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Abstract

Recent work in Natural Language Processing
has focused on developing approaches that ex-
tract faithful explanations, either via identify-
ing the most important tokens in the input (i.e.
post-hoc explanations) or by designing inher-
ently faithful models that first select the most
important tokens and then use them to predict
the correct label (i.e. select-then-predict mod-
els). Currently, these approaches are largely
evaluated on in-domain settings. Yet, little is
known about how post-hoc explanations and
inherently faithful models perform in out-of-
domain settings. In this paper, we conduct an
extensive empirical study that examines: (1)
the out-of-domain faithfulness of post-hoc ex-
planations, generated by five feature attribu-
tion methods; and (2) the out-of-domain perfor-
mance of two inherently faithful models over
six datasets. Contrary to our expectations, re-
sults show that in many cases out-of-domain
post-hoc explanation faithfulness measured by
sufficiency and comprehensiveness is higher
compared to in-domain. We find this mislead-
ing and suggest using a random baseline as a
yardstick for evaluating post-hoc explanation
faithfulness. Our findings also show that select-
then predict models demonstrate comparable
predictive performance in out-of-domain set-
tings to full-text trained models.1

1 Introduction

An explanation or rationale2, typically consists of a
subset of the input that contributes more to the pre-
diction. Extracting faithful explanations is impor-
tant for studying model behavior (Adebayo et al.,
2020) and assisting in tasks requiring human de-
cision making, such as clinical text classification
(Chakrabarty et al., 2019), misinformation detec-
tion (Popat et al., 2018; Mu and Aletras, 2020)
and legal text classification (Chalkidis et al., 2019,

1Code available at: https://github.com/
GChrysostomou/ood_faith

2We use these terms interchangeably throughout our work.

2021). A faithful explanation is one which accu-
rately represents the reasoning behind a model’s
prediction (Jacovi and Goldberg, 2020)

Two popular methods for extracting explanations
are through feature attribution approaches (i.e. post-
hoc explanation methods) or via inherently faithful
classifiers (i.e. select-then-predict models). The
first computes the contribution of different parts
of the input with respect to a model’s prediction
(Sundararajan et al., 2017; Ribeiro et al., 2016;
Shrikumar et al., 2017). The latter consists of using
a rationale extractor to identify the most important
parts of the input and a rationale classifier, a model
trained using as input only the extractor’s rationales
(Bastings et al., 2019; Jain et al., 2020; Guerreiro
and Martins, 2021).3 Figure 1 illustrates the two
approaches with an example.

Currently, these explanation methods have been
mostly evaluated on in-domain settings (i.e. the
train and test data come from the same distribution).
However, when deploying models in real-world ap-
plications, inference might be performed on data
from a different distribution, i.e. out-of-domain
(Desai and Durrett, 2020; Ovadia et al., 2019). This
can create implications when extracted explana-
tions (either using post-hoc methods or through
select-then-predict models) are used for assisting
human decision making. Whilst we are aware of
the limitations of current state-of-the-art models in
out-of-domain predictive performance (Hendrycks
et al., 2020), to the best of our knowledge, how
faithful out-of-domain post-hoc explanations are
has yet to be explored. Similarly, we are not aware
how inherently faithful select-then-predict models
generalize in out-of-domain settings.

Inspired by this, we conduct an extensive em-
pirical study to examine the faithfulness of five

3We refer to the rationale generator (i.e. generating a
rationale mask) from Bastings et al. (2019) and Jain et al.
(2020) as a rationale extractor, to avoid any confusion between
these approaches and free-text rationales (Wiegreffe et al.,
2021).

6920

https://github.com/GChrysostomou/ood_faith
https://github.com/GChrysostomou/ood_faith


(a) Post-hoc explanation (b) Select-then-predict model

Figure 1: An example of rationale extraction using: (a) a feature attribution approach to identify the most important
subset of the input (post-hoc explanation); and (b) using inherently faithful, select-then-predict models.

feature attribution approaches and the generaliz-
ability of two select-then-predict models in out-of-
domain settings across six dataset pairs. We hypoth-
esize that similar to model predictive performance,
post-hoc explanation faithfulness reduces in out-of-
domain settings and that select-then-predict perfor-
mance degrades. Our contributions are as follows:

• To the best of our knowledge, we are the first
to assess the faithfulness of post-hoc explana-
tions and performance of select-then-predict
models in out-of-domain settings.

• We show that post-hoc explanation sufficiency
and comprehensiveness show misleading in-
creases in out-of-domain settings. We argue
that they should be evaluated alongside a ran-
dom baseline as yardstick out-of-domain.

• We demonstrate that select-then-predict clas-
sifiers can be used in out-of-domain settings.
They lead to comparable predictive perfor-
mance to models trained on full-text, whilst
offering inherent faithfulness.

2 Related Work

2.1 Rationale Extraction
Given a model M, we are interested in explain-
ing why M predicted ŷ for a particular instance
x ∈ X. An extracted rationale R, should therefore
represent as accurately as possible the most impor-
tant subset of the input (R ∈ x) which contributed
mostly towards the model’s prediction ŷ.

Currently, there are two popular approaches for
extracting rationales. The first consists of using
feature attribution methods that attribute to the in-
put tokens an importance score (i.e. how important

an input token is to a model’s M prediction ŷ).
We can then form a rationale R, by selecting the
K most important tokens (independent or contigu-
ous) as indicated by the feature attribution method.
The second select-then-predict approach focuses
on training inherently faithful classifiers by jointly
training two modules, a rationale extractor and a
rationale classifier, trained only on rationales pro-
duced by the extractor (Lei et al., 2016; Bastings
et al., 2019; Treviso and Martins, 2020; Jain et al.,
2020; Guerreiro and Martins, 2021). Recent stud-
ies have used feature attribution approaches as part
of the rationale extractor (Jain et al., 2020; Treviso
and Martins, 2020), showing improved classifier
predictive performance.

2.2 Evaluating Rationale Faithfulness

Having extracted R, we need to evaluate the qual-
ity of the explanation (i.e. how faithful that ex-
planation is for a model’s prediction). Typically,
post-hoc explanations from feature attribution ap-
proaches are evaluated using input erasure (Serrano
and Smith, 2019; Atanasova et al., 2020; Madsen
et al., 2021). This approach masks segments of the
input to observe if the model’s prediction changed.
DeYoung et al. (2020) proposed measuring the
comprehensiveness and sufficiency of rationales
as faithfulness metrics. A comprehensive rationale
is one which is influential to a model’s prediction,
while a sufficient rationale that which is adequate
for a model’s prediction (DeYoung et al., 2020).
The term fidelity is also used for jointly referring to
comprehensiveness and sufficiency (Carton et al.,
2020). Carton et al. (2020) suggested normalizing
these metrics using the predictions of the model
with a baseline input (i.e. an all zero embedding
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vector), to account for baseline model behavior.
Select-then-predict models are inherently faithful,
as their classification component is trained only
on extracted rationales (Jain et al., 2020). A good
measure for measuring rationale quality is by eval-
uating the predictive performance of the classifier
trained only on the rationales (Jain et al., 2020;
Treviso and Martins, 2020). A higher score entails
that the extracted rationales are better when com-
pared to those of a classifier with lower predictive
performance.

2.3 Explainability in Out-of-Domain Settings

Given model M trained on an end-task, we typi-
cally evaluate its out-of-domain predictive perfor-
mance on a test-set that does not belong to the same
distribution as the data it was trained on (Hendrycks
et al., 2020). Similarly, the model can also extract
explanations R for its out-of-domain predictions.

Camburu et al. (2018) studied whether gener-
ating explanations for language inference match
human annotations (i.e. plausible explanations).
They showed that this is challenging in-domain
and becomes more challenging in out-of-domain
settings. In a similar direction, Rajani et al. (2019)
and Kumar and Talukdar (2020) examined model
generated explanations in out-of-domain settings
and find that explanation plausibility degrades com-
pared to in-domain. Kennedy et al. (2020) pro-
posed a method for detecting model bias towards
group identity terms using a post-hoc feature attri-
bution approach. Then, they use them for regular-
izing models to improve out-of-domain predictive
performance. Adebayo et al. (2020) have studied
feature attribution approaches for identifying out-
of-distribution images. They find that importance
allocation in out-of-domain settings is similar to
that of an in-domain model and thus cannot be
used to detect such images. Feder et al. (2021) fi-
nally argued that explanations can lead to errors in
out-of-distribution settings, as they may latch onto
spurious features from the training distribution.

These studies indicate that there is an increasing
need for evaluating post-hoc explanation faithful-
ness and select-then-predict performance in out-of-
domain settings. To the best of our knowledge, we
are the first to examine these.

3 Extracting Rationales

3.1 Post-hoc Explanations
We employ a pre-trained BERT-base and fine-tune
it on in-domain training data. We then extract post-
hoc rationales for both the in-domain test-set and
two out-of-domain test-sets. We compute input
importance using five feature scoring methods and
a random baseline:

• Random (RAND): Random allocation of
token importance.

• Attention (α): Token importance correspond-
ing to normalized attention scores (Jain et al.,
2020).

• Scaled Attention (α∇α): Attention scores
αi scaled by their corresponding gradients
∇αi =

∂ŷ
∂αi

(Serrano and Smith, 2019).

• InputXGrad (x∇x): Attributes input impor-
tance by multiplying the input with its gra-
dient computed with respect to the predicted
class, where ∇xi =

∂ŷ
∂xi

(Kindermans et al.,
2016; Atanasova et al., 2020).

• Integrated Gradients (IG): Ranking words
by computing the integral of the gradients
taken along a straight path from a baseline
input (zero embedding vector) to the original
input (Sundararajan et al., 2017).

• DeepLift: Ranking words according to the
difference between the activation of each neu-
ron and a reference activation (zero embed-
ding vector) (Shrikumar et al., 2017).

3.2 Select-then-Predict Models
We use two select-then-predict models:

• HardKuma: An end-to-end trained model,
where the rationale extractor uses Hard Ku-
maraswamy variables to produce a rationale
mask z, which the classifier uses to mask the
input (Bastings et al., 2019). Model training
takes advantage of reparameterized gradients
compared to REINFORCE style training em-
ployed by Lei et al. (2016) and has shown
improved performance (Guerreiro and Mar-
tins, 2021).

• FRESH: We compute the predictive perfor-
mance of a classifier trained on rationales ex-
tracted with feature attribution metrics (see
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§3.1) using FRESH, following a similar ap-
proach to Jain et al. (2020). We extract ratio-
nales from an extractor by (1) selecting the
top-k most important tokens (TOPK) and (2)
selecting the span of length k with the highest
overall importance (CONTIGUOUS).

We use BERT-base for the extraction and classi-
fication components of FRESH similar to Jain et al.
(2020). However, for HardKuma we opt using a
bi-LSTM (Hochreiter and Schmidhuber, 1997) as
it provides comparable or improved performance
over BERT variants (Guerreiro and Martins, 2021),
even after hyperparameter tuning.4

4 Experimental Setup

4.1 Datasets

For evaluating out-of-domain model explanation,
we consider the following datasets (see Table 1 and
Appendix A for details):

SST: Stanford Sentiment Treebank (SST) con-
sists of sentences tagged with sentiment on a 5-
point-scale from negative to positive (Socher et al.,
2013). We remove sentences with neutral senti-
ment and label the remaining sentences as negative
or positive if they have a score lower or higher than
3 respectively (Jain and Wallace, 2019).

IMDB: The Large Movie Reviews Corpus con-
sists of movie reviews labeled either as positive
or negative (Maas et al., 2011; Jain and Wallace,
2019).

Yelp: Yelp polarity review texts. Similar to
Zhang et al. (2015) we construct a binary classifica-
tion task to predict a polarity label by considering
one and two stars as negative, and three and four
stars as positive.

Amazon Reviews: We form 3-way classification
tasks by predicting the sentiment (negative, neu-
tral, positive) of Amazon product reviews across 3
item categories: (1) Digital Music (AmazDigiMu);
(2) Pantry (AmazPantry); and (3) Musical Instru-
ments (AmazInstr) (Ni et al., 2019).

4.2 Evaluating Out-of-Domain Explanations

Post-hoc Explanations: We evaluate post-hoc
explanations using:

4See model details and hyper-parameters in Appendix B

Dataset C Splits

SST 2 6,920 / 872 / 1,821
IMDB 2 20,000 / 2,500 / 2,500
Yelp 2 476,000 / 84,000 / 38,000
AmazDigiMu 3 122,552 / 21,627 / 25,444
AmazPantry 3 99,423/ 17,546 / 20,642
AmazInstr 3 167,145 / 29,497 / 34,702

Table 1: Dataset statistics with number of classes (C)
and train/development/test splits. For more details see
Appendix A.

• Normalized Sufficiency (NormSuff) mea-
sures the degree to which the extracted ra-
tionales are adequate for a model to make a
prediction (DeYoung et al., 2020). Following
Carton et al. (2020), we bind sufficiency be-
tween 0 and 1 and use the reverse difference
so that higher is better:

Suff(x, ŷ,R) = 1−max(0, p(ŷ|x)− p(ŷ|R))

NormSuff(x, ŷ,R) =
Suff(x, ŷ,R)− Suff(x, ŷ, 0)

1− Suff(x, ŷ, 0)
(1)

where Suff(x, ŷ, 0) is the sufficiency of a base-
line input (zeroed out sequence) and ŷ the
model predicted class using the full text x as
input.

• Normalized Comprehensiveness (Norm-
Comp) measures the influence of a rationale
to a prediction (DeYoung et al., 2020). For
an explanation to be highly comprehensive,
the model’s prediction after masking the ratio-
nale should have a large difference compared
to the model’s prediction using the full text.
Similarly to Carton et al. (2020), we bind this
metric between 0 and 1 and normalize it:

Comp(x, ŷ,R) = max(0, p(ŷ|x)− p(ŷ|x\R))

NormComp(x, ŷ,R) =
Comp(x, ŷ,R)

1− Suff(x, ŷ, 0)
(2)

To measure sufficiency and comprehensiveness
across different explanation lengths we compute
the “Area Over the Perturbation Curve" (AOPC)
following DeYoung et al. (2020). We therefore
compute and report the average normalized suffi-
ciency and comprehensiveness scores when keep-
ing (for sufficiency) or masking (for comprehen-
siveness) the top 2%, 10%, 20% and 50% of tokens
extracted by an importance attribution function.5

5We also present results for each of these rationale lengths
in Appendix F.

6923



Train Test Full-text Normalized Sufficiency Normalized Comprehensiveness
F1 Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 90.1 0.38 0.51 0.42 0.42 0.40 0.41 0.19 0.39 0.22 0.25 0.26 0.26

IMDB 84.3 0.31 0.53 0.39 0.32 0.31 0.32 0.23 0.54 0.34 0.27 0.27 0.28
Yelp 87.9 0.32 0.56 0.40 0.35 0.33 0.34 0.21 0.48 0.28 0.24 0.24 0.25

IMDB
IMDB 91.1 0.32 0.55 0.46 0.36 0.36 0.36 0.16 0.48 0.31 0.25 0.23 0.24
SST 85.8 0.24 0.35 0.28 0.28 0.27 0.27 0.27 0.46 0.32 0.33 0.33 0.33
Yelp 91.0 0.35 0.48 0.41 0.36 0.36 0.36 0.21 0.45 0.32 0.26 0.26 0.26

Yelp
Yelp 96.9 0.23 0.32 0.31 0.29 0.24 0.25 0.12 0.20 0.14 0.16 0.15 0.16
SST 86.8 0.41 0.45 0.43 0.44 0.41 0.41 0.17 0.24 0.18 0.21 0.22 0.22

IMDB 88.6 0.18 0.34 0.32 0.25 0.22 0.22 0.19 0.34 0.29 0.23 0.23 0.24

AmazDigiMu
AmazDigiMu 70.6 0.34 0.56 0.34 0.31 0.41 0.39 0.13 0.32 0.14 0.10 0.16 0.17

AmazInstr 61.2 0.29 0.54 0.32 0.31 0.33 0.32 0.19 0.47 0.23 0.19 0.22 0.23
AmazPantry 64.6 0.33 0.55 0.33 0.31 0.37 0.36 0.21 0.46 0.22 0.17 0.23 0.25

AmazPantry
AmazPantry 70.2 0.25 0.46 0.36 0.19 0.28 0.27 0.20 0.42 0.31 0.15 0.25 0.25

AmazDigiMu 59.5 0.24 0.47 0.37 0.19 0.27 0.26 0.19 0.41 0.32 0.15 0.23 0.24
AmazInstr 64.5 0.17 0.42 0.30 0.15 0.20 0.20 0.24 0.52 0.40 0.23 0.30 0.30

AmazInstr
AmazInstr 71.5 0.16 0.34 0.18 0.21 0.18 0.17 0.26 0.52 0.26 0.29 0.28 0.29

AmazDigiMu 61.3 0.21 0.38 0.21 0.22 0.24 0.22 0.23 0.46 0.20 0.22 0.24 0.25
AmazPantry 68.2 0.22 0.39 0.21 0.23 0.24 0.23 0.27 0.51 0.22 0.25 0.27 0.29

Table 2: AOPC Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain for
five feature attribution approaches and a random attribution baseline.

We omit from our evaluation the Remove-and-
Retrain method (Madsen et al., 2021) as it requires
model retraining. Whilst this could be applica-
ble for in-domain experiments where retraining is
important, in this work we evaluate explanation
faithfulness in zero-shot out-of-domain settings.

Select-then-Predict Models: We first train
select-then-predict models in-domain and then mea-
sure their predictive performance on the in-domain
test-set and on two out-of-domain test-sets (Jain
et al., 2020; Guerreiro and Martins, 2021). Our
out-of-domain evaluation is performed without re-
training (zero-shot). Similar to full-text trained
models, we expect that predictive performance de-
teriorates out-of-domain. However, we assume
that explanations from a select-then-predict model
should generalize better in out-of-domain settings
when the predictive performance approaches that
of the full-text trained model.

We do not conduct human experiments to evalu-
ate explanation faithfulness, since that is only rele-
vant to explanation plausibility (i.e. how intuitive to
humans a rationale is (Jacovi and Goldberg, 2020))
and in practice faithfulness and plausibility do not
correlate (Atanasova et al., 2020).

5 Results

5.1 Post-hoc Explanation Faithfulness
Table 2 presents the normalized comprehensiveness
and sufficiency scores for post-hoc explanations

on in-domain and out-of-domain test-sets, using
five feature attribution methods and a random base-
line. For reference, we include the averaged F1
performance across 5 random seeds, of a BERT-
base model finetuned on the full text and evaluated
in- and out-of-domain (Full-text F1).6

In-domain results show that feature attribution
performance varies largely across datasets. This is
in line with the findings of Atanasova et al. (2020)
and Madsen et al. (2021) when masking rationales
(i.e. comprehensiveness). We find the only excep-
tion to be α∇α, which consistently achieves the
highest comprehensiveness and sufficiency scores
across all in-domain datasets. For example α∇α
evaluated on in-domain AmazDigiMu, results in
sufficiency of 0.56 compared to the second best of
0.39 with IG.

Contrary to our expectations, results show that
post-hoc explanation sufficiency and comprehen-
siveness are in many cases higher in out-of-domain
test-sets compared to in-domain. For example us-
ing DeepLift, comprehensiveness for the in-domain
test-set in Yelp (0.16) is lower compared to the
out-of-domain test-sets (0.21 for SST and 0.23 for
IMDB). This is also observed when measuring suf-
ficiency with α∇α, scoring 0.32 when tested in-
domain on Yelp and 0.45 for the out-of-domain
SST test-set.

Apart from increased sufficiency and comprehen-
6We report predictive performance for all models and stan-

dard deviations in the Appendix.
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siveness scores in out-of-domain post-hoc explana-
tions, we also observe increased scores obtained by
our random baseline. In fact, the random baseline
outperforms several feature attribution approaches
in certain cases in out-of-domain settings . As an
example, consider the case where the model has
been trained on AmazInstr and tested on Amaz-
Pantry. Our random baseline achieves a compre-
hensiveness score of 0.27 while α, DeepLift, x∇x
perform similarly or lower (0.22, 0.25 and 0.27
respectively). Similarly, using a model trained on
Yelp and tested on SST, the random baseline pro-
duces equally sufficient rationales to x∇x and IG,
with all of them achieving 0.41 normalized suffi-
ciency. A glaring exception to this pattern is α∇α,
which consistently outperforms both the random
baseline and all other feature attribution approaches
in in- and out-of-domain settings, suggesting that
it produces the more faithful explanations. For ex-
ample with out-of-domain AmazPantry test data,
using a model trained on AmazInstr results in suf-
ficiency scores of 0.39 with α∇α. This is a 0.15
point increase compared to the second best (x∇x
with 0.24).

We recommend considering a feature attribution
for producing faithful explanations out-of-domain,
if it only scores above a baseline random attribu-
tion. We suggest that the higher the deviation from
the random baseline, the more faithful an explana-
tion is.

5.2 Select-then-predict Model Performance

HardKuma: Table 3 presents the F1-macro per-
formance of HardKuma models (Bastings et al.,
2019) and the average rationale lengths (the ratio
of the selected tokens compared to the length of
the entire sequence) selected by the model. For ref-
erence, we also include the predictive performance
of a full-text trained bi-LSTM. Results are aver-
aged across 5 runs including standard deviations in
brackets.

As expected, predictive performance of Hard-
Kuma models degrades when evaluated on out-
of-domain data. Surprisingly, though, we find
that their performance is not significantly differ-
ent (t-test; p-value > 0.05) to that of the full-text
LSTM in 9 out of the 12 out-of-domain dataset
pairs. For example, by evaluating the out-of-
domain performance of a HardKuma model trained
on AmazDigiMu on the AmazPantry test-set, we
record on average a score of 54.3 F1 compared to

Train Test Full-text HardKuma L
F1 F1 (%)

SST
SST 81.7 77.6 56.8

IMDB 71.9 65.7 39.5
Yelp 68.7 67.7 32.7

IMDB
IMDB 87.4 82.0 1.9
SST 77.5 73.6 16.8
Yelp 41.0 47.2 3.1

Yelp
Yelp 96.0 92.4 7.4
SST 80.4 72.4 14.1

IMDB 84.5 73.3 4.7

AmazDigiMu
AmazDigiMu 67.6 66.8 18.4

AmazInstr 54.2 53.3 25.8
AmazPantry 55.3 54.7 27.8

AmazPantry
AmazPantry 67.9 66.6 18.9

AmazDigiMu 50.9 51.0 11.2
AmazInstr 55.9 57.4 18.2

AmazInstr
AmazInstr 67.2 66.7 19.2

AmazDigiMu 54.3 53.7 13.9
AmazPantry 61.1 59.5 24.4

Table 3: F1 macro performance (five runs) for Hard-
Kuma models and the selected rationale length (L). Bold
denotes no significant difference between HardKuma
and Full-text (t-test; p > 0.05). For clarity, we include
F1 scores with standard deviations in Appendix C.

55.3 with an LSTM classifier trained on full text.
We also observe that HardKuma models trained on
SST and IMDB generalize comparably to models
trained on full-text when evaluated on Yelp, how-
ever the opposite does not apply. Our assumption is
that HardKuma models trained on Yelp, learn more
domain-specific information due to the large train-
ing corpus (when compared to training on IMDB
and SST) so they fail to generalize well out-of-
domain.

Results also show, that the length of ratio-
nales selected by HardKuma models depend on
the source domain, i.e. training HardKuma
on a dataset which favors shorter rationales,
leads to also selecting shorter rationales out-of-
domain. For example, in-domain test-set expla-
nation lengths are on average 56.8% of the full-
text input length for SST. In comparison, training
a model on Yelp and evaluating on SST results
in rationale lengths of 14.1%. We observe that
in certain cases, HardKuma models maintain the
number of words, not the ratio to the sequence in
out-of-domain settings. For example, in-domain
Yelp test-set rationales are about 11 tokens long
that is the similar to the length selected when evalu-
ating on IMDB using a model trained on Yelp. This
is also observed where in-domain AmazInstr test-
set rationales are on average 5 tokens long, which
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Train Test Full-text α∇α α DeepLift x∇x IG

SST (20%)
SST 90.1 87.7 81.1 84.4 76.3 76.8
IMDB 84.3 81.8 52.6 64.0 55.0 56.3
Yelp 87.9 88.1 72.6 75.4 59.6 63.9

IMDB (2%)
IMDB 91.1 87.9 80.4 87.2 59.8 59.7
SST 85.8 80.9 71.8 70.1 69.6 70.7
Yelp 91.0 87.8 82.0 79.4 69.0 69.1

Yelp (10%)
Yelp 96.9 94.0 90.4 93.6 70.5 71.9
SST 86.8 59.3 69.8 67.2 67.7 69.3
IMDB 88.6 78.0 64.5 66.6 53.0 55.8

AmazDigiMu (20%)
AmazDigiMu 70.6 66.1 63.4 65.8 51.9 65.8
AmazInstr 61.2 58.0 57.2 57.4 46.0 57.2
AmazPantry 64.6 59.1 56.5 56.5 44.8 44.8

AmazPantry (20%)
AmazPantry 70.2 67.3 62.6 67.2 48.6 48.7
AmazDigiMu 59.5 57.7 54.6 56.2 41.2 57.7
AmazInstr 64.5 63.8 58.0 63.6 40.1 40.3

AmazInstr (20%)
AmazInstr 71.5 69.8 62.1 69.7 45.6 48.6
AmazDigiMu 61.3 60.0 53.2 57.8 43.8 60.0
AmazPantry 68.2 64.5 56.3 63.1 44.6 47.6

Table 4: Average F1 macro performance of FRESH models (five runs) with the a priori defined rationale length in
the brackets. Bold denotes no significant difference between FRESH and Full-text (t-test; p > 0.05). For clarity, we
present F1 scores with standard deviations in Appendix D.

is the same rationale length when evaluating on
AmazDigiMu using a model trained on AmazInstr.

In general, our findings show that in the majority
of cases, using HardKuma in out-of-domain data re-
sults to comparable performance with their full-text
model counterparts. This suggests that HardKuma
models can be used in out-of-domain settings, with-
out significant sacrifices in predictive performance
whilst also offering faithful rationales.

FRESH: Table 4 shows the averaged F1-macro
performance across 5 random seeds for FRESH
classifiers on in- and out-of-domain using TopK
rationales.7 We also include the a priori defined
rationale length in parentheses and the predictive
performance of the Full-Text model for reference.8

We first observe that in-domain predictive perfor-
mance varies across feature attribution approaches
with attention-based metrics (α∇α, α) outperform-
ing the gradient-based ones (x∇x, IG), largely
agreeing with Jain et al. (2020). We also find that
α∇α and DeepLift are the feature attribution ap-
proaches that lead to the highest predictive perfor-
mance across all datasets.

As we initially hypothesized, performance of
FRESH generally degrades when testing on out-of-
domain data similarly to the behavior of models

7For clarity we include standard deviations and Contiguous
results in Appendix D

8When evaluating out-of-domain, we use the average ratio-
nale length of the dataset we evaluate on. This makes FRESH
experiments comparable with those of HardKuma.

trained using the full text. The only exceptions
are when using x∇x and IG in IMDB. We argue
that this is due to these feature attribution meth-
ods not being able to identify the appropriate to-
kens relevant to the task using a rationale length
2% of the original input. Increasing the rationale
length to 20% (SST) and 10% (Yelp) also increases
the performance. Results also suggest that α∇α
and DeepLift outperform the rest of the feature
attributions, with α∇α being the best performing
one in the majority of cases. In fact when using
α∇α or DeepLift, the out-of-domain performance
of FRESH is not significantly different to that of
models trained on full text (t-test; p-value > 0.05)
in 5 cases. For example, a FRESH model trained on
AmazPantry and evaluated on AmazInstr records
63.6 F1 macro (using DeepLift) compared to 64.5
obtained by a full-text model. However, this does
not apply to the other feature attribution methods
(α; x∇x; IG).

To better understand this behavior, we conduct a
correlation analysis between the importance rank-
ings using any single feature attribution from (1) a
model trained on the same domain with the evalu-
ation data; and (2) a model trained on a different
domain (out-of-domain trained model). High corre-
lations suggest that if a feature attribution from an
out-of-domain trained model produces similar im-
portance distributions with that of an in-domain
model, it will also lead to high predictive per-
formance out-of-domain. Contrary to our initial

6926



assumption we found that the lower the correla-
tion, the higher the predictive performance with
FRESH. Results show low correlations when us-
ing α∇α and DeepLift (highest FRESH perfor-
mance). Surprisingly, IG and x∇x (lowest FRESH
performance) showed consistently strong correla-
tions across all dataset pairs. Thus, we conclude
that lower correlation scores indicate lower attach-
ment to spurious correlations learned during train-
ing. We expand our discussion and show results
for the correlation analysis in Appendix E.

Our findings therefore suggest that using FRESH
in out-of-domain settings, can result to compara-
ble performance with a model trained on full-text.
However this highly depends on the choice of the
feature attribution method.

HardKuma vs. FRESH: We observe that Hard-
Kuma models are not significantly different com-
pared to models trained on the full text in out-of-
domain settings in more cases, when compared to
FRESH (9 out of 12 and 5 out of 12 respectively).
However, FRESH with α∇α or DeepLift records
higher predictive performance compared to Hard-
Kuma models (both in- and out-of-domain) in all
cases. We attribute this to the underlying model ar-
chitectures, as FRESH uses BERT and HardKuma
a bi-LSTM. As we discussed in §3.2, we attempted
using BERT for HardKuma models in the extractor
and classifier similar to Jain et al. (2020). However,
the performance of HardKuma with BERT is at
most comparable to when using a bi-LSTM similar
to findings of Guerreiro and Martins (2021).

5.3 Correlation between Post-hoc Explanation
Faithfulness and FRESH Performance

We hypothesize that a feature attribution with
high scores for sufficiency and comprehensiveness,
should extract rationales that result in high FRESH
predictive performance. We expect that if our hy-
pothesis is valid, faithfulness scores can serve as
early indicators of FRESH performance, both on
in-domain and out-of-domain settings.

Table 5 shows the Spearman’s ranking corre-
lation (ρ) between FRESH F1 performance (see
Table 4) and comprehensiveness and sufficiency
(see Table 2). Correlation is computed using all
feature scoring methods for each dataset pair. Re-
sults show that only 4 cases achieve statistically
significant correlations (p-value < 0.05) with only
3 out-of-domain and mostly between sufficiency
and FRESH performance. We do not observe

Train Test ρ
FRESH Sufficiency Comprehen.

SST
SST 0.97 0.15
IMDB 0.36 0.21
Yelp 0.90 0.56

IMDB
IMDB 0.69 0.87
SST 0.65 0.23
Yelp 0.92 0.92

Yelp
Yelp 0.82 0.55
SST -0.67 -0.67
IMDB 0.87 0.56

AmazDigiMu
AmazDigiMu -0.11 0.22
AmazInstr 0.23 0.69
AmazPantry 0.11 0.11

AmazPantry
AmazPantry 0.16 0.16
AmazDigiMu 0.05 0.41
AmazInstr 0.16 0.16

AmazInstr
AmazInstr 0.79 0.55
AmazDigiMu 0.24 0.67
AmazPantry 0.21 0.20

Table 5: Spearman’s ranking correlation (ρ) between
FRESH performance and comprehensiveness, suffi-
ciency across all feature attribution approaches. Bold
denotes statistically significant (p-value ≤ 0.05) corre-
lations.

high correlations with comprehensiveness which
is expected, as comprehensiveness evaluated the
rationale’s influence towards a model’s prediction.
Our findings refute our initial hypothesis and sug-
gest that there is no clear correlation across all
cases, between post-hoc explanation faithfulness
and FRESH predictive performance. Therefore,
sufficiency and comprehensiveness scores cannot
be used as early indicators of FRESH predictive
performance.

6 Qualitative Analysis

Table 6 presents examples from a qualitative anal-
ysis we performed, aimed at better understanding
out-of-domain post-hoc explanations. Rows with
highlighted text in blue are from a model trained
in the same domain as the presented example (ID),
whilst those with highlighted text in red are from
models trained on a different domain. Importance
scores are computed using scaled attention (∇α∇).

In Example (1), we observe that models trained
on two closely related tasks (AmazInstr and
AmazDigiMu) place more importance to the phrase
“sound good”. On the contrary, the model trained
on AmazPantry which has not encountered such
phrases during training, mostly focuses on “Work
great”. This is expected as the term “sound” is not
typical of pantry reviews. Similarly, in Example
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M Trained On Example

(1)
AmazInstr (ID) Work great and sound good

AmazDigiMu Work great and sound good

AmazPantry Work great and sound good

(2)
AmazPantry (ID) Delicious and at a good price . would recommend .

AmazDigiMu Delicious and at a good price . would recommend .

AmazInstr Delicious and at a good price . would recommend .

(3)
SST (ID) A painfully funny ode to bad behavior

IMDB A painfully funny ode to bad behavior

Yelp A painfully funny ode to bad behavior

(4)
Yelp (ID) The kouign - amann is so amazing ... must taste to appreciate .

SST The kouign - amann is so amazing ... must taste to appreciate .

IMDB The kouign - amann is so amazing ... must taste to appreciate .

Table 6: True examples of highlights with α∇α using a model trained on data from the same distribution as the
example (ID; with blue highlights ) and two models trained on a different dataset (with red highlights ).

(2) from the AmazPantry dataset, the in-domain
model focuses on a domain-specific word “deli-
cious”. On the contrary, the two models trained on
music-related tasks focus on more generic terms
such as “good” and “would recommend”. In Exam-
ple (3) the model trained on Yelp focuses mostly
on the word “behavior”, a term we consider more
relevant to restaurant reviews rather than movie
reviews. In comparison, the other models which
are both trained on movie reviews focus both on
the term “funny”. In Example (4), again the two
movie-review models focus on more generic terms
(i.e. “amazing”) compared to “must taste” that the
model trained in-domain (i.e. Yelp) identifies as
important.

Overall, results show that rationales from models
applied to a different domain (other than that they
were trained for), comprise of terms that are mostly
present within the domain they were trained for.
This can partly explain the performance of out-
of-domain FRESH classifiers. Our assumption,
similar to (Adebayo et al., 2020), is that a model’s
inability to generalize to other domains, is based
on the model latching on to specific features from
the training dataset.

7 Conclusion

We conducted an extensive empirical study to as-
sess the faithfulness of post-hoc explanations (i.e.
using feature attribution approaches) and perfor-
mance of select-then-predict (i.e. inherently faith-

ful) models in out-of-domain settings. Our findings
highlight, that using sufficiency and comprehen-
siveness to evaluate post-hoc explanation faithful-
ness out-of-domain can be misleading. To address
this issue, we suggest comparing faithfulness of
post-hoc explanations to a random attribution base-
line for a more robust evaluation. We also show
that select-then-predict models, which are inher-
ently faithful, perform surprisingly well in out-of-
domain settings. Despite performance degradation,
in many cases their performance is comparable to
those of full-text trained models. In future work,
we aim to explore methods for improving the eval-
uation of faithfulness for out-of-domain post-hoc
explanations.
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A Dataset Characteristics

Table 7 presents extended data characteristics for
all datasets. We present information across the
three data splits, including: (1) The average se-
quence length; (2) The number of documents in
each split and (3) the number of documents under
each label.

Our dataset selection was highly motivated for
also examining the differences when we have grad-
ual shifts in-domain. For example for the triplet
SST - IMDB - YELP, two datasets are closely as-
sociated (SST, IMDB) as they are movie reviews,
whilst Yelp is a task for classifying restaurant re-
views. Similarly, AmazDigiMu and AmazInstr
share similar characteristics, as they are reviews
about items related to music. On the contrary,
AmazPantry consists of reviews about pantry items.
This is also the primary reason why we focused on
text classification tasks, as it is easier to control for
the output and other parameters, whilst allowing
for control over the task it-self.

Dataset Train Dev Test

SST

Avg. Seq. Length 17 17 17
No. of documents 6,920 872 1,821
Docs in label-0 3,310 428 912
Docs in label-1 3,610 444 909

IMDB

Avg. Seq. Length 241 248 247
No. of documents 20,000 2,500 2,500
Docs in label-0 9,952 1,275 1,273
Docs in label-1 10,048 1,225 1,227

Yelp

Avg. Seq. Length 154 154 153
No. of documents 476,000 84,000 38,000
Docs in label-0 238,000 42,000 19,000
Docs in label-1 238,000 42,000 19,000

AmazDigiMu

Avg. Seq. Length 38 39 38
No. of documents 122,552 21,627 25,444
Docs in label-0 2,893 510 601
Docs in label-1 4,907 866 1,019
Docs in label-2 114,752 20,251 23,824

AmazPantry

Avg. Seq. Length 24 24 24
No. of documents 99,423 17,546 20,642
Docs in label-0 4,995 881 1,037
Docs in label-1 6,579 1,161 1,366
Docs in label-2 87,849 15,504 18,239

AmazInstr

Avg. Seq. Length 66 66 65
No. of documents 167,145 29,497 34,702
Docs in label-0 10,651 1,879 2,211
Docs in label-1 11,581 2,044 2,404
Docs in label-2 144,913 25,574 30,087

Table 7: Extended dataset characteristics
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B Models and Hyper-parameters

For feature attributions: We use BERT-base
with pre-trained weights from the Huggingface li-
brary (Wolf et al., 2020). We use the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with an initial
learning rate of 1e − 5 for fine-tuning BERT and
1e− 4 for the fully-connected classification layer.
We train our models for 3 epochs using a linear
scheduler with 10% of the data in the first epoch as
warm-up. We also use a grad-norm of 1 and select
the model with the lowest loss on the development
set. All models are trained across 5 random seeds
and we report the average and standard deviation.
We present their test-set performance in Table 8
and their development set performance in Table 9.

For FRESH: For the rationale extractor, we use
the same model for extracting rationales from fea-
ture attributions. For the classifier (trained only on
the extracted rationales), we also use BERT-base
with the same optimizer configuration and sched-
uler warm-up steps. We also use a grad-norm of
1 and select the model with the lowest loss on the
development set. We train across 5 random seeds
for 5 epochs.

In Table 8 we present full-text BERT-base F1-
macro scores averaged across 5 random seeds with
standard deviations included in the brackets. Addi-
tionally, we present the mean Expected Calibration
Error (ECE) scores. Finally, in Table 9 we present
the in-domain F1-macro performance and loss on
the development set.

For HardKuma: We use the 300-dimensional
pre-trained GloVe embeddings from the 840B re-
lease (Pennington et al., 2014) as word represen-
tations and keep them frozen during training. The
rationale extractor (which generates the rationale
mask z) is a 200-d bi-directional LSTM layer (bi-
LSTM) (Hochreiter and Schmidhuber, 1997) simi-
lar to (Bastings et al., 2019; Guerreiro and Martins,
2021). We use the Adam optimizer (Kingma and
Ba, 2014) for all models with a learning rate be-
tween 1e − 5 and 1e − 4 and a weight decay of
1e− 5. We also enforce a grad-norm of 5 and train
for 20 epochs across 5 random seeds. Similar to
Guerreiro and Martins (2021) we select the model
with the highest F1-macro score on the develop-
ment set and find that tuning the Lagrangian re-
laxation algorithm parameters beneficial to model
predictive performance. We also attempted training
HardKuma models with BERT-base, similar to Jain

Trained On Tested On F1 ECE

SST
SST 90.1 (0.3) 4.4 (0.7)

IMDB 84.3 (0.6) 7.1 (0.6)
Yelp 87.9 (2.3) 4.2 (2.3)

IMDB
IMDB 91.1 (0.4) 4.7 (0.6)
SST 85.8 (2.0) 5.8 (0.8)
Yelp 91.0 (1.2) 0.9 (0.2)

Yelp
Yelp 96.9 (0.1) 2.2 (0.1)
SST 86.8 (1.7) 8.5 (0.9)

IMDB 88.6 (0.3) 7.9 (0.6)

AmazDigiMu
AmazDigiMu 70.6 (0.9) 2.3 (0.1)

AmazInstr 61.2 (1.8) 5.4 (0.2)
AmazPantry 64.6 (1.0) 4.3 (0.4)

AmazPantry
AmazPantry 70.2 (1.1) 3.8 (0.4)

AmazDigiMu 59.5 (0.7) 3.2 (0.5)
AmazInstr 64.5 (2.6) 4.9 (0.9)

AmazInstr
AmazInstr 71.5 (0.4) 3.9 (0.5)

AmazDigiMu 61.3 (0.3) 3.2 (0.2)
AmazPantry 68.2 (0.7) 4.1 (0.5)

Table 8: F1 macro performance and Expected Calibra-
tion Error (ECE) (five runs) with standard deviation, of
full-text BERT-base models.

Dataset F1 Dev. Loss
SST 89.9 (0.3) 2.4 (0.0)
IMDB 92.0 (0.3) 1.8 (0.0)
Yelp 96.8 (0.1) 0.9 (0.0)
AmazDigiMu 67.6 (1.1) 1.3 (0.0)
AmazPantry 69.5 (1.4) 1.9 (0.1)
AmazInstr 72.1 (0.5) 1.9 (0.1)

Table 9: F1-macro predictive performance (five runs)
with standard deviation, of BERT-base models trained
on the full text. We also include the development loss.

et al. (2020), however we found performance to be
at best comparable with our LSTM variant, as in
Guerreiro and Martins (2021), even after hyperpa-
rameter tuning.
All experiments are run on a single NVIDIA Tesla
V100 GPU.

C HardKuma - Extended

In Table 10 we present for reference the perfor-
mance of a 200-dimensional bi-LSTM classifier
trained on full-text. We train the full-text LSTM
for 20 epochs across 5 random seeds and select the
model with the highest F1-macro performance on
the development set. We use the Adam optimizer
with a learning rate of 1e − 3 and 1e − 5 weight
decay. We report predictive performance and ECE
scores on the test-set. In Table 11 we include Hard-
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Trained On Tested On F1 ECE

SST
SST 81.7 (0.9) 3.2 (0.7)

IMDB 71.9 (0.9) 4.9 (2.8)
Yelp 68.7 (3.2) 5.8 (5.1)

IMDB
IMDB 87.4 (0.9) 4.7 (1.8)
SST 77.5 (2.0) 6.2 (1.4)
Yelp 41.0 (5.3) 39.4 (7.3)

Yelp
Yelp 96.0 (0.0) 0.5 (0.2)
SST 80.4 (0.8) 1.9 (0.7)

IMDB 84.5 (1.0) 5.0 (1.3)

AmazDigiMu
AmazDigiMu 67.6 (0.3) 0.5 (0.1)

AmazInstr 54.2 (1.1) 2.6 (0.6)
AmazPantry 55.3 (0.4) 1.9 (0.5)

AmazPantry
AmazPantry 67.9 (0.4) 0.7 (0.4)

AmazDigiMu 50.9 (1.9) 1.9 (0.6)
AmazInstr 55.9 (2.2) 2.8 (0.9)

AmazInstr
AmazInstr 67.2 (0.7) 1.2 (0.4)

AmazDigiMu 54.3 (1.4) 1.1 (0.1)
AmazPantry 61.1 (1.5) 1.5 (0.6)

Table 10: F1 macro performance and Expected Calibra-
tion Error (ECE) of a full-text LSTM classifier trained
on an in-domain dataset and tested on their in-domain
test-set and two other out-of-domain datasets.

Kuma performance with standard deviations, and
expected calibration error (ECE), across five runs.

D FRESH - Extended

Tables 12 and 13 presents FRESH F1 macro per-
formance and Expected Calibration Error (ECE)
for classifiers trained on TopK and Contiguous ra-
tionales respectively, with standard deviation in
brackets. We include the a priori defined rationale
length in the brackets (.%) and for reference, the ID
performance of the Full-Text model (as also seen
in Table 8).

Comparing with FRESH performance with Con-
tiguous rationales rather than TopK (see Table 12),
we first observe that performance degrades for most
feature attribution methods. These findings are
largely in agreement with those of Jain et al. (2020).
However, x∇x and IG, which perform poorly with
TopK, record surprisingly better scores with Con-
tiguous type rationales. For example, in-domain
performance with IG becomes comparable with
α∇α in in-domain IMDB (83.2 with α∇α and
82.5 with IG). This is in sharp contrast with TopK,
where IG recorded an F1 score of only 59.7, com-
pared to 87.9 of α∇α.

These findings also hold in out-of-domain set-
tings, where α∇α, α and DeepLift result in poorer

FRESH performance with Contiguous type ratio-
nales, compared to TopK. However, IG and in many
cases x∇x improves. For example with TopK ra-
tionales, evaluating on Yelp using IG from a model
trained on IMDB, results on an F1-score of 69.1.
On the contrary, with Contiguous rationales and
the same set-up, IG results in FRESH performance
of 87.0.

Our findings lead us to assume that, the rationale
type has a large impact on FRESH performance,
both in-domain and on out-of-domain settings. Cer-
tain feature attribution methods benefit from one
type of rationales (e.g. DeepLift with TopK), whilst
others from another (e.g. IG with Contiguous).

E Extended Analysis

E.1 Correlation of Rankings

We examine why x∇x and IG, do not perform as
well as DeepLift and α∇α when using FRESH. We
therefore conduct a study to gain better understand
this. We first fix the domain of the data we evaluate
on and then compute the correlation between impor-
tance rankings using any single feature attribution
from: (1) a model trained on the same domain with
the evaluation data and (2) a model from trained
on a different distribution (out-of-domain trained
model). High correlations suggest that a feature
attribution from an out-of-domain trained model,
produce similar importance distributions with that
of an in-domain model (i.e. both attend to similar
tokens to make a prediction). Therefore, we assume
that this will lead to high predictive performance
out-of-domain. In Figure 2 we show Spearman’s
ranking correlation across dataset pairs, between a
model trained on the same distribution as the evalu-
ation data (ID) and an out-of-domain trained model
(OOD), such that (ID <-> OOD).

As expected, the random baseline produced al-
most no correlation between models. An interest-
ing observation is that two of the gradient-based
methods (x∇x and IG) produce strongly correlated
rankings. This suggests that these two metrics pro-
duce generalizable rankings irrespective of the do-
main shift, when comparing to the remainder of
the feature attribution approaches. Surprisingly,
Deeplift importance rankings exhibit almost low
to no correlation betweenen them, despite being
also gradient-based. We hypothesize that this hap-
pens because DeepLift considers a baseline input to
compute its importance distribution, which highly
depends on the model and as such is de-facto nor-
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Train Test Full-text HardKuma
F1 F1 ECE L (%)

SST
SST 81.7 (0.9) 77.6 (1.4) 3.8 (0.8) 56.8 (26.2)

IMDB 71.9 (0.9) 65.7(15.1) 7.4 (6.4) 39.5 (33.5)
Yelp 68.7 (3.2) 67.7(11.6) 9.9 (4.4) 32.7 (30.7)

IMDB
IMDB 87.4 (0.9) 82.0 (0.6) 3.5 (1.6) 1.9 (0.2)
SST 77.5 (2.0) 73.6 (2.2) 7.3 (5.3) 16.8 (2.7)
Yelp 41.0 (5.3) 47.2(5.8) 24.7 (6.3) 3.1 (2.0)

Yelp
Yelp 96.0 (0.0) 92.4 (0.3) 3.0 (0.7) 7.4 (0.7)
SST 80.4 (0.8) 72.4 (0.8) 10.9 (0.8) 14.1 (1.2)

IMDB 84.5 (1.0) 73.3 (3.5) 19.1 (3.8) 4.7 (0.7)

AmazDigiMu
AmazDigiMu 67.6 (0.3) 66.8 (0.5) 0.7 (0.5) 18.4 (0.5)

AmazInstr 54.2 (1.1) 53.3(1.2) 4.1 (2.0) 25.8 (6.1)
AmazPantry 55.3 (0.4) 54.7(1.4) 3.6 (1.4) 27.8 (3.6)

AmazPantry
AmazPantry 67.9 (0.4) 66.6 (0.5) 1.3 (0.4) 18.9 (1.1)

AmazDigiMu 50.9 (1.9) 51.0(0.6) 1.9 (0.6) 11.2 (3.3)
AmazInstr 55.9 (2.2) 57.4(1.2) 2.8 (0.6) 18.2 (1.3)

AmazInstr
AmazInstr 67.2 (0.7) 66.7(0.8) 1.9 (0.6) 19.2 (1.5)

AmazDigiMu 54.3 (1.4) 53.7(1.2) 1.9 (0.4) 13.9 (2.9)
AmazPantry 61.1 (1.5) 59.5(1.4) 2.8 (0.5) 24.4 (2.8)

Table 11: F1 macro performance (five runs) with standard deviation for HardKuma models and the selected rationale
length (L). Bold denotes no significant difference between HardKuma and Full-text (t-test; p > 0.05).

Train Test Full-Text F1 ECE
α∇α α DeepLift x∇x IG α∇α α DeepLift x∇x IG

SST (20%)
SST 90.1 (0.3) 87.7 (0.4) 81.1 (1.0) 84.4 (0.7) 76.3 (0.5) 76.8 (0.3) 7.6 (1.6) 6.0 (0.7) 7.5 (0.5) 2.7 (1.2) 2.8 (1.3)

IMDB 84.3 (0.6) 81.8 (0.2) 52.6 (2.1) 64.0 (2.1) 55.0 (1.7) 56.3 (0.4) 14.2 (1.2) 21.1 (4.0) 21.3 (3.5) 18.2 (1.3) 21.1 (0.7)
Yelp 87.9 (2.3) 88.1(0.0) 72.6 (4.0) 75.4 (2.3) 59.6 (3.8) 63.9 (1.1) 8.1 (1.5) 7.8 (3.2) 11.5 (1.5) 7.8 (4.3) 7.8 (2.3)

IMDB (2%)
IMDB 91.1 (0.4) 87.9 (0.2) 80.4 (0.9) 87.2 (0.4) 59.8 (0.2) 59.7 (0.6) 8.2 (0.1) 5.6 (1.5) 7.7 (0.5) 5.9 (3.2) 5.9 (2.4)
SST 85.8 (2.0) 80.9 (0.5) 71.8 (1.0) 70.1 (0.5) 69.6 (0.5) 70.7 (1.7) 13.1 (0.3) 9.2 (1.9) 22.6 (1.6) 7.2 (1.0) 5.9 (1.3)
Yelp 91.0 (1.2) 87.8 (0.1) 82.0 (0.2) 79.4 (1.4) 69.0 (0.6) 69.1 (0.4) 7.3 (0.5) 2.0 (1.9) 14.6 (1.8) 6.5 (1.4) 6.8 (0.3)

Yelp (10%)
Yelp 96.9 (0.1) 94.0 (0.0) 90.4 (0.2) 93.6 (0.3) 70.5 (0.2) 71.9 (0.1) 4.3 (0.4) 5.5 (0.4) 3.6 (0.3) 1.7 (0.8) 2.2 (0.4)
SST 86.8 (1.7) 59.3 (0.6) 69.8 (1.1) 67.2 (1.5) 67.7 (0.5) 69.3 (0.8) 33.5 (1.3) 22.6 (0.8) 28.8 (0.3) 9.9 (0.4) 10.8 (0.2)

IMDB 88.6 (0.3) 78.0 (0.4) 64.5 (0.3) 66.6 (0.5) 53.0 (0.4) 55.8 (0.1) 17.4 (0.9) 22.5 (1.4) 29.8 (1.4) 17.9 (1.7) 18.1 (0.2)

AmazDigiMu (20%)
AmazDigiMu 70.6 (0.9) 66.1 (1.8) 63.4 (1.0) 65.8(2.6) 51.9 (2.0) 65.8 (2.6) 2.8 (0.4) 2.2 (0.9) 2.7 (0.7) 2.4 (0.9) 2.7 (0.7)

AmazInstr 61.2 (1.8) 58.0(0.8) 57.2(1.2) 57.4(1.2) 46.0 (0.6) 57.2 (1.2) 8.2 (1.0) 6.7 (1.5) 8.3 (1.3) 6.3 (1.8) 6.7 (1.5)
AmazPantry 64.6 (1.0) 59.1 (0.3) 56.5 (1.2) 56.5 (1.7) 44.8 (0.8) 44.8 (0.8) 6.5 (0.8) 5.6 (1.4) 7.1 (1.6) 5.8 (1.6) 5.8 (1.6)

AmazPantry (20%)
AmazPantry 70.2 (1.1) 67.3 (0.5) 62.6 (1.0) 67.2 (0.0) 48.6 (1.7) 48.7 (2.7) 4.9 (0.3) 3.8 (0.3) 4.9 (0.3) 4.1 (1.0) 4.3 (1.3)

AmazDigiMu 59.5 (0.7) 57.7(0.6) 54.6 (0.9) 56.2 (0.0) 41.2 (0.4) 57.7 (0.6) 3.6 (0.4) 2.7 (0.2) 3.7 (0.1) 1.8 (0.9) 3.6 (0.4)
AmazInstr 64.5 (2.6) 63.8(0.4) 58.0 (1.9) 63.6(0.2) 40.1 (1.1) 40.3 (2.5) 6.6 (0.4) 5.3 (0.7) 6.5 (0.4) 5.7 (1.5) 5.8 (1.9)

AmazInstr (20%)
AmazInstr 71.5 (0.4) 69.8 (0.3) 62.1 (2.3) 69.7 (0.3) 45.6 (4.7) 48.6 (2.7) 5.6 (0.5) 3.6 (0.7) 5.9 (0.3) 2.4 (1.0) 3.2 (1.1)

AmazDigiMu 61.3 (0.3) 60.0(0.7) 53.2 (1.7) 57.8 (0.4) 43.8 (3.3) 60.0 (0.7) 3.5 (0.4) 1.8 (0.3) 4.1 (0.2) 1.4 (0.1) 3.5 (0.4)
AmazPantry 68.2 (0.7) 64.5 (0.7) 56.3 (1.9) 63.1 (0.3) 44.6 (3.9) 47.6 (2.6) 5.7 (0.4) 4.0 (0.3) 6.0 (0.3) 2.7 (1.2) 3.6 (0.9)

Table 12: F1 macro performance of FRESH models (TopK rationales) with standard deviation in brackets and
Expected Calibration Error (ECE) scores. For reference we include the in-domain performance of full-text models.
Bold denotes no significant difference between FRESH and Full-text (t-test; p > 0.05)

malized and perhaps generalizes better.

α for out-of-domain detection?: An interesting
case is that of α, where we observe moderate to
strong correlations across all test-cases. What is
more evident, is that in the OOD tuples we consid-
ered, it appears that stronger correlations appear
where the OOD task and the ID task are closer to-
gether. For example in the case of SST and IMDB
(both sentiment analysis tasks for movie reviews),
α produces a strong correlation (0.68). This con-

trasts the moderate correlation of 0.58 between SST
and Yelp, which is for restaurant reviews. This
is also evident in the case of AmazDigiMu and
AmazInstr, where both tasks are for review classi-
fication, but for musical related purchases. They
both score strong correlations between them and
moderate correlations with reviews for pantry pur-
chases (AmazPantry). This observation might sug-
gest, that using these correlation metrics with α
might be an indicator of the degree of task-domain-
shift. Our observation is also supported by the
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Train Test Full-Text F1 ECE
α∇α α DeepLift x∇x IG α∇α α DeepLift x∇x IG

SST (20%)
SST 90.1 (0.3) 87.1 (0.8) 80.7 (0.4) 79.7 (1.5) 77.8 (0.6) 79.7 (1.5) 5.9 (0.5) 4.2 (1.9) 5.8 (2.0) 2.5 (0.9) 5.8 (2.0)

IMDB 84.3 (0.6) 80.3 (0.5) 58.8 (0.4) 64.9 (1.5) 53.1 (0.7) 64.9 (1.5) 13.3 (0.6) 19.7 (2.8) 15.3 (1.7) 19.0 (2.6) 15.3 (1.7)
Yelp 87.9 (2.3) 88.1(0.3) 74.8 (1.0) 69.5 (0.9) 71.7 (1.1) 88.1 (0.3) 5.4 (0.3) 4.0 (2.7) 9.4 (3.1) 3.1 (1.8) 5.4 (0.3)

IMDB (2%)
IMDB 91.1 (0.4) 83.2 (0.1) 75.6 (0.6) 82.5 (0.8) 62.7 (0.2) 82.5 (0.8) 7.1 (1.4) 4.8 (1.4) 7.6 (1.5) 3.8 (1.3) 7.6 (1.5)
SST 85.8 (2.0) 80.1 (1.1) 74.7 (1.2) 66.7 (0.6) 71.6 (1.2) 80.1 (1.1) 8.1 (0.9) 3.1 (1.4) 20.1 (1.7) 4.2 (0.7) 8.1 (0.9)
Yelp 91.0 (1.2) 87.0 (0.3) 80.8 (1.3) 69.2 (4.4) 73.8 (0.8) 87.0 (0.3) 3.4 (2.0) 2.8 (0.2) 15.8 (2.1) 8.1 (1.4) 3.4 (2.0)

Yelp (10%)
Yelp 96.9 (0.1) 91.8 (0.5) 81.7 (0.3) 89.0 (0.7) 81.8 (0.2) 89.0 (0.7) 5.4 (0.4) 3.7 (0.9) 5.3 (0.4) 4.0 (0.7) 5.3 (0.4)
SST 86.8 (1.7) 65.5 (2.2) 71.3 (1.3) 68.4 (1.0) 68.7 (0.5) 65.5 (2.2) 26.6 (2.0) 15.3 (2.8) 23.7 (2.4) 9.0 (0.7) 26.6 (2.0)

IMDB 88.6 (0.3) 75.3 (1.2) 62.1 (0.9) 67.5 (0.2) 55.8 (0.4) 67.5 (0.2) 19.2 (0.7) 15.1 (0.6) 24.3 (1.6) 17.6 (0.7) 24.3 (1.6)

AmazDigiMu (20%)
AmazDigiMu 70.6 (0.9) 65.8 (1.5) 60.1 (2.3) 59.5 (4.0) 55.9 (2.4) 59.5 (4.0) 2.8 (0.4) 2.4 (1.0) 3.2 (0.4) 2.6 (1.1) 3.2 (0.4)

AmazInstr 61.2 (1.8) 57.0 (0.9) 51.8 (2.0) 50.8 (1.8) 47.5 (0.6) 51.8 (2.0) 8.2 (1.0) 6.6 (2.1) 8.5 (1.0) 6.4 (2.1) 6.6 (2.1)
AmazPantry 64.6 (1.0) 57.7 (0.6) 51.6 (2.0) 51.4 (2.6) 47.5 (1.2) 47.5 (1.2) 6.7 (0.8) 5.7 (1.8) 7.5 (0.5) 6.1 (1.8) 6.1 (1.8)

AmazPantry (20%)
AmazPantry 70.2 (1.1) 63.5(3.6) 62.0 (0.4) 58.0 (1.0) 50.0 (2.1) 58.0 (1.0) 4.4 (0.4) 3.8 (0.6) 5.0 (0.9) 4.3 (0.9) 5.0 (0.9)

AmazDigiMu 59.5 (0.7) 53.7(3.6) 52.0 (1.4) 46.7 (0.7) 44.4 (2.7) 53.7 (3.6) 3.2 (0.2) 2.8 (0.5) 2.8 (0.9) 1.9 (0.7) 3.2 (0.2)
AmazInstr 64.5 (2.6) 59.1(3.9) 56.1 (1.5) 51.4 (0.6) 42.6 (3.6) 56.1 (1.5) 5.8 (0.4) 5.7 (1.0) 5.7 (1.5) 5.7 (1.5) 5.7 (1.0)

AmazInstr (20%)
AmazInstr 71.5 (0.4) 66.3 (1.1) 52.2 (2.3) 60.9 (0.8) 53.4 (1.2) 60.9 (0.8) 4.6 (0.2) 4.2 (0.6) 5.2 (0.9) 3.7 (1.4) 5.2 (0.9)

AmazDigiMu 61.3 (0.3) 56.5 (0.6) 47.0 (1.4) 52.1 (0.3) 48.3 (1.2) 56.5 (0.6) 2.9 (0.2) 1.9 (0.4) 3.3 (0.6) 2.0 (0.6) 2.9 (0.2)
AmazPantry 68.2 (0.7) 62.4 (0.9) 49.2 (1.7) 57.4 (0.6) 51.0 (1.3) 51.0 (1.3) 4.6 (0.3) 4.6 (0.5) 5.2 (0.8) 4.5 (0.8) 4.5 (0.8)

Table 13: F1 macro performance of FRESH models (Contiguous rationales) with standard deviation in brackets and
Expected Calibration Error (ECE) scores. For reference we include the in-domain performance of full-text models.
Bold denotes no significant difference between FRESH and Full-text (t-test; p > 0.05)

Figure 2: Average Spearman’s ranking correlation coefficient, between feature attribution rankings from: (1) a
model trained on the same distribution as the evaluation data (ID) and (2) from a model trained in another domain
(OOD), such that ID <-> OOD.

ID OOD Rand α∇α α DeepLift x∇x IG
SST IMDB 0.06 0.26 0.39 0.37 0.54 0.55
SST Yelp 0.07 0.11 0.27 0.29 0.46 0.49
IMDB SST 0.02 0.13 0.25 0.15 0.43 0.43
IMDB Yelp 0.02 0.08 0.16 0.09 0.43 0.43
Yelp SST 0.02 0.08 0.12 0.18 0.37 0.39
Yelp IMDB 0.02 0.05 0.12 0.10 0.40 0.41
AmazDigiMu AmazInstr 0.13 0.22 0.38 0.16 0.60 0.61
AmazDigiMu AmazPantry 0.13 0.30 0.36 0.27 0.60 0.62
AmazPantry AmazDigiMu 0.14 0.28 0.35 0.27 0.60 0.63
AmazPantry AmazInstr 0.14 0.39 0.42 0.21 0.62 0.64
AmazInstr AmazDigiMu 0.08 0.16 0.29 0.12 0.54 0.57
AmazInstr AmazPantry 0.08 0.29 0.36 0.14 0.57 0.59

Table 14: Agreement in tokens at 2% rationale length between a feature attribution from an ID model tested on ID
and the same feature attribution trained on an OOD dataset and tested on ID.
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ID OOD Rand α∇α α DeepLift x∇x IG
SST IMDB 0.10 0.32 0.47 0.33 0.60 0.61
SST Yelp 0.11 0.19 0.35 0.25 0.54 0.56
IMDB SST 0.10 0.29 0.41 0.17 0.60 0.61
IMDB Yelp 0.10 0.21 0.34 0.14 0.59 0.61
Yelp SST 0.10 0.18 0.28 0.16 0.55 0.57
Yelp IMDB 0.10 0.16 0.29 0.12 0.56 0.58
AmazDigiMu AmazInstr 0.17 0.29 0.47 0.16 0.66 0.68
AmazDigiMu AmazPantry 0.17 0.36 0.44 0.26 0.66 0.69
AmazPantry AmazDigiMu 0.17 0.33 0.42 0.27 0.66 0.68
AmazPantry AmazInstr 0.17 0.46 0.49 0.24 0.67 0.69
AmazInstr AmazDigiMu 0.13 0.24 0.43 0.11 0.64 0.66
AmazInstr AmazPantry 0.13 0.40 0.50 0.20 0.67 0.68

Table 15: Agreement in tokens at 10% rationale length between a feature attribution from an ID model tested on ID
and the same feature attribution trained on an OOD dataset and tested on ID.

findings of Adebayo et al. (2020), who show that
feature attributions are good indicators of detect-
ing spurious correlation signals in computer vision
tasks.Considering α∇α we observe a wide range
of correlations, ranging from low in the AmazInstr-
AmazDigiMu pair to strong in the AmazPantry-
AmazInstr pair, which we cannot interpret as some-
thing meaningful.

Correlation values and FRESH: We first ob-
serve that the lowest correlated feature attribu-
tions α∇α and DeepLift perform the better on
FRESH, followed by α which displays moderate
correlations and at the end of the spectrum the
two gradient-based methods which display high
correlations. Contrary to our initial assumption,
this suggests that the attributions which generalize
better (i.e. return rationales that result in higher
FRESH performance) are those which exhibit low
to no correlations.

Agreement at different rationale lengths: As
the correlation analysis considers the entire length
of the sequence, we now examine a scenario where
we have a priori defined rationale lengths. Similarly
to the correlation analysis, we now compute the
agreement in tokens between ID feature attribution
rankings to those of an OOD trained model. In
Tables 14, 15 and 16 we therefore show the token
agreement between in-domain and out-of-domain
post-hoc explanations (on the same data) for 2%,
10% and 20% rationale lengths.

Our findings show that across all rationale
lengths, results largely agree with the correlation
analysis. The two gradient-based methods exhibit
higher agreement than the remainder, with α∇α
and DeepLift recording the lowest agreements. Sur-

prisingly, the poorest performers on out-of-domain
FRESH record the highest agreement in tokens
with in-domain models. Whilst this suggests that
they generalize better, we believe that the inhibit-
ing factor to their performance is their limited in-
domain capabilities (i.e. they record the lowest
in-domain FRESH performance with TopK).

F Post-hoc Explanation Faithfulness -
Extended

In Tables 17, 18 and 19, we present post-hoc expla-
nation sufficiency and comprehensiveness scores
at 2%, 10% and 20% rationale lengths.
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ID OOD Rand α∇α α DeepLift x∇x IG
SST IMDB 0.20 0.42 0.57 0.34 0.68 0.67
SST Yelp 0.21 0.31 0.46 0.27 0.61 0.62
IMDB SST 0.20 0.39 0.52 0.26 0.69 0.69
IMDB Yelp 0.20 0.32 0.46 0.22 0.67 0.68
Yelp SST 0.20 0.29 0.41 0.24 0.64 0.66
Yelp IMDB 0.20 0.27 0.42 0.20 0.65 0.66
AmazDigiMu AmazInstr 0.23 0.37 0.55 0.21 0.71 0.73
AmazDigiMu AmazPantry 0.24 0.44 0.51 0.32 0.71 0.74
AmazPantry AmazDigiMu 0.24 0.40 0.50 0.33 0.71 0.73
AmazPantry AmazInstr 0.24 0.54 0.57 0.32 0.72 0.73
AmazInstr AmazDigiMu 0.21 0.33 0.54 0.16 0.70 0.72
AmazInstr AmazPantry 0.21 0.51 0.60 0.30 0.72 0.74

Table 16: Agreement in tokens at 20% rationale length between a feature attribution from an ID model tested on ID
and the same feature attribution trained on an OOD dataset and tested on ID.

Train Test Normalized Sufficiency Normalized Comprehensiveness
Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 0.42 0.46 0.40 0.42 0.43 0.43 0.11 0.29 0.00 0.11 0.19 0.19
IMDB 0.35 0.40 0.33 0.35 0.34 0.35 0.11 0.39 0.14 0.13 0.17 0.18
Yelp 0.36 0.41 0.32 0.37 0.32 0.33 0.10 0.31 0.08 0.10 0.11 0.13

IMDB
IMDB 0.36 0.42 0.39 0.37 0.37 0.37 0.05 0.27 0.14 0.06 0.11 0.12
SST 0.29 0.30 0.29 0.30 0.30 0.30 0.16 0.33 0.16 0.16 0.21 0.19
Yelp 0.40 0.45 0.43 0.41 0.40 0.40 0.10 0.35 0.21 0.10 0.13 0.13

Yelp
Yelp 0.12 0.13 0.13 0.13 0.13 0.13 0.02 0.06 0.01 0.02 0.04 0.05
SST 0.47 0.46 0.46 0.48 0.47 0.47 0.08 0.09 0.00 0.09 0.12 0.12
IMDB 0.11 0.11 0.11 0.12 0.11 0.11 0.07 0.19 0.10 0.08 0.10 0.10

AmazDigiMu
AmazDigiMu 0.24 0.42 0.16 0.17 0.30 0.29 0.09 0.25 0.04 0.02 0.12 0.13
AmazInstr 0.17 0.33 0.13 0.13 0.21 0.21 0.14 0.41 0.10 0.06 0.17 0.18
AmazPantry 0.27 0.45 0.20 0.21 0.30 0.29 0.18 0.43 0.10 0.05 0.20 0.22

AmazPantry
AmazPantry 0.23 0.34 0.27 0.16 0.23 0.22 0.11 0.32 0.19 0.03 0.15 0.15
AmazDigiMu 0.22 0.35 0.29 0.16 0.22 0.22 0.10 0.29 0.19 0.03 0.12 0.12
AmazInstr 0.14 0.23 0.18 0.11 0.15 0.14 0.12 0.39 0.23 0.07 0.16 0.17

AmazInstr
AmazInstr 0.13 0.18 0.09 0.11 0.13 0.13 0.16 0.40 0.05 0.08 0.17 0.18
AmazDigiMu 0.19 0.29 0.12 0.13 0.19 0.18 0.14 0.35 0.04 0.05 0.14 0.15
AmazPantry 0.20 0.30 0.14 0.15 0.20 0.20 0.19 0.45 0.04 0.08 0.18 0.21

Table 17: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain at 2%
rationale length, for five feature attribution approaches and a random attribution baseline.

6937



Train Test Normalized Sufficiency Normalized Comprehensiveness
Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 0.43 0.55 0.43 0.46 0.44 0.45 0.16 0.42 0.20 0.22 0.25 0.25
IMDB 0.36 0.65 0.44 0.37 0.36 0.36 0.19 0.69 0.39 0.24 0.25 0.26
Yelp 0.37 0.67 0.37 0.39 0.33 0.34 0.17 0.58 0.25 0.20 0.22 0.24

IMDB
IMDB 0.37 0.64 0.54 0.40 0.39 0.39 0.10 0.55 0.30 0.17 0.18 0.18
SST 0.28 0.32 0.29 0.30 0.30 0.30 0.23 0.48 0.29 0.29 0.30 0.29
Yelp 0.41 0.54 0.46 0.43 0.41 0.41 0.18 0.58 0.36 0.22 0.24 0.24

Yelp
Yelp 0.17 0.22 0.23 0.26 0.19 0.20 0.05 0.15 0.05 0.06 0.08 0.08
SST 0.48 0.49 0.47 0.50 0.46 0.46 0.13 0.23 0.15 0.16 0.20 0.20
IMDB 0.13 0.29 0.29 0.22 0.14 0.15 0.13 0.35 0.28 0.16 0.18 0.19

AmazDigiMu
AmazDigiMu 0.33 0.67 0.24 0.25 0.39 0.36 0.11 0.34 0.08 0.06 0.15 0.16
AmazInstr 0.28 0.67 0.22 0.26 0.29 0.28 0.19 0.57 0.19 0.15 0.22 0.24
AmazPantry 0.33 0.64 0.25 0.28 0.36 0.34 0.22 0.55 0.17 0.12 0.25 0.26

AmazPantry
AmazPantry 0.23 0.46 0.34 0.17 0.24 0.23 0.15 0.45 0.29 0.10 0.20 0.21
AmazDigiMu 0.22 0.46 0.35 0.16 0.23 0.22 0.13 0.42 0.29 0.10 0.17 0.17
AmazInstr 0.14 0.42 0.27 0.12 0.16 0.15 0.18 0.59 0.40 0.17 0.24 0.25

AmazInstr
AmazInstr 0.13 0.28 0.09 0.12 0.13 0.13 0.23 0.58 0.16 0.22 0.24 0.25
AmazDigiMu 0.19 0.32 0.12 0.14 0.20 0.18 0.18 0.47 0.10 0.14 0.20 0.20
AmazPantry 0.21 0.35 0.15 0.17 0.21 0.21 0.24 0.57 0.12 0.18 0.24 0.27

Table 18: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain at 10%
rationale length, for five feature attribution approaches and a random attribution baseline.

Train Test Normalized Sufficiency Normalized Comprehensiveness
Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 0.45 0.68 0.51 0.51 0.48 0.49 0.22 0.54 0.34 0.33 0.32 0.34
IMDB 0.38 0.77 0.55 0.39 0.37 0.38 0.29 0.80 0.54 0.36 0.34 0.36
Yelp 0.39 0.83 0.57 0.41 0.37 0.38 0.25 0.71 0.44 0.30 0.32 0.34

IMDB
IMDB 0.37 0.75 0.62 0.42 0.41 0.42 0.16 0.73 0.47 0.30 0.27 0.27
SST 0.26 0.40 0.31 0.31 0.31 0.30 0.32 0.65 0.42 0.41 0.42 0.42
Yelp 0.42 0.62 0.50 0.43 0.44 0.44 0.28 0.67 0.47 0.35 0.36 0.37

Yelp
Yelp 0.25 0.43 0.41 0.40 0.28 0.30 0.09 0.25 0.12 0.13 0.14 0.15
SST 0.49 0.55 0.51 0.53 0.48 0.48 0.20 0.35 0.27 0.26 0.28 0.29
IMDB 0.19 0.53 0.50 0.34 0.24 0.25 0.20 0.46 0.40 0.27 0.28 0.28

AmazDigiMu
AmazDigiMu 0.43 0.81 0.47 0.35 0.52 0.50 0.14 0.41 0.17 0.10 0.19 0.20
AmazInstr 0.37 0.79 0.49 0.42 0.43 0.42 0.24 0.63 0.33 0.23 0.28 0.30
AmazPantry 0.42 0.76 0.45 0.37 0.47 0.45 0.26 0.61 0.31 0.20 0.30 0.32

AmazPantry
AmazPantry 0.27 0.63 0.46 0.19 0.30 0.29 0.21 0.57 0.40 0.17 0.28 0.29
AmazDigiMu 0.25 0.63 0.46 0.18 0.28 0.27 0.19 0.55 0.39 0.16 0.25 0.25
AmazInstr 0.16 0.61 0.42 0.14 0.21 0.20 0.27 0.72 0.54 0.26 0.35 0.36

AmazInstr
AmazInstr 0.15 0.46 0.15 0.18 0.17 0.16 0.31 0.72 0.33 0.34 0.32 0.34
AmazDigiMu 0.21 0.46 0.16 0.17 0.23 0.20 0.24 0.60 0.22 0.22 0.26 0.27
AmazPantry 0.23 0.49 0.18 0.21 0.24 0.23 0.31 0.68 0.28 0.28 0.32 0.35

Table 19: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain at 20%
rationale length, for five feature attribution approaches and a random attribution baseline.
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