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Abstract
Character-level information is included in
many NLP models, but evaluating the infor-
mation encoded in character representations is
an open issue. We leverage perceptual repre-
sentations in the form of shape, sound, and
color embeddings and perform a representa-
tional similarity analysis to evaluate their cor-
relation with textual representations in five
languages. This cross-lingual analysis shows
that textual character representations correlate
strongly with sound representations for lan-
guages using an alphabetic script, while shape
correlates with featural scripts. We further de-
velop a set of probing classifiers to intrinsi-
cally evaluate what phonological information
is encoded in character embeddings. Our re-
sults suggest that information on features such
as voicing are embedded in both LSTM and
transformer-based representations.

1 Introduction

On the one hand, writing is an essential form of
human communication. Writing systems and or-
thographies differ across languages and impact our
reading behavior. Psycholinguists have extensively
studied the effect of orthographic depth, i.e., the
transparency of grapheme-to-phoneme mappings,
on reading acquisition as well as skilled reading
(Seymour et al., 2003).

On the other hand, the wide range of cross-
linguistic diversity is still a major challenge for nat-
ural language processing (NLP) and for the study
of language more generally (Mielke et al., 2019;
Gutierrez-Vasques and Mijangos, 2020), especially
on sub-word levels (Gutierrez-Vasques et al., 2021).
This increases the importance of cross-lingual anal-
yses of character-level language models (LMs), be-
cause anglocentrism in linguistic research is not
only prevalent in NLP, but also in (reading and)
orthography research (Share, 2008).

Character-based language models have gained
significant attention in recent years in languages

with Latin scripts, since they contain meaningful in-
formation on various linguistic levels and enhance
the robustness of models. Oh et al. (2021) sug-
gest that character LMs provide a more human-like
account of sentence processing, which assumes a
larger role of morphology, phonotactics, and ortho-
graphic complexity than was previously thought.
Moreover, including character and sub-character
information in LMs for Asian scripts is a standard
practice. Despite of this recent attention, work fo-
cusing on getting a deeper understanding of char-
acter representation is scarce (Kann and Monsalve-
Mercado, 2021), in particular regarding the com-
parison between languages and different types of
scripts.

The goal of this work is to improve our under-
standing of learned character representations, for
better interpretability of the models. Like other
neural network based models, character-level LMs
can be seen as black-box methods and reveal lim-
ited insights about the causes for their predictions
(Gilpin et al., 2018). We investigate the information
encoded in character embeddings by comparing
them to perceptual representations. Such represen-
tations we design by mimicking features of human
language processing, from reading, writing and
speaking, by the creation of embeddings based on
the shape of characters, the sound (phonological
features derived from grapheme-to-phoneme map-
pings) and color (elicited in the form of grapheme-
color mappings from synesthetes).

Contributions We train models to learn three
types of character embeddings: a positive point-
wise mutual information (PPMI) vectorization, a
recurrent model, and a transformer model. As an
intrinsic evaluation method, we conduct a repre-
sentational similarity analysis (RSA) between the
distances of textual character representations and
the perceptual representations in the form of shape,
sound, and color embeddings. Furthermore, to pro-
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vide more interpretable evaluation methods for
character embeddings, we propose a novel prob-
ing task of predicting phonological features. Cru-
cially, we address the cross-linguistic challenges
that arise with character-level modeling by taking
into account languages of varying scripts and or-
thographic depths. We argue that character-level
black-box models can only be understood through
cross-linguistic approaches and not on individual
languages. We perform analyses of five languages:
Dutch, English, Japanese, Korean, and Spanish. We
discuss the compelling patterns of significant cor-
relations and show the effectiveness of the prob-
ing classifiers even in a zero-shot scenario. The
implementation and character representations are
available online1.

2 Related Work

Character-level information in LMs. Includ-
ing character-level information in LMs of lan-
guages with Latin scripts has become a common
practice in NLP in recent years. This has been the
case for different tasks, such as language modeling
(Kim et al., 2016; Al-Rfou et al., 2019), part-of-
speech tagging (Ling et al., 2015), morphological
inflection (Faruqui et al., 2016; Kann and Schütze,
2016; Kann et al., 2020), named entity recognition
(Lample et al., 2016), machine translation (Sen-
nrich et al., 2016; Ngo et al., 2019). Character-level
information can enhance the models by providing
background knowledge in the form of the under-
lying structures of words in a language (Adouane
et al., 2018). Ma et al. (2020) showed how combin-
ing character- and word-level information in pre-
trained LMs improves not only the performance
but also the robustness of the model.

For certain languages, it is standard practice to
include sub-token information in LMs, which hap-
pens naturally due to the compositional structure
of their orthographies. This is the case for East
Asian languages such as Korean and Japanese (e.g.,
Misawa et al. 2017; Chen et al. 2015). Korean
LMs are often trained on Jamos (i.e., letters, as
opposed to syllables), the smallest unit of the Ko-
rean script (Ahn et al., 2017; Park et al., 2018).
This reduces the vocabulary size and injects syn-
tactic and semantic information to the model that
is difficult to access with conventional character-
or token-level units (Stratos, 2017). Recently, Lee

1https://github.com/syssel/
Interpreting-character-embeddings

et al. (2020b) showed that a Korean BERT model
using sub-character information requires less train-
ing data than previous models. Similarly, Japanese
LMs also benefit from sub-character information
(Nguyen et al., 2017).

Evaluating character embeddings. Character-
based language models are most often evaluated
on downstream NLP tasks or on next character
or word prediction (e.g., Takase et al. 2019; Tay
et al. 2021; Clark et al. 2021). Additionally, they
can be evaluated on word-level intrinsic evalua-
tion tasks such as word analogy or similarity (e.g.,
Li et al. 2015). While work on intrisic evalua-
tion of character embeddings is scarce (Kann and
Monsalve-Mercado, 2021), the evaluation of neural
models trained on phonemes have received more
attention, focusing on what phonological knowl-
edge is embedded within (Silfverberg et al., 2018;
Kolachina and Magyar, 2019; Mayer and Nelson,
2020; Mayer, 2020; Silfverberg et al., 2021). Mayer
(2020) and Mayer and Nelson (2020) use charac-
ters as an approximation of phonemes in the case of
Samoa and Finnish, respectively, as graphemes are
closely connected to phonemes in these orthogra-
phies.

The methods we leverage in this paper, previ-
ously applied for evaluating different types of repre-
sentations, are representational similarity analysis
(RSA) and probing classifiers. The former was first
proposed by Kriegeskorte et al. (2008) for com-
paring brain activity vectors in heterogeneous rep-
resentational spaces, but has also been applied in
NLP as an interpretability metric as it allows us to
study the relation between language representations
(Abnar et al., 2019; Abdou et al., 2019; Chrupała
and Alishahi, 2019). RSA enables a transparent
comparison between the representational geome-
tries of different models and modalities (Søgaard,
2021).

Contrarily, probing classifiers learn to classify
output representations in supervised settings (Et-
tinger et al., 2016). The intuition behind prob-
ing is that if a classifier can be learned to accu-
rately predict certain linguistic properties from
the representations of a neural model, then this
model has "learned" this property. Typically, lightly
parametrized classifiers (like logistic regression)
are applied, however, the exact trade-off between
accuracy and complexity of a probe is an open
question (Belinkov, 2021). In recent years, NLP
studies have used probing classifiers to investigate

6820

https://github.com/syssel/Interpreting-character-embeddings
https://github.com/syssel/Interpreting-character-embeddings


whether LMs encode linguistic properties includ-
ing morphological features (such as person and
number, Torroba Hennigen et al. (2020)) and word
sense (Coenen et al., 2019). However, we apply
probing classifiers for the first time to character
representations.

Impact of different orthographies on linguistics
and human language learning. Orthographic
depth, i.e., the transparency of grapheme-phoneme
correspondences in written language (Frost et al.,
1987; Katz and Frost, 1992), is a well-studied fac-
tor influencing reading acquisition and skilled read-
ing behavior (Seymour et al., 2003; Landerl et al.,
2013; Richlan, 2020). For instance, English is con-
sidered to be a deep orthography, as there are of-
ten multiple different pronunciations for the same
spelling patterns (e.g., <gh> in tough and though).
This contrasts shallow orthographies with more
reliable grapheme-phoneme correspondences, such
as Spanish. The consistency and complexity with
which print reflects speech is one of the prime fac-
tors of cross-linguistic differences in reading flu-
ency (Ziegler et al., 2010; Schmalz et al., 2015).
It is the starting point for any discussion that cen-
ters on reading development across languages (Pa-
padopoulos et al., 2021). Since the orthography has
such a high impact on human reading behavior, its
effect should also be considered more carefully in
the development of NLP models.

Impact of different orthographies on NLP mod-
els. While orthographic depth has been discussed
at length in reading research and psychology, it has
rarely been addressed in NLP. This partly due to
the prevalent anglocentrism and missing resources
(Bender, 2018). Some research has gone into study-
ing the differences between languages when it
comes to train computational LMs (Mielke et al.,
2019), showing the impact of the vocabulary size
and sentence length, but there is lack of NLP re-
search analyzing or taking into account the varying
orthographies across languages. Two notable ex-
ceptions are the recent methods proposed by Mar-
jou (2021) and Sproat and Gutkin (2021), who use
neural networks to estimate the transparency of
orthographies and degree of logography, respec-
tively. Moreover, Gorman et al. (2020) conducted
a shared task on grapheme-to-phoneme prediction.
Their results show an urgency for improving these
systems and the pronunciation dictionaries used to
train them across languages and scripts.

3 Character Representations

We train three types of character embeddings based
on textual input: count-based PPMI embeddings,
and embeddings learned by LSTM and transformer
language model.

3.1 Character Language Models

We use the Wiki40B multilingual dataset (Guo
et al., 2020) to train the character models. For
each of the five languages, English (en), Dutch
(nl), Spanish (es), Korean (ko), and Japanese (ja),
we extract training sets of 3 million characters. See
Appendix A for details on preprocessing. The first
three languages all use variants of the Latin script,
while Hangul (Korean) and Hiragana (one of three
scripts used in Japanese) are syllabic scripts, in
which most graphemes denote entire syllables. We
preprocess Korean Hangul characters, decompos-
ing them into constituent Jamos, each correspond-
ing roughly to a single phoneme. For Japanese, we
convert Kanji symbols to Hiragana and train the
language model on Hiragana and Katakana char-
acters. The representational similarity analyses are
then only performed on Hiragana. Figure 1 shows
2-dimensional plots of the learned textual character
representations.

Count-based PPMI embeddings. We generate
vectorized character representations in a purely
count-based manner with a positive pointwise mu-
tual information (PPMI) weighting. While the im-
portance of positional information is less obvious
for modelling word semantics, it is crucial for mod-
elling the distribution of sounds. Following the ap-
proach by Mayer (2020), we let our PPMI weight-
ing diverge from traditional bag-of-words models
by distinguishing contexts by their relative position
to a target. Thus, embeddings will have indepen-
dent values for the contexts AB_, _AB, and A_B,
counting the number of times a target follows, pre-
cedes, and mediates a string AB. Using bigram con-
texts, the resulting embeddings have a dimension
of 3 · c2, where c is the number of characters in
a given language, and 3 indicating the number of
possible relative positions.

LSTM. We train a recurrent language model con-
sisting of two unidirectional long-short term mem-
ory (LSTM) layers. It receives sequences of 40
characters as input at each time step and is trained
for next character prediction. The model is trained
with an Adam optimizer (Kingma and Ba, 2015),
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Figure 1: tSNE cluster plots of the character distances from the three types of character language models for
English and Korean (see Appendix Figure 5 for the plots for Dutch, Spanish and Japanese).

A B C D E F G HSpanish

A B C D E F G HEnglish

Dutch A B C D E F G H
あいうえおかきく
ㄱㄴㄷㄹㅁㅂㅅㅇ

Japanese

Korean

Figure 2: Example of letter-color associations from sin-
gle subjects.

an initial learning rate of 0.01, and a batch size
of 128. We extract the hidden representations of
128 dimensions as the character embeddings. See
Appendix C.1 for training specifications and Ap-
pendix C.2 for perplexity metrics. We additionally
experimented with bidirectional LSTMs (see Ta-
ble 1) and 1-layer LSTMs without any substantial
changes in the results (Appendix C).

Transformer. Similarly, we also train a trans-
former character model on the same data (Vaswani
et al., 2017). The input layer consists of character
and positional embeddings, followed by a single
transformer block with 2 heads and a hidden layer
size of 128. We follow the same training proce-
dure as for the LSTM and extract the representa-
tions of the hidden layer as the character embed-
dings. Again, see Appendix C for additional details,
model modifications, and perplexity metrics.

3.2 Perceptual Representations

Sound. The first perceptual representation that
we consider is sound. To retrieve this representa-
tion, we map characters to a phonological distinc-
tive feature space. This method has previously been
applied to phonemes as a means of generalisation
compared to sparse representations (Rumelhart and
McClelland, 1986; Mirea and Bicknell, 2019), and
to evaluate the knowledge embedded representa-
tions learned from neural networks (Silfverberg
et al., 2018; Kolachina and Magyar, 2019).

As sound and speech are only indirectly re-
flected in writing, we approximate sound represen-
tations of characters using grapheme-to-phoneme
alignment: For all languages, we extract data
from the WikiPron pronunciation dictionary (Lee
et al., 2020a) and use the m2m-aligner (Ji-
ampojamarn et al., 2007) to align graphemes with
phonemes in an unsupervised manner. Having
alignments from the WikiPron data, we chose the
most frequent phoneme mapping to represent the
sound of each character (resulting mappings are
listed in the Appendix D) We also considered ex-
tracting the most frequent phoneme mapping only
from word-initial positions. The intuition behind
this approach was to retrieve representations as
close to phonemic as possible, as sounds in the
initial position are expected to be less prone to
phenomena such as reduction and assimilation re-
flected in the WikiPron data (e.g., reduction of En-
glish "o" to @). However, the word-initial position is
also subject to phonotactic restrictions: For exam-
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ple, in Korean only including consonants occurring
word-initially heavily reduces the inventory consid-
ered.

Having phonemes mapped to characters, we are
able to associate it with a set of phonological dis-
tinctive features, which we use to form our final
sound representation: Using the ipapy2 toolkit,
we retrieve International Phonetic Alphabet (IPA)
descriptions of the phoneme mappings from which
we create a sparse vector that describes what phono-
logical features (e.g., consonant manner of articula-
tion, ±plosive, or vowel height, ±front) are active.
For every language, this provides us with a sound
embedding table, S|V |×|F |, where V is the set of
characters and F is the set of distinctive features:

Si,j =

{
1 if Fj ∈ phonmap(Vi).
0 otherwise.

Color. Inspired by Kann and Monsalve-Mercado
(2021), we compute color character representations
from synesthesia data. Grapheme-color synesthe-
sia is a neurological phenomenon in which view-
ing a grapheme elicits an automatic, involuntary,
and consistent sensation of color (Eagleman et al.,
2007). Color-to-letter associations in synesthesia
allow to examine the relationships between visual,
acoustic, and semantic aspects of language. Recent
research in this area has found cross-linguistic sim-
ilarities in synesthesia, suggesting that some influ-
ences on grapheme-color associations in synesthe-
sia might be universal and highlighting the impor-
tance of multilingual analyses (Root et al., 2018).
Figure 2 shows example grapheme-color associa-
tions from individual subjects for each of our stud-
ied languages. It emphasizes the preference for red
color tones for the first letter of the alphabet irre-
spective of the language (Root et al., 2018).

We use the cross-linguistic synesthesia data col-
lected by Root et al. 2018 (see Appendix B for
the dataset statistics). In order to extract color rep-
resentations we compute the Euclidean distances
between the 3-dimensional CIELuv color coding
scheme for all character combinations. We average
the distances across all participants of the same
language. The resulting vector representations re-
flect the finding of Root et al. (2018) that the first
grapheme in any language is unusually distinct (see
Figure 4 in Appendix) .

2https://github.com/pettarin/ipapy

Shape. Lastly, we also create simple character
representations based on their shape. Previous
works (Brang et al., 2011; Watson et al., 2012) have
relied on Gibson (1969) or Courrieu et al. (2004) to
build shape-related embeddings from human simi-
larity judgements. However, we create shape em-
beddings directly from their visual expressions. We
create an image for each printed character as shown
in Figure 6 in the appendix. For each script, all im-
ages have the same width and height (the largest
width among all characters incremented with 10
pixels, and the same for the height, which results
approximately in 35× 45 pixels) and all characters
are drawn at position {5,5}. We use the font Arial
Unicode MS with size 28. From these images, we
create shape representations by reading the images
as gray scale images row-wise from top to bottom
and flattening the matrix into vectors.

4 Representational Similarity Analysis

In order to analyze the relation between the learned
character representations and the three perceptual
representations – sound, shape, and color – we first
compute the pairwise distances between characters
of a single model/representation type to analyze
how similar the model’s representations for each
character are to each other3. For each pair of exper-
imental conditions, the spatial correlation is calcu-
lated between the distances of all characters of a
language. Figure 3 shows the Pearson correlations
between the character distances of all embedding
types. The figure also includes a baseline, where the
correlation between random distances and the dis-
tances of the respective character representations
is computed. We correct the significance results
by applying the Bonferroni correction for multiple
comparisons.

As expected, the textual character representa-
tions show high correlation amongst each other for
all five languages. The correlations between the tex-
tual embeddings and the perceptual representations
show that even though the first are purely trained on
written language, they still learn to encode certain
inherent characteristics of human language process-
ing and production.

As a general pattern, the textual character repre-
sentations correlate strongly with sound represen-
tations, moderately with color representations, and
not at all with the shape representations (with the

3We use cosine distance for all textual, sound and shape
representations; and Euclidean distance for color.
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Figure 3: Pearson correlation between all representations types for all five languages and for the random base-
line (bottom right). A * marks a significant correlation (p < 0.01), ** marks a significant correlation under the
Bonferroni correction (p < 0.003).

exception of Korean, discussed below). Japanese
character embeddings behave differently. For in-
stance, the correlation with the sound representa-
tions is weaker than for the other languages, which
might be due to the syllabic nature of the Japanese
script. In the following, we discuss the results for
each of the perceptual embedding types in detail.

4.1 Sound
The PPMI character embeddings show the highest
correlation with sound representations, followed
closely by transformer embeddings. This is notable
in the three languages with Latin scripts (en, es,
nl). To explain this finding, we speculate that the
context and learning direction available to the LMs
provide phonetic information. While the PPMI em-
beddings have access to contextual information in
both directions, the unidirectional LSTM and trans-
former learn from left-to-right only. Therefore, as
an addition, we trained a bidirectional LSTM (hid-
den dimension = 256) to show that the addition of
right-to-left information improves the correlation
to the sound representations. The results are shown
in Table 1. Moreover, comparing the results across
Latin script, we note that Spanish character embed-
dings from all models achieve higher correlations
than Dutch and English. The shallow orthography
of the Spanish language explains this finding. This
is also the case for Korean.

en es nl
PPMI 0.54 0.60 0.44
LSTM 0.52 0.37 0.53
biLSTM 0.48 0.34 0.42
Transformer 0.54 0.63 0.48

Table 1: Correlations between sound representations
and character embeddings.

syllables Jamos
Sound 0.04 0.68
Color – 0.19
Shape 0.03 0.51

Table 2: Pearson correlation coefficients for Korean
transformer character embeddings based on Hangul syl-
lables vs. Jamos. As the synesthesia data only includes
Jamos, we exclude the syllable correlation for color.

4.2 Color

Our findings on the correlation between English
character embeddings and synesthesia data are in
line with Kann and Monsalve-Mercado (2021),
who find that LSTMs agree with human letter-color
perceptions more than transformers on a dataset
with more participants (0.08 for LSTM-LM and
0.0 for transformer-LM). Moreover, we reach the
same conclusion for the other alphabetic scripts,
Dutch and Spanish, while for Korean and Japanese
there is no clear pattern evident from the correla-
tion coefficients. This might be due to the smaller
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number of synesthete participants in the dataset.

4.3 Shape

The character embeddings of non-featural Latin
scripts show low (or even negative) correlation
to the shape embedding. However, due to their
featural writing systems (Sampson, 1985; Marjou,
2021), Japanese and especially Korean embeddings
correlate significantly with shape. The fact that the
Korean consonant graphemes were designed to re-
semble the place of articulation (Lee, 2021; Gale,
1912), can explain the high correlations between
character and shape embeddings for this language.

This is also shown in the positive correlation
between sound and shape representations, which
is absent for the other languages. To analyze this
further, we compare our initial results with trans-
former character representations computed based
on Jamos (e.g., individual phonemes such as "ㄱ"),
to character representations of full Hangul charac-
ters (e.g., syllables such as "공"). Table 2 shows
higher correlations for characters decomposed into
Jamos. The correlation between sound and shape
is also lower for full syllables (0.31).

In this light, the result is unsurprising and can
be interpreted as an effective proof-of-concept of
using a correlation analysis between textual and
perceptual representations. More genuine shape
representations, for example learned by a convolu-
tional neural network, could be applied to reveal
more accurate correlation patterns for Latin scripts.

5 Probing Task

Except for Japanese, the results show that the neu-
ral embeddings correlate the most with the percep-
tual sound representations. To get a closer look at
the information that may be encoded in the dense
embeddings, we design a probing task in which
classifiers are trained to predict whether certain
distinctive features are present given character em-
beddings as input.

5.1 Classifier Setup

For each distinctive feature, we train a binary Lo-
gistic Regression to predict whether the the feature
is present (1), or not (0). The labels are given by the
sound representations as explained in Section 3.2.
As the number of samples is small (limited to the
number of characters in a language), we do this in a
leave-one-out manner, training a classifier for each
character, while using the rest for training. In both

test and training, for features that only concern con-
sonants (e.g., manner of articulation and voicing),
we exclude vowels, and similarly, for features that
only concern vowels (e.g., vowel height and vowel
rounding), we exclude consonants.

The performance of the probes are evaluated
for each distinctive feature using F1 scores and by
comparison with two baseline strategies, namely,
(a) to predict labels uniformly at random, and (b)
to always predict the most frequent label according
to the training distribution. The former is given as
the average across 1000 runs.

5.2 Zero-Shot Classifiers
For some features, choosing the most frequent la-
bel is a good strategy and will yield good results.
To further challenge the knowledge learned by the
embeddings and distinguish the classifiers from the
strategy of choosing the most frequent baseline,
we create a zero-shot setup in which the classifiers
will have to be able to transfer knowledge between
features in order to excel in the task. In particular,
we test 1) if a classifier trained to predict whether a
consonant is voiced is able to identify vowels and
2) if labial consonants are retrieved by a classifier
trained to predict vowel rounding. While the intu-
ition behind 1) relates to the sonority sequencing
principle (Clements, 1990), which states that the
nucleus of a syllable (vowels in the majority of
the cases) represents a sonority peak, the intuition
behind 2) is more experimental, relying on a global
feature such as ’rounding’.

5.3 Results and Discussion
The results for the probing classifiers are found
in Table 3. Generally, both LSTM and transformer
embeddings outperform both the most-frequent and
random baselines, with the transformer beating the
LSTM by a small margin. This should, however, be
taken with a grain of salt considering the limited
number of examples.

Considering the global features, vowel and con-
sonant, classifiers are able to learn this distinction
using both LSTM and transformer character em-
beddings. In particular, consonants are identified
with high certainty. This is, however, the major-
ity group (ref. the most frequent strategy). The F1
scores for vowel prediction are considerably lower.
However, in this case they cannot be explained by
neither a most-frequent strategy nor a random base-
line, which indicates that a global vowel/consonant
distinction is captured in the embeddings.
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global type consonant voicing vowel rounding
Model consonant vowel voiced voiceless rounded unrounded

en
LSTM 0.95 0.80 0.55 0.44 - -
Transformer 0.97 0.92 0.75 0.63 - -
Random 0.60 0.32 0.52 0.48 - -
Most-frequent 0.87 0.00 0.71 0.00 - -

es

LSTM 0.96 0.75 0.40 0.50 0.00 0.75
Transformer 0.98 0.89 0.72 0.63 0.00 0.33
Random 0.61 0.27 0.49 0.49 0.43 0.49
Most-frequent 0.90 0.00 0.00 0.00 0.00 0.00

ko

LSTM 1.00 1.00 0.50 0.65 0.00 0.83
Transformer 1.00 1.00 0.43 0.47 0.00 0.86
Random 0.53 0.46 0.46 0.53 0.27 0.62
Most-frequent 0.73 0.00 0.00 0.71 0.00 0.89

nl

LSTM 0.97 0.92 0.80 0.62 0.00 0.83
Transformer 0.97 0.92 0.75 0.57 0.00 0.83
Random 0.59 0.35 0.53 0.45 0.35 0.57
Most-frequent 0.84 0.00 0.73 0.00 0.00 0.83

Table 3: F1 score for classifiers predicting distinctive features with character embeddings (LSTM, Transformer)
as input. Two baselines are included: Random (predicting labels uniformly at random) and Most-frequent (always
predicting the most frequent label). Since English only has one rounded vowel (the character ’o’ mapped to IPA ’6’),
the result for this classifier is not included. Results for predicting all distinctive features are found in Appendix E.

consonant voicing:voiced
Model → global type:vowel

en

LSTM 0.80
Transformer 0.50
Random 0.64
Most-frequent 1.00

es

LSTM 0.89
Transformer 0.89
Random 0.64
Most-frequent 0.00

ko

LSTM 0.09
Transformer 0.83
Random 0.66
Most-frequent 0.00

nl

LSTM 1.00
Transformer 0.83
Random 0.64
Most-frequent 1.00

Table 4: F1 score for predicting vowels using a clas-
sifier trained to predict whether a consonant is voiced.
Two baselines are included: Random (predicting labels
uniformly at random) and Most-frequent (predicting
the most-frequent label, w.r.t. the label distribution in
the original task).

The findings for the voiced/voiceless consonant
distinction are similar. But here the groups are more
balanced, which provides the most-frequent strat-
egy with less of an advantage and in turn the F1
scores are generally lower. For Korean, the scores
are lower compared to the other languages. As
the feature of consonant voicing correlates with

manner in Korean (with all plosives, affricates and
fricatives being voiceless, and plosives being the
majority class), the task captured by the classifier
may be distorted. The fact that the classifier may
not be able to pick up features of voicing from the
Korean embeddings are reflected in the zero-shot
experiment.

The results for the first zero-shot experiment for
predicting vowels using the classifier for identify-
ing voiced consonants are found in Table 4. Here,
the results for Korean are worse than the random
baseline. While the results for English and Dutch
can be explained by the most-frequent strategy, the
result for Spanish indicates that features of voicing
or sonority are encoded in the embeddings, ampli-
fying the initial results from the probing classifier
experiment.

Turning from consonant to vowel features, the
inventory of vowels is considerably smaller, leav-
ing a small number of training examples with few
positive examples. Thus, the results of the probing
classifiers are associated with uncertainty. For the
zero-shot task of retrieving consonants with labial
features from a classifier trained to predict vowel
rounding, we focus our analysis on Spanish LSTM
embeddings as they showed the most promising re-
sults for predicting rounding in the regular probing
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Language F1 True positive False positive False negative
es 0.47 b f v w g k q x y z ñ p m

Table 5: Results from the zero-shot task to predict ’rounded’ consonants using the Spanish LSTM embeddings.
Using a classifier to predict the vowel rounding of consonants, the following consonants are retrieved. F1 score
indicates the ability to identify consonants with a labial place of articulation.

task. However, as can be seen in Table 5, while the
classifier for Spanish has a high recall its precision
lacks behind and retrieves many false positives.

Overall, we believe that the results are promising
and a good indication on how character represen-
tations can capture features related to phonology.
This especially in light of the results from the first
zero-shot task, that suggested that classifiers are
able to transfer knowledge of sonority from embed-
dings of consonants to unseen vowels.

6 Conclusion

In this work, we attempted to understand the in-
formation encoded in character-level representa-
tions. We obtained two main types of embed-
dings: text-based embeddings and perceptual em-
beddings. While the first type of representations
(PPMI, LSTM, and transformer) were trained from
raw text data, perceptual representations were ob-
tained from sources mimicking human language,
i.e., pronunciation dictionaries, synesthesia data
and shape visualizations. We have performed repre-
sentational similarity analyses between these types
of embeddings for five different languages. Besides,
we defined and trained models to predict certain
phonological distinctive features in order to inter-
pret the embeddings.

We found interesting patterns in the representa-
tional similarity analysis as a simple first approach
for intrinsic character embedding evaluation. While
clearly outperforming a random baseline in most
cases, the strength of the correlations vary between
scripts. For instance, the strong correlation between
Korean character embeddings and shape represen-
tations provides positive evidence of the suitability
of this approach. Further research is required to dis-
sect the differences between character LMs: While
the LSTM embeddings showed stronger correlation
with color, the transformer embeddings were supe-
rior when compared to sound representations. The
inclusion of additional languages and scripts will
be helpful to identify more generalizable insights.

These perceptual representations could be used
as pre-trained representations. It might be the case

that they contribute differently for different tasks.
For instance, sound representations would be ex-
pected to be useful for tasks revolving around
phonology, such as grapheme-to-phoneme conver-
sion, or shape representations could be relevant for
predicting orthographic errors.

The phonological probing tasks show promising
results, especially with respect to interpretability.
Besides, this methodology is applicable to any lan-
guage with sufficient raw data and a pronunciation
dictionary, and could potentially shed light in mea-
suring the phonological difficulty of certain lan-
guages. In future work, we will focus on the devel-
opment of more sophisticated probes, for instance,
multitask networks with shared layers across tasks.
Moreover, the labels of the probing task were given
from using the sound embeddings retrieved from
the most frequent phoneme mapping. Had we fo-
cused the analysis on contextual character embed-
dings instead, that would allow us to distance our-
selves from this paradigm as we would be able
to analyse character and sound embeddings in the
context they occur in.

Finally, we stress the need for further intrinsic
evaluation methods for character representations.
The high impact of orthography on human lan-
guage learning is an adamant argument to consider
the cross-linguistic diversity of writing systems
more carefully in the development of NLP models.
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A Preprocessing

We download the Wiki40B dataset for each of the
five languages (English, Dutch, Japanese, Korean,
and Spanish) from TensorFlow Hub4. We lower-
case all letters. For English and Dutch, we consider
the 26 standard letters of the alphabet, digits and
punctuation marks. For Spanish, we additionally
add ñ and and remove diacritics from vowels. For
Korean, we consider all Hangul characters, digits
and punctuation marks. Since Hangul is a featu-
ral writing system (Sampson, 1990), we split the
compound symbols into phoneme-like constituents
called Jamos5. For Japanese, we convert Kanji char-
acters to Hiragana6 to reduce the large vocabulary
size to a syllabic alphabet. The language model is
then trained on Hiragana and Katakana characters.
However, for subsequent analyses we focus only on
Hiragana. For all languages, we replace any other
special characters with the symbol C.

B Datasets

This section provides further information about the
datasets used to extract the perceptual representa-
tions.

B.1 Synesthesia Dataset
As described in the main paper, we use the synes-
thesia data collected by Root et al. 2018. The data
is available upon request by the first author. Table
6 shows the number of characters and participants
included for each language in the dataset.

Language # Chars # Participants
English 26 47
Dutch 26 110
Japanese 46 27
Korean 24 13
Spanish 26 32

Table 6: Synesthesia dataset details showing the num-
ber of characters included for each language and the
number of synesthetes participating in the study.

In Figure 4 the characters are plotted by the dis-
tances between their corresponding colors. Based
on this dataset, Root et al. 2018 showed how some
influences on grapheme-color associations in synes-
thesia might be universal across languages. Their

4https://www.tensorflow.org/datasets/
catalog/wiki40b

5https://pypi.org/project/jamotools/
6https://pypi.org/project/pykakasi/

results suggest that grapheme-color associations
follow an ordinal explanation, meaning that the
unusually distinct first grapheme of a synesthete’s
alphabet tends to be associated with the unusually
distinct color red. In line with their findings, the
clusters show the greatest distance between the
associated colors of the first grapheme of the alpha-
bets (i.e., "a" in English and Spanish and "ㄱ" in
Korean).

B.2 Shape Dataset
Please find in Figure 6 some examples of character
figures that were used to build shape representa-
tions. We besides include in figure 7 three dendro-
grams calculated from the shape representations.
For Spanish, English, and Dutch, we only calcu-
lated one dendrogram, as the only difference is that
the Spanish alphabet contains the "ñ" letter. For
Japanese, we show a random subset (50%) of the
Hiragana alphabet, as it did not fit properly in our
plots.

C Models

C.1 Training Procedure
For the LSTM, biLSTM and transformer models,
the number of epochs is set to 100, but the mod-
els are trained with early stopping and training is
ended after 3 epochs without improvement on the
validation loss. The best model is saved and used to
extract the character embeddings. For reproducibil-
ity purposes, we set a single random seed.

C.2 Perplexity
Table 7 reports the performance of the models in
terms of per-character perplexity (PPL), defined as
the base-2 exponentiation of the cross-entropy.

Model PPL

en

LSTM 170.99
Transformer 80.22

es

LSTM 83.81
Transformer 56.22

nl

LSTM 68.28
Transformer 45.92

ko

LSTM 106.91
Transformer 76.45

ja

LSTM 268.84
Transformer 625.29

Table 7: Model perplexities on validation set.

C.3 Additional Experiments
We experimented with adding additional layers in
the LSTM models. The results show slight differ-
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ences in the Pearson correlation coefficients, but
the general trends remains the same.

We also experimented with more heads (4 in-
stead of 2) in the transformer models as well as
taking the representations from the embeddings
layers instead of the hidden layer. However, the
results did not yield significant changes.

D Grapheme-to-Phoneme Alignments

Resulting grapheme-to-phoneme alignments from
the WikiPron dataset retrieved by choosing the
most frequent phone mapping of a character based
on an unsupervised alignment of the data.

D.1 Dutch
a:A, b:b, c:k, d:d, e:@, f:f , g:G, h:H, i:I, j:Ei

“
, k:k , l:l

, m:m , n:n , o:O, p:p , r:r , s:s , t:t , u:Y, v:v , w:V,
x:ks, z:z , q:k , y:i

D.2 English
a:@, b:b , c:k , d:d , e:E, f:f , g:g , h:h , i:, j:Ã, k:k ,
l:l , m:m , n:n , o:@, p:p, q:k , r:ô, s:s , t:t , u:2, v:v ,
w:w , x:ks , y:i , z:z

D.3 Korean
ㄱ:k^,ㄲ:k�,ㄴ:n,ㄷ:d,ㄸ:t�,ㄹ:í,ㅁ:m,ㅂ:p,ㅃ:p�,
ㅅ:sh, ㅆ:s�, ㅇ: , ㅈ:dý, ㅉ:tC, ㅊ:tCh, ㅋ:kh, ㅌ:th,
ㅍ:ph, ㅎ:H, ㅀ:í, ㅄ:p^, ㅏ:a

¯
, ㅐ:e:, ㅑ:a

¯
, ㅒ:E:,

ㅓ:2» ,ㅔ:efl,ㅕ:2» ,ㅖ:efl,ㅗ:ofl,ㅘ:a
¯
,ㅙ:E:,ㅚ:efl,ㅛ:o,

ㅜ:u,ㅝ:2» ,ㅞ:efl,ㅟ:i,ㅠ:u,ㅡ:W,ㅢ:i,ㅣ:i,ㄳ:k^,
ㄵ:n, ㄶ:n, :í, ㄺ:k^, ㄻ:m, ㄼ:í, ㄽ:í, ㄾ:í,
ㄿ:p^, :m

D.4 Spanish
a:a , b:b , c:k , d:d , e:e , f:f , g:g , h:x , i:i , j:x , k:k
, l:l , m:m , n:n , o:o , p:p , q:k , r:R, s:s , t:t , u:u ,
v:b , w:w , x:ks , y:

>
ÍJ, z:T

D.5 Japanese
For the Japanese alignments, we refer to the
Japanese log file in the ipa_embeddings folder
in the code repository.

E Probing Task

The results of all the probing task on all distinctive
features are found in Table 8.
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Figure 4: Dendrograms of the distances between col-
ors assigned to each character for English, Korean and
Spanish. The leaves are sorted so that the minimum dis-
tance between its direct descendants is plotted first.
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Figure 5: tSNE cluster plots of the three types of character models for Spanish, Dutch and Japanese.

Figure 6: Example images from which we extract char-
acter shape representations from the Latin alphabets,
the Korean Hangul alphabet and the Japanese Hira-
gana alphabet.
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global type consonant voicing consonant place
Model consonant vowel voiced voiceless alveolar alveolo-palatal bilabial labio-dental palatal velar

en

LSTM 0.95 0.80 0.55 0.44 0.53 - 0.00 0.00 - 0.29
Transformer 0.97 0.92 0.75 0.63 0.38 - 0.00 0.00 - 0.00
Random 0.60 0.32 0.52 0.48 0.47 - 0.22 0.16 - 0.33
Most-frequent 0.87 0.00 0.71 0.00 0.00 - 0.00 0.00 - 0.00

es

LSTM 0.96 0.75 0.40 0.50 0.33 - 0.40 - 0.00 0.46
Transformer 0.98 0.89 0.72 0.63 0.62 - 0.00 - 0.00 0.00
Random 0.61 0.27 0.49 0.49 0.38 - 0.26 - 0.15 0.39
Most-frequent 0.90 0.00 0.00 0.00 0.00 - 0.00 - 0.00 0.00

ko

LSTM 1.00 1.00 0.50 0.65 0.47 0.00 0.00 - - 0.00
Transformer 1.00 1.00 0.43 0.47 0.29 0.00 0.17 - - 0.00
Random 0.53 0.46 0.46 0.53 0.41 0.16 0.32 - - 0.29
Most-frequent 0.73 0.00 0.00 0.71 0.00 0.00 0.00 - - 0.00

nl

LSTM 0.97 0.92 0.80 0.62 0.67 - 0.00 0.00 - 0.33
Transformer 0.97 0.92 0.75 0.57 0.57 - 0.00 0.00 - 0.57
Random 0.59 0.35 0.53 0.45 0.45 - 0.24 0.24 - 0.34
Most-frequent 0.84 0.00 0.73 0.00 0.00 - 0.00 0.00 - 0.00

consonant manner
Model approximant nasal non-sibilant-fricative plosive sibilant-fricative

en

LSTM 0.00 0.00 0.00 0.80 0.00
Transformer 0.00 0.00 0.00 0.74 0.00
Random 0.17 0.18 0.22 0.50 0.28
Most-frequent 0.00 0.00 0.00 0.00 0.00

es

LSTM - 0.00 0.00 0.50 0.00
Transformer - 0.00 0.00 0.33 0.00
Random - 0.21 0.26 0.47 0.15
Most-frequent - 0.00 0.00 0.00 0.00

ko

LSTM - 0.00 - 0.50 0.00
Transformer - 0.40 - 0.67 0.00
Random - 0.29 - 0.51 0.22
Most-frequent - 0.00 - 0.00 0.00

nl

LSTM - 0.00 0.00 0.38 0.00
Transformer - 0.00 0.00 0.40 0.00
Random - 0.17 0.29 0.45 0.25
Most-frequent - 0.00 0.00 0.00 0.00

vowel height vowel backness vowel rounding
Model close close-mid mid open-mid front back rounded unrounded

en

LSTM - - 0.00 0.00 0.00 - - -
Transformer - - 0.00 0.00 0.00 - - -
Random - - 0.37 0.37 0.39 - - -
Most-frequent - - 0.00 0.00 0.00 - - -

es

LSTM 0.00 0.00 - - 0.75 0.00 0.00 0.75
Transformer 0.00 0.00 - - 0.33 0.00 0.00 0.33
Random 0.41 0.42 - - 0.50 0.42 0.43 0.49
Most-frequent 0.00 0.00 - - 0.00 0.00 0.00 0.00

ko

LSTM 0.00 - 0.00 0.20 0.56 0.25 0.00 0.83
Transformer 0.00 - 0.00 0.00 0.60 0.13 0.00 0.86
Random 0.36 - 0.32 0.36 0.48 0.43 0.27 0.62
Most-frequent 0.00 - 0.00 0.00 0.00 0.00 0.00 0.89

nl

LSTM 0.00 - - 0.00 0.00 0.00 0.00 0.83
Transformer 0.00 - - 0.00 0.00 0.00 0.00 0.83
Random 0.34 - - 0.35 0.34 0.35 0.35 0.57
Most-frequent 0.00 - - 0.00 0.00 0.00 0.00 0.83

Table 8: F1 score for classifiers predicting distinctive features with character embeddings (LSTM, Transformer)
as input. Two baselines are included: Random (predicting labels uniformly at random) and Most-frequent (always
predicting the most frequent label). A language/feature combination with "-" indicates that no classifier was trained
due to the lack of examples.
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Figure 7: Dendrograms of the distances between shape
representations for the Latin alphabet (including the
Spanish ñ letter), Korean Hangul alphabet and a sub-
set of the Japanese Hiragana alphabet.
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