we refer to as heads and which
are each in charge of extracting a particular triple
slot. Concretely, we have the heads fs, fo, fp, fa,
which are in charge of predicting subject, object,
predicate and argument, respectively. The argu-
ment head is an extra feature, which is needed for
n-ary extractions that occur in some datasets, where
in addition to the triple there might be an argument
that modifies the triple, e.g., a temporal phrase.

Given an input sequence of words of length N ,
S = w1, · · · , wN , the task for each extraction head
is framed as a BIO tagging problem. For this, each
output head outputs a label li for token wi, where
li ∈ {B, I,O}, i = 1 · · ·N (see Figure 1 for
the architecture). The output heads use the final
transformer hidden state and predict labels denoted
by Ls, Lo, Lp, La where L(·) = l1, l2, · · · lN .

By having different extraction heads, we iden-
tify extraction slots iteratively. During prediction

6940

Figure 2: Iterative extraction dynamics for decoding
pathway Ppsoa. The numbers indicate the iteration
number. Iterations are color coded, black is the pred-
icate extraction, green subject extraction, blue object
extraction and red argument extraction.

time, along with the input sentence, the model also
expects extractions predicted by the previous itera-
tions. To provide this information we add special
symbols to the sentence that explicitly mark the
previous extractions in the sentence. For exam-
ple, we surround the predicate with the symbol
<P>, subject with <S> and object with <O>. For
example, for predicting the object given the predi-
cate extracted from previous iteration, the extracted
predicate is marked in the sentence using the <P>
symbol and the sentence is consequently passed
through the transformer for predicting the object
using the object head. We always extract the ar-
guments at the last iteration, therefore we do not
mark the arguments in the sentence.1

Finally, we add the option to attach a dependency
tag ti to each word wi in the sequence. This addi-
tional information may allow the system to more
effectively learn how to extract triples. We use a
language specific dependency tagger for obtaining
the tags. We target languages, which are low re-
source for OpenIE, but could be high resource for
other tasks, such as PoS tagging or dependency
parsing. For a graphical overview of the MILIE
architecture, see Figure 1.

1Preliminary experiments suggested that predicted the ar-
gument last leads to better overall results. This makes sense
intuitively, as the argument can modify the entire triple.

2.2 Aggregating Decoding Pathways

The order in which the different triple parts are
extracted can be varied. This allows us to investi-
gate the challenge of extracting triple elements in
specific order on different languages. Additionally
different pathways aid different kinds of extrac-
tions and combining them results in a richer set of
extractions. Choosing a particular order defines a
decoding pathway Puvxy as a sequence of output
heads where u, v, x, y ∈ {s, p, o, a}. For example,
the decoding pathway Pspoa denotes a sequence of
output functions (fs, fp, fo, fa).

Fixing the n-ary argument extraction in the fi-
nal iteration we obtain the following six decoding
pathways- Pspoa, Psopa, Ppsoa, Pposa, Pospa, Popsa.
Let’s assume the decoding pathway Ppsoa: pred-
icates are extracted first, then for each predicate,
subjects are extracted, then for each (predicate, sub-
ject) pair objects are extracted and finally for ev-
ery extracted (predicate, subject, object) tuple all
the n-ary arguments are extracted. This extraction
procedure preserves the relationships between the
extracted elements resulting in correctly extracting
multiple triples. Figure 2 illustrates this procedure.

We hypothesize that some triples are easier to
predict if, e.g., the predicate is extracted first while
for others subject first would work well. This could
differ from triple to triple, but also with different
languages. Consequently, some decoding pathways
might be more error prone than others. This leads
to two questions: (1) Which pathways are best? (2)
Can we improve recall by aggregating triples using
different decoding pathways?

We propose a simple algorithm we term as Wa-
ter Filling (WF) for aggregating the extractions.
This is inspired by the power allocation problem
in the communication engineering literature (Ku-
mar et al., 2008). Imagine a thirsty person with
access to different pots of water with varying levels
of purity and with the caveat that the amount of
water is inversely proportional to the purity. The
natural solution is to first drink the high purity wa-
ter and move on to the pots in decreasing level of
purity until the thirst is quenched. We use the same
idea. Treating each decoding pathways as an ex-
pert, we assume that the triples extracted by all 6
pathways are more accurate compared to those ex-
tracted by only 5 pathways, 4 pathways and so on.
This can be thought of as triples obtaining votes
from experts. Starting with an empty set, for each
sentence we start adding triples to the set in the

6941

order of decreasing number of received votes. The
normalized votes a triple receives is used as the
confidence value of the triple. Although the proce-
dure is explained in a sequential manner it can be
parallelized by running all 6 pathways in parallel.

2.3 Training

Triple preparation. For effectively extracting
different triple slots conditioned on other slots, the
model needs to see such combinations during train-
ing. However, enumerating all possible combina-
tions exhaustively is prohibitively expensive. We
propose a sampling technique that ensures that the
model sees varied combinations of different targets
and prior extractions. This is done by creating a
training set that simulates a prior extraction and
forces the model to predict the next extraction. To
ensure that the training dataset size does not ex-
plode, we randomly sample one pathway order for
each training instance.

Based on the sampled pathway, we randomly
sample at which step in the decoding process we
are at and then mark the slots prior to this step in
the sentence and use the remaining steps as target
labels. We allow for multiple instances of the target
labels, however there is only one instance of the
marked element. For example, given one subject
the target could be multiple predicates. This proce-
dure trains the model to predict an appropriate label
conditioned on a variety of previous predictions. At
each time step we update the parameters of the cur-
rently used head and the underlying model.

Given that triples are at different steps in their
decoding process, we minimize different log-
likelihood functions. We describe the log likeli-
hood functions along with a few example of the
training instances in Table 1. We list additional
details in Appendix A.

Negative Sampling. Iterative prediction is prone
to error amplification, i.e. if an error is made dur-
ing the first iteration then the error propagates and
affects subsequent extractions. Anticipating this,
we train MILIE to recognize extraction errors made
in the previous iteration. We purposely augment
the training data with corrupted data points con-
taining incorrectly marked extractions. For each
of the incorrect extractions the model is trained to
predict a blank extraction, i.e., predicting the out-
side label for all tokens. We use a similar sampling
procedure as described previously. For every train-
ing data point from a fixed number of training data

points, we create one negative sample using one
of the three techniques and then choose k negative
samples, where k is a hyperparameter.

We corrupt triples using three techniques: (1)
corrupting the predicates by replacing them with
randomly chosen tokens from the sentence, (2) cor-
rupting the subject and object by exchanging them,
and (3) by mismatching the subject object pairs
from different triples. We detail the entire proce-
dure in Appendix A.

2.4 Integrating Linguistic Rule based systems
Crucially, each output head is conditioned on the in-
put and the output labels extracted by the previous
function. This feature allows MILIE to seamlessly
integrate rule based systems with neural systems
since the conditioning can be also done on extrac-
tions obtained from rule based systems. This is
advantageous in situations where a linguistic rule
based system works well, for say, extracting ob-
jects. Then MILIE can complete the missing parts
of the triple conditioned on the objects.

We treat the output of the rule based system as
potential objects paired with subjects and extract
the predicate connecting them. If the rule based ex-
traction is incorrect, then MILIE can detect the error
and extract nothing. This results in more accurate
extractions compared to simply post-processing the
extracted tokens using linguistic rules.

2.5 Binarizing n-ary Extractions
We evaluate MILIE on both n-ary as well as binary
triple extraction datasets. One simple way to con-
vert the n-ary extractions to binary extraction is to
ignore the n-ary arguments. However, this will lead
to a decrease in recall because the n-ary arguments
may not be part of other extracted triples due to
the initial n-ary extraction. Another method is to
treat the extracted n-ary arguments as objects to
the same subject, predicate pair. This would ensure
that the extracted arguments are not dropped, how-
ever this may result in drop of precision since the
n-ary argument may not attach to the same predi-
cate. For example, consider the extraction (Barrack
Obama; became; US President; in the year 2008).
Treating n-ary arguments as objects results in (Bar-
rack Obama; became; US President) and (Barrack
Obama; became; in the year 2008) resulting in an
incorrect extraction.

In contrast to the above subpar solutions, the iter-
ative nature of MILIE allows us to elegantly address
the problem of converting n-ary extractions into a

6942

Likelihood function Input Sentence Head Target

Lp = −
∑N

i=1 log p(l
p
i |fp(θ);S) The Taj Mahal was built by Shah Jahan in 1643 Predicate built by

Ls = −
∑N

i=1 log p(l
s
i |fs(θ);S;L

p) The Taj Mahal was <P>built by<P> Shah Jahan in 1643 Subject Taj Mahal
Lo = −

∑N
i=1 log p(l

o
i | fo(θ);S;L

p;Ls) The <S>Taj Mahal<S> was <P>built by<P> Shah Jahan in 1643 Object Shah Jahan
La = −

∑N
i=1 log p(l

a
i | fa(θ);S;L

p;Ls;Lo) The <S>Taj Mahal<S> was <P>built by<P> <O>Shah Jahan<O> in 1643 Argument in 1643
Lp = −

∑N
i=1 log p(l

p
i | fp(θ);S;L

s;Lo) The <S>Taj Mahal<S> was built by <O>Shah Jahan<O> in 1643. Predicate built by
Ls = −

∑N
i=1 log p(l

s
i | fs(θ);S;L

o) The Taj Mahal was built by <O>Shah Jahan<O> in 1643. Subject Taj Mahal
Lo = −

∑N
i=1 log p(l

o
i | fo(θ);S) The Taj Mahal was built by Shah Jahan in 1643. Object Shah Jahan

Table 1: A few examples of training inputs and corresponding log likelihood functions.

English (Ro et al., 2020) Translation Error Explanation

The stock pot should be chilled and the solid lump
of dripping which settles when chilled should be
scraped clean and re-chilled for future use.

La olla de caldo debe ser enfriado y la masa sólida
de goteo que se asienta cuando [se] enfriada se debe
raspar limpio y re-enfriada para uso futuro.

"enfriado": the gender of the adjective doesn’t
match the noun.
"[se]": missing reflexive particle.
"enfriada": wrong use of the participle.
"raspar limpio": syntactic error.

However, StatesWest isn’t abandoning its pursuit of
the much-larger Mesa.

Sin embargo, StatesWest no abandona su búsqueda
de la tan - Mesa grande.

<tan - Mesa grande>: syntactically and semanti-
cally incorrect.

The rest of the group reach a small shop, where
Brady attempts to phone the Sheriff, but the
crocodile breaks through a wall and devours
Annabelle.

El resto del grupo llega a una pequeña tienda,
donde Brady intentos de teléfono del Sheriff, pero
los saltos de cocodrilo a través de una pared, y de-
vora a Annabelle.

"intentos": number and the gender don’t match
with the noun.
"de teléfono del Sheriff": telefóno cannot be used
as a verb.
"los saltos de cocodrilo a través de una pared":
semantically incorrect.

Table 2: Examples of incorrectly translated sentences. Using red we highlight mistranslated words, using blue,
missing words, and with a strikethrough the parts that are semantically or syntactically incorrect.

binary format: we treat the extracted n-ary argu-
ments as hypothesized objects. We then provide the
extracted subject, hypothesized object pair to the
model, which then extracts a new predicate condi-
tioned on the previously extracted subject and the
hypothesized object, i.e., p(Lp | fp(θ);S;Ls =
"Barrack Obama";Lo = "year 2008"). This cre-
ates a possibility of extracting the correct predicate,
something that is not possible with existing n-ary
OpenIE systems.

3 Experiments

3.1 Setup

Baselines & Training. We compare MILIE
with both unsupervised and supervised baselines.
Specifically we compare MILIE with ClausIE,
MinIE, Stanford-OIE, RNN-OIE, OIE6 (Del Corro
and Gemulla, 2013; Gashteovski et al., 2017;
Stanovsky et al., 2018; Angeli et al., 2015; Kol-
luru et al., 2020a) and Multi2OIE (Ro et al., 2020)
on English. Multi2OIE is the only neural system ca-
pable of extracting triples from multiple languages
and therefore it is the only available baseline for
the non-English evaluations.

We use the English RE-OIE2016 (Zhan and
Zhao, 2020) training dataset used in (Ro et al.,
2020). This training dataset contains n-ary extrac-
tions allowing MILIE to be evaluated on both n-ary
as well as binary extraction benchmarks. Evalu-

ation on languages other than English is always
zero-shot, i.e., the model is trained using only the
English Re-OIE2016 dataset and tested on test set
of the other languages.

CaRB benchmark. We use the CARB bench-
mark introduced in (Bhardwaj et al., 2019) for eval-
uating English OpenIE n-ary extraction. However,
the CARB benchmark also suffers from serious
shortcomings due to its evaluation method based
on token overlaps. For example, (Gashteovski et al.,
2021) discovered that a simple OpenIE system that
breaks the sentence into a triple at the verb bound-
ary achieves 0.70 recall and 0.19 precision. This
is problematic since it indicates that simply adding
extraneous words to the extraction results in im-
proved recall.

BenchIE benchmark. Due to the issues identi-
fied for CaRB, we also evaluate using BenchIE,
which is an exhaustive fact based multilingual
OpenIE benchmark proposed by (Gashteovski
et al., 2021). BenchIE evaluates explicit bi-
nary extractions in English, Chinese, and German.
BenchIE is accompanied by an annotation tool,
AnnIE (Friedrich et al., 2021), for extending the
benchmark to additional languages. For Arabic, we
translated 100 sentences from BenchIE-English to
Arabic with the help of a native Arabic speaker and
then extracted triples using AnnIE. Similarly for
Galician we translated all 300 sentences to Galician

6943

Chinese German Arabic Galician

F1 P R F1 P R F1 P R F1 P R

M2OIE 17.1 25.7 12.8 4.0 8.9 2.6 4.9 16.3 2.9 8.7 14.7 6.2
milIE 20.5 25.2 17.3 8.5 13.4 6.3 — — — 18.3 23.7 14.8
- DEP 19.2 19.8 18.7 8.4 11.3 6.7 7.3 14.2 4.9 13.9 16.6 11.9
- NS 17.3 19.6 15.5 10.3 14.3 8.0 4.0 10.8 2.5 13.7 18.5 10.9
- Bin 20.0 22.0 18.4 9.0 13.5 6.7 7.5 13.8 5.1 17.3 21.7 14.4

Table 3: MILLIE performance comparison on multilingual BenchIE. - DEP represents MILIE trained and eval-
uated without dependency tags, -NS represents absence of negative sampling, -Bin represents lack of binarizing
mechanism. MILIE always outperforms M2OIE. For Arabic no dependency tags were available, therefore the first
entry for Arabic is in the line - DEP.

Spanish (LM) Portuguese (LM) Spanish-Clean (LM)

F1 P R F1 P R F1 P R

M2OIE 60.2 59.1 61.2 59.1 56.1 62.5 53.5 66.0 44.9
milIE 64.2 69.5 59.7 65.6 70.2 61.6 55.7 58.1 53.5
- DEP 48.1 64.4 38.4 46.9 58.8 39.0 45.0 62.0 35.3
- NS 59.1 75.7 48.5 62.4 74.0 54.0 59.5 66.2 53.9

Table 4: MILLIE performance comparison on CARB lexical match (LM) benchmark. - DEP represents MILIE
trained and evaluated without dependency tags, -NS represents absence of negative sampling. MILIE always
outperforms M2OIE, except for the recall on the erroneous automatic translation of Spanish and Portuguese.

with the help of a native Galician speaker who also
annotated the dataset using AnnIE.

Multilingual CaRB. Additionally we also eval-
uate MILIE on the Spanish and Portuguese mul-
tilingual CaRB datasets introduced in Ro et al.
(2020). The lexical match evaluation used in
this dataset has numerous shortcomings (Bhard-
waj et al., 2019), however we include it for a fair
comparison to Ro et al. (2020)’s Multi2OIE sys-
tem. The CARB test set was translated to Spanish
and Portuguese using the Google Translate API. To
investigate the quality of these automatic transla-
tions, we randomly sampled 100 sentences from
the test sets and had them evaluated by native Span-
ish and Portuguese speakers. To our surprise we
discovered that around 70 percent of the sentence
or extraction translations were inaccurate. Table
2 shows a few examples of the incorrect transla-
tions. For an accurate and clean comparison with
Multi2OIE we also cleaned up part of the Spanish
test set by re-translating 149 sentences and their ex-
tractions in Spanish. These translations were done
by native Spanish speakers.

On the CARB English benchmark we use re-
sults for baselines reported in (Ro et al., 2020) and
(Kolluru et al., 2020a). For evaluating on BenchIE,
we run all the baselines on the BenchIE English
evaluation benchmark. For multilingual BenchIE

we train Multi2OIE using the code and hyperpa-
rameters supplied in the paper. For hyperparameter
tuning we use the CARB English validation set and
use the F1 scores obtained using the CARB evalua-
tion procedure for comparing models with different
hyperparameters. The MILIE model is trained us-
ing negative sampling and includes the dependency
tag information and binarization. We use the spaCy
dependency parser for obtaining dependency tags.
We were unable to find a dependency parsing tool
with universal dependencies for Arabic and there-
fore we did not use dependency tags for Arabic.
For BenchIE, MILIE uses the binarization function
described in Section 2.5, but not for CARB and lex-
ical match because they evaluate n-ary extractions.

3.2 Results

3.2.1 English

In Table 5, we compare MILIE with several unsu-
pervised and supervised baselines in English on
CARB and BenchIE. MILIE performs much better
compared to other neural baselines on BenchIE.
This is not the case for the CARB dataset since
CARB penalizes compact extractions and rewards
longer extractions (Gashteovski et al., 2021). Al-
though rule based systems like ClausIE and MinIE
outperform neural systems, they cannot be used for
languages other than English.

6944

English CaRB-nary BenchIE-binary

F1 Prec. Rec. F1 Prec. Rec.
ClausIE 44.9 — — 33.9 50.3 25.6
MinIE 41.9 — — 33.7 42.9 27.8
Stanford 23.0 — — 13.0 11.1 15.7

R-OIE 46.7 55.6 40.2 13.0 37.3 7.8
S-OIE 49.4 60.9 41.6 — — —
OIE6 52.7 — — 25.4 31.1 21.4
M2OIE 52.3 60.9 45.8 22.8 39.2 16.1
milIE 45.0 48.6 41.8 27.9 36.6 22.4
-DEP 41.2 44.1 38.6 26.7 31.1 23.4
-NS 44.7 47.6 42.2 25.8 29.6 22.9
-Bin — — — 27.7 34.6 23.1

Table 5: MILIE performance comparison on CARB
and BenchIE English benchmarks. MILIE performs
best out of all models on BenchIE. It performs worse
compared to some model on CaRB, which is due to the
CaRB evaluation scheme where overly long extractions
are rewarded.

3.2.2 Multilingual
In Table 3, we compare MILIE with Multi2OIE
(M2OIE) on the multilingual BenchIE benchmark.
MILIE performs significantly better compared to
Multi2OIE for all the languages. For German and
Arabic both Multi2OIE and MILIE perform sig-
nificantly worse compared to the other languages.
The presence of separable prefixes in German verbs
which cannot be extracted using BIO tags results
in low performance. The BIO tagging scheme as-
sumes continuity of phrases which is absent for
most German verbs present in predicates, resulting
in extremely low recall. For Arabic, the low scores
are due to the Verb-Subject-Object nature of the
Arabic language along with the fact that subjects or
objects can be expressed as part of the verb. This
calls for additional research on framing OpenIE
tasks for languages such as German and Arabic.
MILIE significantly outperforms Multi2OIE for
Galician language which is closely related to Por-
tuguese. Ablation results in Table 3 also indicate
the usefulness of adding the dependency tags, neg-
ative sampling, and the binarization mechanism.

In Table 4, we compare MILIE with Multi2OIE
on the CARB lexical match benchmark. MILIE,
without negative sampling works best for Spanish
clean data. This is not due to the language, but
due to the lexical match evaluation which rewards
overly long extractions even if incorrect. Not us-
ing negative sampling sometimes improves recall
which may improve F1 score. This is observed for
the German benchmark.

English F1 Prec. Rec. ∆ F1

MILIE 27.88 36.65 22.37 —

MILIE + CO 29.71 32.35 27.48 + 1.83 %

Table 6: Performance comparison of Hybrid MILIE on
English BenchIE. Here ‘+ CO’ denotes system fused
with extracted ClausIE Objects.

F1-Score EN DE ZH AR GL ES

SPOA 26.3 8.7 20.3 5.3 17.5 55.2
SOPA 24.9 8.2 18.2 5.8 17.5 53.1
PSOA 27.7 8.8 19.5 5.0 17.5 51.4
POSA 27.4 8.1 19.4 5.4 17.1 51.7
OSPA 22.4 8.0 17.1 5.7 15.3 45.5
OPSA 22.2 7.9 17.5 6.4 15.2 47.9
DYN 26.9 9.0 19.5 4.9 17.5 51.0
WF 27.9 8.5 20.5 7.3 18.3 55.7

Table 7: Comparison between different decoding
schemes. WF represents water filling and DYN the dy-
namic setting.

3.2.3 Hybrid OpenIE
MILIE can easily integrate any rule based system
that extracts even a part of the triple. To evaluate
this, we first simulate a system that only extracts
the object and use MILIE to extract other parts of
the triple. We do this by employing ClausIE for
extracting triples for the BenchIE English data and
only use the object, discarding the rest of the triple.

The reason behind the choice of selecting object
extraction from ClausIE is the fact that neural sys-
tems are not good at extracting objects (Kolluru
et al., 2020a). This is also seen from additional
experiments detailed in Section 4. Table 6 indeed
confirms that combining rule based object extrac-
tion with MILIE improves performance by over 6%
in F1 score. This showcases that MILIE’s ability to
integrate other systems can be a great advantage.

4 Analysis

We would like to analyze that the ability of MILIE
to extract triples using different extraction patterns
results in improved performance on multilingual
data. For this, we compare MILIE with the wa-
ter filling aggregation against MILIE with different
extraction pathways.We also compared with a dy-
namic decoding scheme where MILIE chooses a
decoding pathways based on the sentence. To do
this we split a part of the English training set and
for each sentence in the split we record the extrac-
tion pathway that provides the best F1 score MILIE

6945

Figure 3: Percentage error contribution due to incorrect
subject, predicate or object for EN, DE, ZH and AR.
Most errors occur in the object.

as per CARB evaluation. We then use this as train-
ing data for training another mBERT model which
classifies each sentence in one of the six classes
where each class represents an extraction pathway.

Table 7 details the performance for different ex-
traction schemes. All the extraction schemes ex-
cept WF, use only one pathway. DYN provides
mixed results across the different languages - for
German it is the best approach, whereas for Ara-
bic it is the worst. In contrast, the combination
of multiple pathways allows to performing much
better than the other approaches on all languages,
except German. This demonstrates that combining
triple extraction from multiple pathways is better
than any single pathway, which in turn confirms
that extracting triples repeatedly from the same sen-
tence using multiple extraction pathways is more
profitable than using a single extraction pathway.

Additionally, Table 7 provides an interesting in-
sight: predicate first seems to be the best, followed
by subject first and then object first for languages
other than Arabic. This also shows how the diffi-
culty of extracting triple slots using transfer learn-
ing from English varies with the target language.

Table 7 suggests that predicates are easier to ex-
tract leading to lesser number of errors propagated
in the prediction chain. We suspect that this could
result from differences in linguistic variability. To
test our hypothesis we measured the entropy of
the distribution of dependency and part-of-speech
tags in the predicate, subject and object slots in
the BenchIE English and the multilingual test sets.
Results shown in Table 8 suggest that linguistic
complexity of objects is higher than those of predi-
cates and subjects.

Subject Predicate Object

DEP POS DEP POS DEP POS

EN 1.719 1.588 2.443 1.831 2.286 1.861
ZH 2.464 1.827 2.497 1.476 2.602 1.943
DE 1.587 1.567 1.811 1.457 2.115 2.095

Table 8: Entropy of dependency and part of speech
tags for subject, predicate and objects in BenchIE test
data. Objects exhibit the highest entropy which indi-
cates their higher complexity.

This is also confirmed in Figure 3, where we plot
the extraction errors in either subject, predicate or
objects among incorrectly extracted triples. Most
errors result from extracting incorrect objects com-
pared to predicates and subjects. The percentage
sum does not add to hundred because an incorrect
triple can contain errors in more than one slot.

5 Related Work

OpenIE systems largely come in two flavors, (1)
unsupervised OpenIE systems that use fine grained
rules based on dependency parse trees (Del Corro
and Gemulla, 2013; Gashteovski et al., 2017;
Lauscher et al., 2019), and (2) supervised neu-
ral OpenIE systems, trained end-to-end with large
training datasets (Stanovsky et al., 2018; Ro et al.,
2020; Kolluru et al., 2020a). Neural OpenIE sys-
tems characterize OpenIE as either a sequence tag-
ging task (Stanovsky and Dagan, 2016; Ro et al.,
2020), span prediction task or a sequence genera-
tion task (Kolluru et al., 2020b). However all these
prior approaches extract a triple in a single step,
which does not allow us to study the effect of ex-
tracting a specific slot and its effect on extracting
the rest of the triple.

Neural generative approaches to OpenIE use
sequence-to-sequence models with a copy mecha-
nism for generating triples (Sun et al., 2018; Kol-
luru et al., 2020b). The copy mechanism needs
to be learned and is often a source of errors. A
series of alternative approaches cast OpenIE as a
sequence tagging task where each token is tagged
as subject, predicate or object using a BIO like
tagging scheme (Stanovsky et al., 2018; Ro et al.,
2020; Kolluru et al., 2020a). In these systems, all
triple slots are extracted simultaneously and it is
therefore not possible to condition on easier slots.

More closely related to our work is SpanOIE
(Zhan and Zhao, 2020) and Multi2OIE (Ro et al.,
2020), which first extracts the predicate and then

6946

all additional arguments. Like us, Multi2OIE (Ro
et al., 2020) addresses multilinguality by leverag-
ing a pretrained BERT model (Devlin et al., 2019)
for transfer learning. In contrast, through our itera-
tive nature, it is possible to enrich the extractions
in other languages if rule based models or other
models (e.g. NER recognizers) exist to provide in-
put for a triple slot. IMOJIE (Kolluru et al., 2020b)
iteratively extracts entire triples from a sentence:
first a triple is extracted, which is added to the in-
put to extract the next triple. In contrast, our work
iteratively extracts the slots of a single triple, which
allows us to condition on the easier slots and there-
fore obtain higher quality triples. (Kolluru et al.,
2020a) propose OpenIE6, a BERT based system,
with iterative grid labelling and linguistic constraint
based training. Such lingusitic constraints with
soft penalties cannot be readily ported to other lan-
guages since such constraints use head verb based
heuristics. Consequently OIE 6 is evaluated only
on English.

6 Conclusion

We introduced MILIE, a modular & iterative mul-
tilingual OpenIE system. We confirmed our hy-
pothesis that it is beneficial to extract triple slots
iteratively which allows us to extract easier slots
first. Our experiments on English as well as five
low resource languages uncovered that, with the
exception of Arabic, triples are easier to extract
if the predicate is extracted first followed by the
subject and object. More importantly we discov-
ered that extracting triples using multiple extraction
pathways is superior than the standard single ex-
tractions especially in the multilingual setting. We
also demonstrated how MILIE can be combined
seamlessly with rule based systems for improv-
ing performance. Although our experiments were
focused on the OpenIE task, we believe that the in-
sights gained can be translated to other information
extraction tasks with coupled extractions. We plan
to explore such connections in the future.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D. Manning. 2015. Leveraging Linguis-
tic Structure For Open Domain Information Extrac-
tion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 344–354.

Sangnie Bhardwaj, Samarth Aggarwal, and Mausam

Mausam. 2019. CaRB: A Crowdsourced Bench-
mark for Open IE. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing and the International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6263–6268.

Luciano Del Corro and Rainer Gemulla. 2013.
ClausIE: Clause-Based Open Information Extrac-
tion. In Proceedings of the International World Wide
Web Conferences (WWW), pages 355–366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), pages 4171–4186.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Niklas Friedrich, Kiril Gashteovski, Mingying Yu,
Bhushan Kotnis, Carolin Lawrence, Mathias
Niepert, and Goran Glavaš. 2021. Annie: An
annotation platform for constructing complete open
information extraction benchmark. arXiv preprint
arXiv:2109.07464.

Kiril Gashteovski, Rainer Gemulla, and Luciano
Del Corro. 2017. MinIE: Minimizing Facts in Open
Information Extraction. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2630–2640.

Kiril Gashteovski, Mingying Yu, Bhushan Kotnis, Car-
olin Lawrence, Goran Glavas, and Mathias Niepert.
2021. Benchie: Open information extraction eval-
uation based on facts, not tokens. arXiv preprint
arXiv:2109.06850.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017.
Answering complex questions using open informa-
tion extraction. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 311–316,
Vancouver, Canada. Association for Computational
Linguistics.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR.

Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal,
and Soumen Chakrabarti. 2020a. OpenIE6: Iterative
Grid Labeling and Coordination Analysis for Open
Information Extraction. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3748–3761.

6947

https://aclanthology.org/P15-1034/
https://aclanthology.org/P15-1034/
https://aclanthology.org/P15-1034/
https://aclanthology.org/D19-1651/
https://aclanthology.org/D19-1651/
https://dl.acm.org/doi/10.1145/2488388.2488420
https://dl.acm.org/doi/10.1145/2488388.2488420
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/D17-1278/
https://aclanthology.org/D17-1278/
https://doi.org/10.18653/v1/P17-2049
https://doi.org/10.18653/v1/P17-2049
https://aclanthology.org/2020.emnlp-main.306/
https://aclanthology.org/2020.emnlp-main.306/
https://aclanthology.org/2020.emnlp-main.306/

Keshav Kolluru, Samarth Aggarwal, Vipul Rathore,
Mausam, and Soumen Chakrabarti. 2020b. IMo-
JIE: Iterative Memory-Based Joint Open Informa-
tion Extraction. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 5871–5886.

Anurag Kumar, D Manjunath, and Joy Kuri. 2008.
Wireless networking. Elsevier.

Anne Lauscher, Yide Song, and Kiril Gashteovski.
2019. MinScIE: Citation-centered Open Informa-
tion Extraction. In 2019 ACM/IEEE Joint Confer-
ence on Digital Libraries (JCDL), pages 386–387.
IEEE.

Mausam Mausam. 2016. Open information extrac-
tion systems and downstream applications. In Pro-
ceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI’16, page
4074–4077. AAAI Press.

Madhav Nimishakavi, Uday Singh Saini, and Partha
Talukdar. 2016. Relation schema induction using
tensor factorization with side information. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 414–
423, Austin, Texas. Association for Computational
Linguistics.

Youngbin Ro, Yukyung Lee, and Pilsung Kang. 2020.
Multiˆ2OIE: Multilingual open information extrac-
tion based on multi-head attention with BERT. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1107–1117, Online.
Association for Computational Linguistics.

Gabriel Stanovsky and Ido Dagan. 2016. Creating a
Large Benchmark for Open Information Extraction.
In Proceedings of the International Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2300–2305.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised Open Information
Extraction. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 885–895.

Mingming Sun, Xu Li, Xin Wang, M. Fan, Y. Feng, and
P. Li. 2018. Logician: A unified end-to-end neural
approach for open-domain information extraction.
Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining.

Yumo Xu and Mirella Lapata. 2021. Generating Query
Focused Summaries from Query-Free resources. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (ACL), pages 6096–6109.

Zhao Yan, Duyu Tang, Nan Duan, Shujie Liu, Wendi
Wang, Daxin Jiang, Ming Zhou, and Zhoujun Li.
2018. Assertion-based qa with question-aware open

information extraction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Junlang Zhan and Hai Zhao. 2020. Span Model for
Open Information Extraction on Accurate Corpus.
In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 9523–9530.

A Appendix

A.1 Training Details
MILIE is expected to predict slots iteratively con-
ditioned on prior extracted slots of a triple, there-
fore it needs to be trained with similar examples.
Exhaustively listing all possible combinations of
prior extracted slots and slots to be extracted is pro-
hibitively expensive. Therefore we use a sampling
procedure that ensures the model sees a variety of
combinations during training.

For every example in the Re-2016 training
dataset we do the following

1. Sample an slot as target (for extraction) with
the following probabilities (subject: 1/3, pred-
icate: 5/12, object: 5/12)

2. Sample two slots, one that is assumed to be
extracted and other the target that needs to be
extracted conditioned on the first.

3. Sample three slots, first two assumed to be ex-
tracted and the third is the target conditioned
on first two.

4. If the example contains n-ary arguments, the
subject, predicate and object are assumed
to be extracted and the n-ary arguments are
treated as targets.

When a slot is sampled for target extraction, all
instances of the slot are expected to be extracted.
For example, if the target is the subject and if
the example consists of multiple subjects then
the targets are multiple subjects. However the
sampled slots assumed to be extracted must be
single instances, and if there are multiple instances,
then each instance is considered for conditioning
one after the other. Table 9 details the sampling
probabilities for two and three slots. The sampling
probabilities were not tuned, but rather chosen
based on heuristics. Post sampling, we obtain
training dataset with about 5 and a half million
examples.

Negative Sampling

6948

https://ieeexplore.ieee.org/abstract/document/8791192
https://ieeexplore.ieee.org/abstract/document/8791192
https://doi.org/10.18653/v1/D16-1040
https://doi.org/10.18653/v1/D16-1040
https://aclanthology.org/2020.findings-emnlp.99/
https://aclanthology.org/2020.findings-emnlp.99/
https://aclanthology.org/D16-1252/
https://aclanthology.org/D16-1252/
https://aclanthology.org/N18-1081/
https://aclanthology.org/N18-1081/
https://arxiv.org/abs/1901.10879
https://arxiv.org/abs/1901.10879

Extracted Slots Target Slot Probability

subject object 3/12
subject predicate 1/12
object subject 2/12
object predicate 1/12
predicate subject 2/12
predicate object 3/12

(subject, object) predicate 2/12
(subject, predicate) object 6/12
(object, predicate) subject 4/12

Table 9: Sampling Probabilities for training data.

Extracted Slots Target Corruption Prob.

subject object Invert 1/12
object predicate Invert 3/12
predicate subject Randomize 2/12
(subject, object) predicate Switch 1/12
(subject, predicate) object Switch 3/12
(predicate, object) subject Switch 2/12

Table 10: Negative Sampling Probabilities.

We provide MILIE with negative samples during
training for reducing error amplification arising
out of iterative prediction. In this case the target
is always blank, i.e., all the tokens are marked
as ’outside’. Thus the sampling revolves around
creating incorrectly extracted slots. We sample
negatives for every example in the training data
and then select k negative samples uniformly at
random. k is treated as a hyperparameter.

Table 10 provides the sampling probabilities for
different slot arrangements. We use three corrup-
tion procedure for generating incorrectly marked
slots, namely, invert, randomize and switch. The in-
vert method consist of swapping the extracted slot
with the target slot. For example, if the extracted
slot is subject and target slot is object, then the ob-
ject is marked as subject. The randomize method
consists of choosing a random span of tokens near
the actual slot. Finally the switch method involves
switching one of the extracted slot with a slot from
another triple associated with the sentence. For
example, in the case of (subject, object), the object
of this triple is switched with an object of another
triple associated with the same sentence. It is pos-
sible that the same subject maybe associated with
the new object as well. We check if this is true, and
if true we filter out such positives.

Num. NS (k) Learning Rate F1

0 1× 10−5 39.88
0 3× 10−5 44.70
0 9× 10−5 40.76

10K 1× 10−5 43.45
10K 3× 10−5 47.03
10K 9× 10−5 47.19

100K 1× 10−5 48.03
100K 3× 10−5 47.30
100K 9× 10−5 45.87

1M 1× 10−5 46.01
1M 3× 10−5 46.16
1M 9× 10−5 45.26

Table 11: Hyperparameter Tuning

A.2 Hyperparameter Tuning
We train and evaluate MILIE on an NVIDIA Titan
RTX with 24 GB GPU RAM. The training is done
for a maximum of two epochs and each epoch takes
about 9-10 hours. The maximum sentence length
using the English train and validation dataset is
found to be about 100. Due to the addition of
extracted triple element markers we allow a slack
of 20 tokens, thus fixing the maximum sentence
length to 120. We use a maximum possible batch
size that fits inside the GPU, which results in batch
size of 192. We use ADAM (Kingma and Ba, 2015)
as the optimizer with linear warmup and tune the
learning rate. The linear warmup fraction is fixed at
0.1. We also treat the number of negative samples,
k, as a hyperparameter and tune it. We choose the
best hyperparameters based on the F1 score. Table
11 provides details on the recall scores for every
hyperparameter arrangement.

6949

Figure 4: Distribution of the Part of Speech tags in subject, predicates and object tokens of triples in BenchIE
English test data.

6950

