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Abstract

Transfer learning with a unified Transformer frame-
work (T5) that converts all language problems into
a text-to-text format was recently proposed as a
simple and effective transfer learning approach.
Although a multilingual version of the T5 model
(mT5) was also introduced, it is not clear how well
it can fare on non-English tasks involving diverse
data. To investigate this question, we apply mT5 on
a language with a wide variety of dialects–Arabic.
For evaluation, we introduce a novel benchmark
for ARabic language GENeration (ARGEN),
covering seven important tasks. For model
comparison, we pre-train three powerful Arabic
T5-style models and evaluate them on ARGEN.
Although pre-trained with ∼ 49% less data, our
new models perform significantly better than mT5
on all ARGEN tasks (in 52 out of 59 test sets) and
set several new SOTAs. Our models also establish
new SOTA on the recently-proposed, large Arabic
language understanding evaluation benchmark
ARLUE (Abdul-Mageed et al., 2021). Our models
are publicly available. We also link to individual
ARGEN datasets through our public repository.1

1 Introduction

Due to their remarkable ability to transfer knowl-
edge from unlabeled data to downstream tasks,
pre-trained Transformer-based language models
have emerged as important components of mod-
ern natural language processing (NLP) systems. In
particular, the unified framework that converts all
text-based language problems into a text-to-text for-
mat presented through the T5 model (Raffel et al.,
2019) is attractive. In addition to its simplicity,
this approach is effective since it allows knowledge
transfer from high-resource to low-resource tasks

1https://github.com/UBC-NLP/araT5
? All authors contributed equally.

Figure 1: Our AraT5 encoder-decoder model and prompt
samples from four investigated tasks, namely: title generation,
machine translation, question generation, and paraphrasing.

without the need for changing model architecture.
Unlike models such as BERT (Devlin et al., 2019),
which are based on encoders only, the T5 model
is an encoder-decoder that can naturally be em-
ployed for natural language generation. Although
the T5 model, originally pre-trained for English,
was recently extended to the multilingual setting as
mT5 (Xue et al., 2020), it is not clear how suited
it is to individual languages (and varieties of these
languages). In addition, systematic issues have
been discovered in multilingual corpora on which
language models have been trained (Kreutzer et al.,
2021). In absence of comparisons with monolin-
gual pre-trained language models that serve differ-
ent non-English contexts, it remains unknown how
multilingual models really fare against language-
specific models.

In this work, we offer the first comparison of the
mT5 model to similar encoder-decoder models ded-
icated to Arabic. We choose Arabic as our context
due to its large set of diverse varieties as well as its
wide use on social media. Our work aims at uncov-
ering the extent to which mT5 can serve Arabic’s
different varieties. Our work also meets an existing
need for pre-trained Transformer-based sequence-
to-sequence models. In other words, while sev-
eral BERT-based models have been pre-trained for
Arabic (Antoun et al., 2020; Abdul-Mageed et al.,
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2021; Inoue et al., 2021), no such attempts have
been made to create sequence-to-sequence models
that we know of. Another motivation for our work
is absence of an evaluation benchmark for Arabic
language generation tasks. Apart from machine
translation where researchers are starting to pro-
pose benchmarks such as AraBench (Sajjad et al.,
2020), there are no benchmarks that can be used
to methodically measure Arabic natural language
generation performance.

Our main contributions are as follows: (1) We
introduce three powerful variants of the text-to-text
transformer (T5) model dedicated to Modern Stan-
dard Arabic (MSA) and a diverse set of Arabic
dialects. We include in our vocabulary 11 lan-
guages other than Arabic (e.g., English, French,
German, Russian), which also allows us to evaluate
our models under zero-shot pre-training conditions
involving these languages. (2) We propose a novel
unified benchmark for ARabic natural language
GEeneration (ARGEN) composed of seven tasks:
machine translation, code-switched text translation,
summarization, news title generation, question gen-
eration, paraphrasing, and transliteration. ARGEN
is collected from a total of 19 datasets, including
9 new datasets proposed in this work. (3) To show
the utility of our new models, we evaluate them on
ARGEN under both full and zero-shot pre-training
conditions. Our models set new SOTA on the ma-
jority of datasets in all seven tasks. (4) Although
the main focus of our work is language generation,
we also show the effectiveness of our models on
Arabic language understanding by fine-tuning our
new models on a large, recently proposed Arabic
language understanding benchmark. Again, our
models establish new SOTA on the majority of lan-
guage understanding tasks.

The rest of the paper is organized as follows:
Section 2 describes our Arabic pre-tained models.
In Section 3, we introduce ARGEN, our new natu-
ral language generation benchmark. We evaluate
our models on ARGEN in Section 4. Section 5 is
an analysis and discussion of our results. In Sec-
tion 6, we provide an overview of related work. We
conclude in Section 7. We now introduce our new
pre-trained models.

2 Our Models

2.1 Pre-Training Data

MSA Data. We use 70GB of MSA text
(7.1B tokens) from the following sources:

AraNews (Nagoudi et al., 2020), El-Khair El-Khair
(2016), Gigaword,2, OSCAR (Suárez et al., 2019),
OSIAN (Zeroual et al., 2019), Wikipedia Arabic,
and Hindawi Books.3

Twitter Data. We randomly sample 1.5B Arabic
tweets (178GB) from a large in-house dataset of
∼ 10B tweets. We use string matching to only
include tweets with at least 3 Arabic words, regard-
less whether the tweet has non-Arabic string or
not.

Our combined MSA and Twitter data make up
29B tokens, and hence is ∼ 49% less than Arabic
tokens on which mT5 is pre-trained (57B Arabic
tokens). More information about our pre-training
data is in Table 1.
MSA Vs. Dialect Distribution. In order to ana-
lyze MSA-dialect distribution in our Twitter data,
we run the binary (MSA-dialect) classifier intro-
duced in Abdul-Mageed et al. (2020b) on a random
sample of 100M tweets. We find the data to in-
volve 28.39% predicted dialect tweets and 71.61%
predicted MSA. We also acquire country-level di-
alect labels using an in-house strong classifier on
the dialectal portion of the data (i.e., ∼ 28.39 mil-
lions tweets), finding dialectal tweets to be truly
geographically diverse as shown in Figure 2.

Figure 2: Country-level distribution in the dialectal por-
tion of our data.

Naturally-Occurring Code-Switching. Using
1M random tweets from our data, we perform an
analysis of code-switching. For this, we employ
simple string matching to identify Arabic and run
the CLD3 language ID tool4 on the non-Arabic
string sequences. We find the data to have 4.14%
non-Arabic. These turn out to be almost always
natural code-switching involving many foreign lan-
guages (e.g., English, French, Korean, etc.).

2https://catalog.ldc.upenn.edu/LDC2009T30.
3https://www.hindawi.org/books.
4https://github.com/google/cld3
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Source Size Tokens
AraNews 8.6GB 847.8M
Books 650MB 72.5M
El-Khair 16GB 1.6B
Gigawords 10GB 1.1B
OSIAN 2.8GB 292.6M
OSCAR-MSA 31GB 3.4B
OSCAR-Egyptian 32MB 3.8M
Wiki 1.4GB 156.5M
MSA-Total 70GB 7.1B
Twitter (1.5B) 178GB 21.9B
ALL 248GB 29.0B

Table 1: The MSA and Twitter resources used to pre-
train AraT5MSA, AraT5TW, and AraT5.

2.2 Pre-Processing and Vocabulary

We remove diacritics and replace URLs and user
mentions with <URL> and <USER>. We also clean
the data by removing HTML tags, elongation, and
the hash signs. Further, we reduce repetitive char-
acters, emojis, and emoticons to one. To create
our language model vocabulary, we use Sentence-
Piece (Kudo, 2018) to encode text as WordPiece
tokens (Sennrich et al., 2016) with 110K Word-
Pieces. To allow for further pre-training (and/or
fine-tuning) on additional languages, we extract our
vocabulary as follows: 70M MSA sentences, 200M
Arabic twitter data, 15M sentences from Wikipedia
English, and 5M sentences from the Wikipedia of
10 other languages (Bulgarian, French, German,
Greek, Italian, Portuguese, Russian, Spanish, Turk-
ish, Czech).5 In § 3.1.2, we describe parallel data
from four of these languages on which we fine-tune
our models for X→Arabic MT. Our respective re-
sults (reported in Table 4.2) demonstrate the utility
of including foreign vocabulary in our models.

2.3 AraT5

Model Architecture. We leverage our unlabeled
MSA and Twitter data described in § 2.1 to pre-
train three models: AraT5MSA on MSA data,
AraT5TW on twitter data, and AraT5 on both
MSA and twitter data using the T5Base encoder-
decoder architecture (Raffel et al., 2019). Each
of the encoder and decoder components is similar
in size and configuration to BERTBase (Devlin et al.,
2019), with 12 layers each with 12 attention heads,
and 768 hidden units. In total, this results in a
model with ∼ 220 million parameters.6 Objective.
Raffel et al. (2019) pre-train T5Base using a self-

5The MSA and twitter data are extracted from our training
data presented in Section 2.1.

6The output dimensionality is dff = 3, 072 and inner di-
mensionality of dkv = 64.

supervised (denoising) objective. The main idea is
to feed the model with masked (corrupted) versions
of the original sentence, and train it to reconstruct
the original sequence. Inspired by BERT’s objec-
tive (Devlin et al., 2019), the denoising objective
(Raffel et al., 2019) works by randomly sampling
and dropping out 15% of tokens in the input se-
quence. All consecutive spans of dropped-out to-
kens are then replaced by a single sentinel token.
Pre-Training. For all three of our pre-trained mod-
els, we use a learning rate of 0.01, a batch size of
128 sequences, and a maximum sequence length
of 512, except for AraT5TW where the maximum
sequence is 128.7 We pre-train each model for 1M
steps. Pre-training of each model took ∼ 80 days
on one Google Cloud TPU with 8 cores (v3.8) from
TensorFlow Research Cloud (TFRC).8 We now in-
troduce our language generation and understating
benchmarks.

3 ARGEN

In order to evaluate our pre-trained language mod-
els, we introduce our new benchmark for Ara-
bic language generation evaluation ARGEN. It in-
cludes 19 different datasets with 59 test splits and
covers seven tasks: machine translation (MT), code-
switched translation (CST), text summarization
(TS), news title generation (NGT), question gen-
eration (QG), transliteration (TR), and paraphras-
ing (PPH). As such, ARGEN has wide-coverage
both in terms of the number of tasks and datasets.
It is also linguistically diverse as it covers both
MSA and various Arabic dialects, in addition to
Arabizi (romanized Arabic in the TS task) and code-
switching (in the CST task). We now describe each
component of ARGEN.

3.1 Machine Translation

To design the MT component of ARGEN,
ARGENMT, we consolidate 7 unique datasets with
46 different test splits. The datasets come from
both MSA and Arabic dialects, and range between
600-138K sentences (details in Table C.2 in Ap-
pendix). We introduce each dataset briefly here.

3.1.1 Arabic→ English
(1) United Nations Parallel Corpus. Ziemski
et al. (2016) introduce this parallel corpus of man-

7We choose the same maximum sequence used in MAR-
BERT (Abdul-Mageed et al., 2021), the most powerful model
trained on Arabic twitter to date (Farha and Magdy, 2021).

8https://www.tensorflow.org/tfrc.
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ually translated UN documents covering the six
official UN languages (i.e., Arabic, Chinese, En-
glish, French, Russian, and Spanish). The corpus
consists of development and test sets only, each of
which comprise 4, 000 sentences that are one-to-
one alignments across all official languages.
(2) IWSLT Corpus. Several Arabic-to-English
parallel datasets were released during IWSLT eval-
uation campaigns (Federico et al., 2012; Cettolo
et al., 2013, 2014, 2016). The datasets are mainly
extracted from transcriptions of TED talks between
2010 and 2016, and the QCRI Educational Domain
Corpus (QED 2016) (Abdelali et al., 2014).
AraBench Datasets. Sajjad et al. (2020) introduce
AraBench, an evaluation suite for MSA and di-
alectal Arabic to English MT consisting of five
publicly available datasets: (3) ADPT: Arabic-
Dialect/English Parallel Text (Zbib et al., 2012),
(4) MADAR: Multi-Arabic Dialect Applications
and Resources dataset (Bouamor et al., 2018), (5)
QAraC: Qatari-English speech corpus (Elmahdy
et al., 2014), and (6) Bible: The English Bible
translated into MSA, Moroccan, and Tunisian Ara-
bic dialects.9 For all these datasets, we use the
same splits as Sajjad et al. (2020) in our experi-
ments.

3.1.2 X→ Arabic
To investigate ability of our models to generate Ara-
bic starting from foreign languages in our vocab-
ulary, we create an X→Arabic benchmark of four
languages (English, French, German, and Russian)
by extracting parallel data from OPUS (Tiedemann,
2012). For each language, we pick 1M sentences
for training and 5K sentences for each of devel-
opment and test splits. This gives us our seventh
ARGENMT dataset, which we call (7) OPUS-X-
Ara.

3.2 Code-Switched Translation

There is rising interest in translating code-switched
data (Nagoudi et al., 2021). Our purpose here is
to translate Arabic text involving code-switching
from a foreign language into (i) that foreign lan-
guage as well as into (ii) MSA. Hence we create
ARGENCST, our code-switched translation bench-
mark component, using four sub-test sets. Two of
these are natural and two are synthetic, as follows:
Natural Code-Switched Data. We create two
human written (natural) code-switched parallel

9The United Bible Societies https://www.bible.com.

datasets: (1) ALG-CST. This is collected from
Algerian Twitter and consists of code-switched
Arabic-French posts. We translate these manu-
ally into monolingual French. (2) JOR-CST. This
is collected from Jordanian Twitter and consists
of code-switched Arabic-English posts, which we
manually translate into monolingual English. Each
of ALG-CST and JOR-CST comprises 300 tweets
(total=600). Human translation is performed by
one native speaker from each dialect with semi-
native English/French fluency.
Synthetic Code-Switched Data. We use the multi-
lingual sequence-to-sequence model mBART (Liu
et al., 2020) to create synthetic code-switched data
following Jawahar et al. (2021). We exploit the
UN multi-parallel data (Ziemski et al., 2016) using
the Arabic-English and Arabic-French test splits
(4, 000 sentences each, described in § 3.1) to gen-
erate our two code-switched test sets (3) MSA-EN
and (4) MSA-FR. In each case, we use mBART to
translate ∼ 30% random Arabic n-grams into the
target language (i.e., English or French).

3.3 Text Summarization

To build our text summarization benchmark com-
ponent, ARGENTS, we use the following:
Essex Arabic Summaries Corpus (EASC).
EASC (El-Haj et al., 2010) contains 153 Arabic
Wikipedia and newspaper articles, each with 5
human-generated extractive summaries (total=765
summaries). The summaries are crowdsourced via
Mechanical Turk.10

WikiLingua. An abstractive summarization
dataset in 18 languages, including Arabic
(Faisal Ladhak and McKeown, 2020). It contains
articles and their summaries from WikiHow.11 The
Arabic part includes summaries for 29.2K articles,
which we split into 80% Train (23.4K), 10% Dev
(2.9K), and 10% Test (2.9K).

3.4 News Title Generation

The purpose of the news title generation (NTG)
task is to produce proper news article titles (Liang
et al., 2020). We introduce NTG as a new task
for Arabic language generation. Given an article,
a title generation model needs to output a short
grammatical sequence of words suited to the arti-
cle content. For this, we introduce ARGENNTG, a
novel NTG dataset exploiting 120K articles along

10http://www.mturk.com/
11http://www.wikihow.com
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with their titles extracted from AraNews (Nagoudi
et al., 2020).12 We only include titles with at least
three words in this dataset. We split ARGENNTG
data into 80% Train (93.3K), 10% Dev (11.7K),
and 10% Test (11.7K). Details about ARGENNTG
are in Table C.1 (Appendix). A sample of a news
article from our Test split and example titles gener-
ated by our models are in Table D.5 (Appendix).

3.5 Question Generation
In the question generation (QG) task, a question
is produced for a passage (Gehrmann et al., 2021).
Given the absence of an Arabic QG dataset, we
create a new Arabic QG dataset (ARGENQG) us-
ing a publicly available Arabic question answering
(QA) resource. We follow Kriangchaivech and
Wangperawong (2019) who train a model to gen-
erate simple questions relevant to passages and
answers extracted from SQuAD (Rajpurkar et al.,
2016). In our case, we build ARGENQG by extract-
ing 96K (passage, answer, and question) triplets
from (1) The Arabic QA dataset ARCD (Mozan-
nar et al., 2019), and (2) three multi-lingual QA
datasets: XTREME benchmark (Hu et al., 2020),
MLQA (Lewis et al., 2019), XQuAD (Artetxe et al.,
2020), and TyDi QA (Artetxe et al., 2020).

3.6 Paraphrasing
The main goal of this task is to produce for a given
Arabic sentence a paraphrase with the same mean-
ing. In order to build our paraphrasing benchmark
component (ARGENPPH), we use the following
three datasets:
AraPara. We introduce AraPara, a new multi-
domain Arabic paraphrasing dataset we create us-
ing English-Arabic parallel OPUS data (Tiede-
mann, 2012). AraPara covers several domains such
as news, religion, politics, movies, and technol-
ogy. To create a high quality machine generated
paraphrase dataset, we follow four careful steps
involving human validation (more details are of-
fered in Appendix C.1). AraPara consists of 122K
paraphrase pairs. We only use AraPara for model
development, and hence we split it into 116K Train
and 6K Dev.
Arabic SemEval Paraphrasing (ASEP). We also
create a new Arabic paraphrasing dataset using
three existing Arabic semantic similarity datasets
released during SemEval 2017 (Cer et al., 2017).

12We ensure no overlap exists between ARGENTG and the
AraNews data we use to pre-train our language models (de-
scribed in § 2.3).

These are MSR-Paraphrase (510 pairs), MSR-
Video (368 pairs), and SMTeuroparl (203 pairs).
The pairs are labeled with a similarity score on
a scale from 0 to 5. For our purpose, we only
keep sentence pairs with a semantic similarity score
≥ 3.5 which gives us 603 pairs. We merge and
shuffle all three ASEP datasets for our use.
Arabic Paraphrasing Benchmark (APB). APB
is created by Alian et al. (2019). It consists of
1, 010 Arabic sentence pairs that are collected from
different Arabic books. Paraphrasing was per-
formed manually using six transformation proce-
dures (i.e., addition, deletion, expansion, permuta-
tion, reduction, and replacement).

3.7 Transliteration.

Transliteration involves mapping a text written
with orthographic symbols in a given script into
another (Beesley, 1998). We use the BOLT
Egyptian Arabic SMS/Chat and Transliteration
dataset (Song et al., 2014),13 a collection of
naturally-occurring chat and short messages (SMS)
from Egyptian native speakers. The messages
(sources) were natively written in either romanized
Arabizi or Egyptian Arabic orthography. The target
is the Egyptian transliteration of these message.14

For experiments, we use the same split proposed
by Shazal et al. (2020) (58.9K for Train and 5.4K
for Dev and Test each). We refer to this dataset as
ARGENTR.

4 Evaluation on ARGEN

Baselines and Procedure. For all tasks, we com-
pare our models to models fine-tuned with mT5 us-
ing the same training data. In addition, for MT, we
compare to a vanilla sequence-to-sequence (S2S)
Transformer (Vaswani et al., 2017) trained from
scratch as implemented in Fairseq (Ott et al., 2019).
For all models and baselines, across all tasks, we
identify the best model on the respective Dev data
and blind-test it on Test data. As a rule, we report
on both Dev and Test sets. All our Dev results are
in Section C.2 in the Appendix.

4.1 Machine Translation.

We train two S2S Transformers models on 2M
(S2S2M) and 10M (S2S10M) MSA-English paral-
lel sentences extracted from OPUS. We take these

13https://catalog.ldc.upenn.edu/LDC2017T07
14Some transliteration sequences involve code mixing be-

tween Egyptian Arabic and English.
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Dataset Test Split S2S2M S2S10M mT5 AraT5Tw AraT5MSA AraT5 SOTA

ADPT† Lev 4.30 6.20 8.33 8.32 8.52 8.42 10.80

Egy 5.21 8.9 12.57 11.25 12.38 12.92 14.00

Bible I
Tun. 4.12 4.44 8.08 5.86 8.52 7.94 7.00

Mor. 2.60 2.80 7.21 4.69 7.83 6.82 4.20

MADAR I†

Egy. 17.25 17.71 24.44 21.75 24.98 24.66 28.90

Qat. 15.98 17.92 23.72 22.23 24.00 23.92 27.60

Leb. 12.15 10.14 14.61 12.25 14.92 14.18 17.00

Tun. 8.49 8.57 10.12 9.09 10.18 9.60 11.40

Mor. 11.07 11.83 16.61 12.37 16.99 16.82 14.70

DIA
MADAR II†

Egy-Alex. 19.01 19.74 29.34 24.79 29.87 29.02 28.90

Egy-Asw. 16.37 16.95 23.01 19.52 23.41 22.06 26.30

Sud-Kha. 24.97 25.65 30.87 28.13 31.39 30.65 36.70

Yem-San. 19.62 20.35 24.87 23.19 26.10 25.73 29.90

Oma-Mus. 29.12 30.66 33.74 32.15 34.62 34.18 39.50

KSA-Riy. 26.14 26.66 33.54 30.81 33.86 33.59 40.70

KSA-Jed. 16.08 17.21 23.57 20.91 23.45 23.11 27.40

Iraq-Bag. 15.98 19.09 22.92 20.84 23.24 22.52 28.30

Iraq-Bas. 16.46 17.12 22.94 20.47 22.61 22.00 27.70

Iraq-Mos. 18.25 19.14 23.69 21.95 24.41 23.12 30.00

Pal-Jer. 15.18 16.06 24.61 20.91 24.95 24.45 27.00

Jor-Amm. 18.68 18.86 26.45 22.92 26.78 25.26 30.00

Jor-Salt. 17.14 17.78 26.04 23.05 26.56 26.05 29.60

Syr-Dam. 13.63 14.83 21.93 18.55 22.54 21.80 25.90

Syr-Alep. 14.16 15.27 22.39 19.55 22.91 23.26 26.40

Alg-Alg. 13.94 14.24 16.97 14.26 17.46 16.62 17.30

Lyb-Trip. 14.49 15.44 20.17 17.56 20.31 19.85 22.80

Lyb-Beng. 19.02 19.32 25.50 23.39 25.46 25.54 28.40

Tun-Saf 7.89 8.57 9.26 8.15 9.94 9.60 10.80

Mor-Fes 15.09 15.59 22.81 17.33 23.33 21.97 20.90

QAraC† Qatar 10.33 10.47 11.84 11.11 11.42 10.57 11.90

Average DIA 14.75 15.58 20.66 18.28 21.02 20.49 23.49

Bible II†
Test 1 10.44 10.86 15.58 13.04 16.38 15.71 17.00

Test 2 5.55 6.20 12.14 9.27 12.53 11.64 12.80

MSA

MADAR I† MSA 10.33 10.47 11.84 11.11 11.42 10.57 11.90

IWSLT‡

TED10 24.12 25.13 28.02 27.35 28.64 28.32 28.00

TED11 23.96 25.01 28.89 28.03 29.93 27.34 32.80

TED12 28.34 28.98 33.77 32.74 35.07 34.238 36.50

TED13 24.19 25.02 27.12 27.52 27.95 27.52 37.40

TED14 25.64 26.48 29.85 28.64 30.94 30.06 31.70

TED15 27.68 28.73 29.39 28.2 30.37 30.45 34.10

TED16 25.71 25.77 28.39 27.03 29.37 29.18 31.80

QED16 19.44 19.90 21.09 18.55 20.98 19.11 28.10

UN†† AR-EN 52.54 53.12 52.38 51.48 53.29 52.96 56.90

Average MSA 23.54 24.19 27.03 25.43 27.77 26.98 30.63

Average All 19.14 19.89 23.84 21.85 24.39 23.74 27.06

Table 2: English to Arabic results in BLEU using ARGENMT datasets. Baseline I : Sequence-to-Sequence Trans-
former models trained from scratch on 2M and 10M parallel sentences. Baseline II : mT5 (Xue et al., 2020).
Our models : ArT5Tweet, ArT5MSA, ArT5. SOTA : † Sajjad et al. (2020) trained on ∼ 42M sentences, ‡ Durrani

et al. (2017) trained on ∼ 59M sentences, †† Junczys-Dowmunt et al. (2016) trained on ∼ 12M sentences.
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two models as our baseline I. We also fine-tune our
three models as well as mT5 on the same OPUS 2M
MSA-English parallel sentences used for baseline I.
Fine-tuned mT5 is our second baseline baseline II.
Arabic→ English. Results of ARGENMT are re-
ported in Table 2. Results show that our models
achieve best BLEU score in 37 out of the 42 tests
splits. AraT5MSA acquires best results in 32 of
these test splits, outperforming all the baselines
(S2S2M), (S2S10M), and mT5 with +5.25, +4.99,
and +0.45 BLEU points. These results are strik-
ing since our language models are pre-trained on
Arabic data only (although they include English vo-
cabulary and marginal amounts of code-switching;
see § 2.1). In other words, even under this arguably
zero-shot setting,15 the models perform very well.
In addition, our AraT5 model outperforms even
the S2S model trained with 5X more data. For
completeness, we also provide the current SOTA
on each of our datasets. We do not compare our
results to SOTA since these are acquired by models
fine-tuned on much larger datasets than ours. For
example, Sajjad et al. (2020) exploit ∼ 42M par-
ralel sentences to train their models. To limit GPU
needs during our experiments, especially given the
time-consuming fine-tuning process typical of T5
models, we do not fine-tune the models on the full
amounts of available parallel data. However, in the
future we plan to compare our models under the
full data setting.
X → Arabic. Our language models are not pre-
trained on foreign data, but we include vocabulary
from 11 foreign languages. Our X→ Arabic exper-
iments here are hence zero-shot (from the perspec-
tive of pre-training). Table 4.2 shows the results
of AraT5MSA and mT5 on OPUS-X-Ara.16 We ob-
serve that our model outperforms mT5 in the four X
→ Arabic sub-tasks with an average of +1.12 and
+0.86 BLEU points on Dev and Test, respectively.

4.2 Code-Switched Translation.

For this task, we test on the two natural code-
switched translation (CST) test sets that we manu-
ally created, ALG-FR→FR and JOR-EN→EN. We
also evaluate on our two synthetic CST datasets,
MSA-EN and MSA-FR, one time with EN/FR as
target (e.g., MSA-EN→EN) and another with MSA
as target (e.g., MSA-EN→MSA). We fine-tune

15At best, this can be viewed as few-shot pre-training.
16To limit GPU time, we fine-tune only AraT5MSA model

on the X→Arabic direction since it performed best on
Arabic→English section above.

our three pre-trained models as well as mT5 on
the OPUS-X-Ara segments involving English and
French (each with 1M parallel sentences, described
in § 3.1.2), in both directions. Since these MT
models are only fine-tuned on parallel monolin-
gual data, we refer to these experiments as zero-
shot. We test these models on both our natural and
synthetic code-switched data (described in § 3.2).
We report results in Table 3. Our models achieve
best results in one out of the two natural test sets
(with +4.36 BLEU points on ALG-FR) and all
four synthetic test sets (e.g., +4.55 BLEU points
on MSA-EN→MSA). These results clearly show
our models’ remarkable language generation abil-
ity especially in the Arabic direction.

Dataset Split mT5 AraT5Tw AraT5MSA AraT5

Natural
ALG-FR→ FR 23.83 28.19 26.27 26.17

JOR-EN→ EN 23.06 21.60 21.58 20.45

Synthetic

MSA-FR→ FR 12.76 10.57 13.78 13.25

MSA-EN→ EN 11.06 8.99 11.53 11.42

MSA-FR→MSA 12.93 12.14 14.39 13.92

MSA-EN→MSA 19.82 18.43 23.89 24.37

Table 3: Performance of our models on ARGENCS.

4.3 Text Summarization

For the two ARGENST datasets, we fine-tune and
identify the best model on the Train and Dev
splits of WikiLingua (Faisal Ladhak and McKeown,
2020) and test on all EASC and the Test of Wik-
iLingua. We report different ROUGE scores (Lin,
2004) in Table 5. As the Table shows, AraT5Tw ac-
quires best results on WikiLingua data, while mT5
outperforms us on EASC (we hypothesize since
EASC is older data that is likely part of the mC4
on which mT5 was pre-trained). On both datasets,
we establish new SOTA (both with our pre-trained
models and mT5).

4.4 News Title and Question Generation

For both tasks, we fine-tune all our models on the
Train splits of ARGENNTG and ARGENQG, respec-
tively. As Table 6 shows, all our models outperform
mT5 on each of the two tasks. AraT5MSA excels
with 20.61% BLEU on ARGENNTG and AraT5 is
at 16.99% on ARGENQG.

4.5 Paraphrasing and Transliteration

For the paraphrasing task, we fine-tune and vali-
date on our new AraPra dataset and blind-test on
both APB and ASEP datasets (described in§ 3.6).
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Dataset DEV TEST
mT5 AraT5MSA mT5 AraT5MSA

EN→ AR 13.60 15.72 17.80 18.58
DE→ AR 12.88 13.74 11.92 12.80
FR→ AR 17.52 17.96 18.61 18.99
RU→ AR 26.78 27.87 26.63 28.01

Average 17.70 18.82 18.74 19.60

Table 4: Performance of MT models on OPUS-X-Ara.

Dataset Metric mT5 AraT5Tw AraT5MSA AraT5

EASC
Rouge1 62.98 60.74 59.54 54.61
Rouge2 51.93 48.89 47.37 43.58
RougeL 62.98 60.73 59.55 54.55

WikiLin.
Rouge1 71.63 74.61 72.64 73.48
Rouge2 63.60 67.00 64.21 65.09
RougeL 71.56 74.52 72.57 73.37

Table 5: Performance of summarization models on Test.
We consider mT5 as SOTA for WikiLin, and Alami
et al. (2021) (ROUGE1=59.17) for EASC.

As Table 6 shows, AraT5MSA is best on APB (17.52
BLEU) and ASEP (19.38 BLEU). For translit-
eration, we fine-tune our models on the Train
split of ARGENTR. As Table 6 shows, each of
AraT5MSA and AraT5 outperform mT5. Notably,
AraT5MSA is at 65.88 BLEU, outperforming previ-
ous SOTA (Shazal et al., 2020) by 7.1 points.

Dataset mT5 AraT5Tw AraT5MSA AraT5

ARGENNTG 19.49 20.00 20.61 20.51

ARGENQG 15.29 12.06 14.18 16.99

ARGENTR 60.81 59.55 65.88 62.51

ARGENPPH I 19.32 18.17 19.38 19.03

ARGENPPH II 19.25 17.34 19.43 18.42

Table 6: Performance of our models on title, question
generation, transliteration, and paraphrasing tasks in
BLEU. ARGENPPH I and II: results on ASEP and
APB paraphrase datasets, respectively. We consider
mT5 as SOTA for NTG, QG, and PPH ARGENNTG,
ARGENQG, and ARGENPPH. For ARGENTR, SOTA
is Shazal et al. (2020) (BLEU=65.88).

4.6 Evaluation on Arabic NLU

We also evaluate our new pre-trained models on
the recently proposed Arabic language understand-
ing and evaluation benchmark, ARLUE (Abdul-
Mageed et al., 2021) that involves six cluster tasks
(i.e., sentiment analysis, social meaning, topic
classification, dialect identification, named entity
recognition, and question answering). Our mod-
els establish new SOTA on the benchmark with an
ARLUE score of 77.52 vs. the previous SOTA of

76.53, reported by ARLUE authors. We provide
results of this set of experiments in Appendix B.

5 Analysis and Discussion

5.1 Multilingual vs. Dedicated Models.

Our results confirm the utility of dedicated lan-
guage models as compared to multilingual models
such as mT5 (101+ languages). Our AraT5 model
outperforms mT5, even though it is pre-trained
with 49% less data (see § 2.1). One reason might
be that massively multilingual models are more
prone to suffering from capacity issues. Data qual-
ity is another challenge for multilingual models.
As pointed out earlier, Kreutzer et al. (2021) find
systematic issues with data representing several
languages (including Arabic) in the mC4 dataset
on which mT5 is pre-trained. We perform a data
quality study confirming the findings of Kreutzer
et al. (2021). We also find Arabic mC4 data to be
less geographically diverse than our Twitter pre-
training data (described in § 2.1). Our mC4 data
study is in Appendix A.
Code-Switching. We also study code-switching
in both our Twitter dataset and the Arabic part of
mC4. We find that while our Twitter data involves
natural code-switching (∼ 4% of sequences), code-
switching in Arabic mC4 is very rare. This explains
the strong performance of our AraT5Tw model
on the natural code-switched translation data on
French. We conjecture that mT5 good performance
on English code-switched data is due to it being
pre-trained on very large amounts of English rather
than natural code-switching.

5.2 Effect of Sample Length on MT.

We were inquisitive how MT models fine-tuning
our pre-trained language models compare to mT5
under different length conditions. For this, we
(1) merge all MSA and dialectal Test datasets in
our Arabic→English experiments to form a single
dataset that we then (2) split into three bins/Test
sets based on sentence length as shown in Table D.1.
As the Table shows, our AraT5MSA outperform
mT5 in all but one condition (where our model
acquires marginally less performance). We also
performed similar evaluation on the merged Dev
sets of all MSA and dialectal Arabic MT datasets
in the Arabic→English direction. We do not show
related results here, but we note our AraT5MSA
outperforms mT5 on all conditions.
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Target: FR : J’ aime une vidéo Episode 1 - ma chère belle-mère 4

mT5 J’ aime une v- Chère nièce 4.

AraT5Tw J’aime une vidéo Episode 1 - ma chère tante 4.

AraT5MSA J’aime une vidéo 1 - Ma chère sœur 4.

AraT5 J’aime une vidéo 1 - Ma chère bébé
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Target: EN : The world champion in the comfort zone and this is really miserable

mT5 the world world champion in comfort zone, and that’s really a bad thing.

AraT5Tw the world hero in comfort zone and it’s really a miserable thing.

AraT5MSA world champion in comfort zone, and that’s really a bad thing.

AraT5 the world’s the world’s hero in the comfort zone, and it’s a really bad thing.

Table 7: CS sentences with their English/French trans-
lations using our Models and mT5. Data samples are
extracted from the Dev datasets. Green refers to good
translation. Red refers to problematic translation.

5.3 Qualitative Analysis.

We also perform qualitative analyses of the outputs
of several of our models, including as to length
of MT source data (Appendix D). In particular,
our analyses are for the following tasks: machine
translation, code-switched translation, paraphras-
ing, transliteration, and news title generation. MT
Model. Table D.2 (Appendix) shows three exam-
ples of Arabic→English MT models. Sentence (1)
is in MSA source, sentence (2) is in Levantine Ara-
bic source, and sentence (3) is in Egyptian source.
In all three examples, one or more of our models
generate(s) more fluent translations than mT5. This
includes ability of our models to translate dialectal
sentences where mT5 seems to struggle (e.g., mT5
is not able to translate the equivalents of “drive"
from Egyptian Arabic).

Code-Switched Translation Model. Table 7
shows two code-switched examples from
ARGENCS. Sentence (1) is Algerian dialect at
source translated into French, while sentence (2) is
Jordanian dialect translated into English. In both
cases, our models not only handle the dialects but
also their use in code-switched contexts better than
mT5.

Paraphrasing, Transliteration, and Title Gen-
eration. Each of Tables D.3, D.4, and D.5 (Ap-
pendix D) shows two output samples from our
paraphrasing, transliteration, and title generation
models, respectively. In each case, the samples
are high-quality, informative, and fluent. Our para-
phrase samples also tightly capture the meaning of
the source sentences.

6 Related Work

Multilingual LMs. mBERT is the multilingual
version of BERT (Devlin et al., 2019), which is an
encoder model with bidirectional representations
from Transformers trained with a denoising ob-
jective. mBERT is trained on Wikipedia for 104
languages, including Arabic. XLM-R (Conneau
et al., 2020) is also a Transformer-based multilin-
gual masked language model pre-trained on more
than 2TB of CommonCrawl (CC) data in 100 lan-
guages, including Arabic (2.9B tokens). XLM-R
model uses the same masking objective as BERT,
but not the next sentence prediction. mT5 (Xue
et al., 2020) is the multilingual version of Text-
to-Text Transfer Transformer model (T5) (Raffel
et al., 2019). T5 is an encoder-decoder Transformer
similar in configuration and size to a BERTBase.
It is trained on mC4, which is ∼ 26.76TB for 101
languages generated from 71 CC dumps.
Arabic LMs. AraBERT (Antoun et al., 2020) is
an Arabic pre-trained language model based on the
BERTBase architecture with 24GB of MSA data.
ARBERT and MARBERT (Abdul-Mageed et al.,
2021) are two BERT-based models, with the first
focused on MSA (61GB) and the second on both
MSA and dialects (128GB). MARBERT achieves
SOTA on most Arabic NLU tasks. QARiB (Abde-
lali et al., 2021) is similarly a BERT-based model
covering both MSA and dialects. CamelBERT (In-
oue et al., 2021) is also a BERT-based model pre-
trained with MSA, dialectal, and classical Arabic.

7 Conclusion

We introduced three powerful Arabic-specific text-
to-text Transformer models trained on large MSA
and/or Arabic dialectal data. We also introduced
ARGEN, a unified benchmark for Arabic Natu-
ral Language generation evaluation composed of
seven tasks collected from a total of 19 datasets.
Our models outperform mT5 on all ARGEN tasks
(52 out of 59 test sets, i.e., 88.14%). This is true
even for MT involving four foreign languages from
which the models have seen marginal or no pre-
training data (i.e., zero- and few-shot pre-training).
Our models also set new SOTA on the large Ara-
bic language understanding evaluation benchmark
ARLUE. Our models involve vocabulary from 11
languages other than Arabic, and hence can easily
be further pre-trained/fine-tuned in these languages.
Our models are publicly available, and ARGEN
datasets are accessible from our repository.
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Appendices
A A Study of Arabic mC4 Data Quality

Xue et al. (2020) train mT5 on the mC4 dataset.
They report 57B Arabic tokens (almost double our
token size) from 53M webpages, making 1.66% of
all mT5 data. For our analysis, we randomly sam-
ple 1M paragraphs from the Arabic part of mC4.
We use paragraphs rather than whole documents for
a more fine-grained analysis that is more compara-
ble to our own data (especially in the case of Twit-
ter). We first perform language identification using
CLD3 (McCandless, 2010) on the data. We find
a sizable amount of the data (i.e., 13.59%) to be
non-Arabic (mostly English or French). We man-
ually inspect ∼ 100 random samples of the data
predicted as non-Arabic. We find these are mostly
either non-linguistic content (e.g., java-script or
HTML code) or non-Arabic text. The non-Arabic
text is sometimes foreign language advertising or
even full translation of the Arabic text in some
cases. In many cases, non-Arabic is also boilerplate
text such as that in web fora. Also, no samples of
the non-Arabic included real code-switching.

We also run an in-house MSA-dialect classifier
on the same 1M data sample. The classifier pre-
dicts an overriding majority of the data (99.83%)
as MSA. We again manually inspect ∼ 100 sam-
ples from the small fraction predicted as dialects
(i.e., 0.17%). While we find some of these to be ac-
tual dialectal text (usually short belonging to either
Egyptian or Saudi dialects) from web fora, in the
majority of cases the text is simply names of soap
operas or advertisements. Our own pre-training
data in the case of Twitter, in comparison, involve
much more dialectal content (28.39% as listed in
§ 2.1).

B Evaluation on Arabic NLU

B.1 ARLUE Benchmark

Recently, Abdul-Mageed et al. (2021) introduced
ARLUE, a natural language understanding bench-
mark for Arabic. ARLUE is composed of 42 pub-
licly available datasets, making it the largest and
most diverse Arabic NLP benchmark. ARLUE
is arranged into the six cluster tasks of sentiment
analysis (SA), social meaning (SM), topic classi-
fication (TC), dialect identification (DI), named
entity recognition (NER), and question answering
(QA). We methodically evaluate each cluster task,

ultimately reporting a single ARLUE score follow-
ing Abdul-Mageed et al. (2021). Table B.1, shows
a summary of the ARLUE benchmark. We briefly
describe ARLUE tasks next.
ARLUESenti. To construct this task cluster Abdul-
Mageed et al. (2021) merged 17 MSA and DA
publicly available datasets.
ARLUESM. ARLUESM refers to eight social mean-
ing datasets covering prediction of age, dangerous
speech, emotion, gender, hate speech, irony, offen-
sive language, and sarcasm. used in this benchmark.
We will follow Abdul-Mageed et al. (2021) in not
merging the social meaning datasets, but rather re-
port performance on each individual dataset as well
as average performance across all tasks as part of
an overall ARLUE score.
ARLUETopic. This benchmark component is a con-
catenation 20 of three topic classification datasets:
Arabic News Text (ANT) (Chouigui et al., 2017),
Khaleej (Abbas et al., 2011), and OSAC (Saad and
Ashour, 2010).
ARLUEDia. Five datasets are used for dialect clas-
sification. These are AOC Zaidan and Callison-
Burch (2014), ArSarcasmDia (Farha and Magdy,
2020), MADAR (sub-task 2) (Bouamor et al.,
2019), NADI-2020 (Abdul-Mageed et al., 2020a),
and QADI (Abdelali et al., 2020).
ARLUEDia involve three categories, namely,
ARLUEDia-B for MSA-dialect classification (bi-
nary). ARLUEDia-R, and ARLUEDia-C for the
region and country level classification into four
classes (region), and 21 classes (country) respec-
tively.
ARLUEQA. Four Arabic and multilingual QA
datasets are concatenated to build ARLUEQA:
ARCD (Mozannar et al., 2019) MLQA (Lewis
et al., 2019), XQuAD (Artetxe et al., 2020), and
TyDi QA (Artetxe et al., 2020).21

B.2 ARLUE Evaluation

Baselines. For comparison, we fine-tune a number
of models on the same training data as our new
models. These include the multilingual sequence-
to-sequence model mT5 (Xue et al., 2020), and
the powerful Arabic-specific BERT-based model
MARBERT (Abdul-Mageed et al., 2021). We note

20We note that the classes were straightforwardly merged
without modifying any class labels.

21All corresponding splits from the different QA datasets
are merged.
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that MARBERT achieves the SOTA 22 across the
majority of 6 cluster tasks of ARLUE, with the
highest ARLUE score.
Settings and Evaluation. We evaluate our models
on the language understanding benchmark, AR-
LUE, under two settings: (i) single task learning
and (ii) multi-task learning. We present results
on all the task clusters included in ARLUE ex-
cept for NER which is a token-level task that is
not straightforward with the text-to-text set up we
adopt. Table B.2 shows our evaluation results using
the relevant metric for each task.
Abdul-Mageed et al. (2021) introduced ARLUE
score, a metric used to score pre-trained language
model performance on multiple datasets. AR-
LUE score is a simply macro-average of the dif-
ferent scores across all task clusters, where each
task is weighted equally following (Wang et al.,
2018). We compute the ARLUE score (i.e., overall
macro-average) for each of our three models (i.e.,
AraT5MSA, AraT5Tw, and AraT5) and the baseline
(mT5).

Dataset #Datasets Task TRAIN DEV TEST
ARLUESenti 17 SA 190.9K 6.5K 44.2K
ARLUESM 8 SM 1.51M 162.5K 166.1K
ARLUETopic 5 TC 47.5K 5.9K 5.9K
ARLUEDia-B 2 DI 94.9K 10.8K 12.9K
ARLUEDia-R 2 DI 38.5K 4.5K 5.3K
ARLUEDia-C 3 DI 711.9K 31.5K 52.1K
ARLUEQA

‡ 4 QA 101.6K 517 7.45K

Table B.1: ARLUE categories across the different data splits.
‡ Number of question-answer pairs (Abdul-Mageed et al.,
2021).

Dataset SOTA mT5 AraT5Tweet AraT5MSA AraT5

ARLUESenti
? 93.30 / 94.00 92.46 / 93.50 92.79 / 93.50 93.44 / 94.00 93.30 / 94.00

ARLUESM
† 81.60 /76.34 80.26 / 73.59 80.41 / 75.08 81.97 / 76.60 81.09 / 75.99

ARLUETopic 90.07 / 91.54 91.92 / 93.36 90.86 / 92.08 92.32 / 93.30 92.32 / 93.66

ARLUEDia-B 88.47 / 87.87 86.48 / 85.72 87.72 / 87.06 88.51 / 87.90 88.01 / 87.41

ARLUEDia-R 90.04 / 89.67 88.30 / 87.93 90.12 / 89.65 91.17 / 90.80 91.13 / 90.87

ARLUEDia-C 47.49 / 38.53 45.94 / 38.14 53.34 / 42.02 52.65 / 42.42 53.64 / 43.18

ARLUEQA
‡ 40.47 / 62.09 36.92 / 56.17 30.42 / 49.57 39.47 / 60.51 39.80 / 60.93

Average 75.92 / 77.15 74.61 / 75.49 75.09 / 75.56 77.08 / 77.93 77.04 / 78.01

ARLUEScore 76.53 75.05 75.33 77.50 77.52

Table B.2: Performance of our models on ARLUE
TEST datasets (Acc / F1). ? Metric for ARLUESenti
is Acc/ F1

PN. ‡ Metric for ARLUEQA is Exact
Match (EM) / F1.† ARLUESM results is the average
score across the social meaning tasks. SOTA: MAR-
BERT (Abdul-Mageed et al., 2021).

Single Task. We fine-tune our three models and
22MARBERT outperform both multilingual encoder-only

Transformers mBERT, XLM-RBase, XLM-RLarge, and Arabic-
specific BERT-based AraBERT (Antoun et al., 2020), AR-
BERT (Abdul-Mageed et al., 2021).

mT5 individually on each of the six tasks of AR-
LUE. We typically (i.e., in all our experiments)
identify the best checkpoint for each model on
the development set, and report its performance
on both development and test data. As Table B.2
shows, our AraT5 model achieves the highest AR-
LUE score (77.52), followed by AraT5MSA (77.50)
and AraT5TW (75.33). We note that all our models
outperform mT5 and the MARBERT (SOTA) by
∼ +2.74 and ∼ +1 ARLUE score points, respec-
tively.

Dataset S/M mT5 AraT5Tw AraT5MSA AraT5

ARLUEDia-B
S 86.48 / 85.72 87.72 / 87.06 88.51 / 87.90 88.01 / 87.41

M 86.30 / 85.54 87.77 / 87.20 87.93 / 87.36 88.02 / 87.40

ARLUEDia-R
S 88.30 / 87.93 90.12 / 89.65 91.17 / 90.80 91.13 / 90.87

M 89.01 / 88.15 91.53 / 91.17 91.42 / 91.15 91.51 / 91.24

ARLUEDia-C
S 45.94 / 38.14 53.34 / 42.02 52.65 / 42.42 53.64 / 43.18

M 45.86 / 38.12 53.42 / 40.86 53.34 / 43.03 53.70 / 43.37

Table B.3: Performance of our models on ARLUE Di-
alects Test datasets on single and multi tasks setting
(Acc / F1). We copied single tasks results from Ta-
ble B.2 in this table for comparison.

Dataset S/M mT5 AraT5Tw AraT5MSA AraT5

Age
S 60.86 / 61.05 62.29 / 62.48 63.26 / 63.41 63.50 / 63.66

M 61.37 / 61.47 63.92 / 64.10 63.84 / 38.41 63.82 / 63.93

Dangerous
S 81.75 / 64.52 77.68/ 63.52 82.50 / 66.93 75.41 / 62.41

M 79.03 / 66.46 84.92 / 68.73 84.46 / 71.62 77.53 / 66.53

Emotion
S 72.90 / 71.34 73.65 / 72.19 74.92 / 73.30 76.51 / 75.24

M 70.88 / 68.87 72.79 / 71.24 74.39 / 73.08 74.28 / 72.57

Gender
S 72.05 / 71.83 72.27 / 72.06 73.83 / 73.56 73.38 / 73.24

M 72.72 / 72.42 74.58 / 74.39 74.33 / 74.23 74.65 / 74.52

Hate
S 95.70 / 78.96 96.45 / 81.75 96.95 / 84.88 96.55 / 83.33

M 95.75 / 79.29 97.00 / 82.73 96.40 / 82.07 96.15 / 80.39

Irony
S 82.61 / 82.40 82.48 / 82.25 83.23 / 83.05 82.98 / 82.80

M 80.99 / 80.78 82.86 / 82.65 82.86 / 82.66 82.36 / 82.21

Offensive
S 91.35 / 85.93 94.40 / 90.96 94.15 / 91.10 93.80 / 90.11

M 90.30 / 85.15 93.70 / 90.41 94.10 / 90.83 94.05 / 90.85

Sarcasm
S 84.83 / 72.66 84.08 / 75.42 86.92 / 76.53 86.59 / 77.13

M 84.64 / 74.06 85.55 / 75.25 86.26 / 77.06 86.26 / 76.63

ARLUESM
S 80.26 / 73.59 80.41 / 75.08 81.97 / 76.60 81.09 / 75.99

M 79.46 / 73.56 81.92 / 76.19 82.08 / 73.75 81.14 / 75.95

Table B.4: Performance of our models on ARLUE so-
cial meaning (SM) Test datasets on single- and multi-
tasks setting (Acc / F1). S: Single Task. M:Multi-task.

Multitask. We also investigate multitask learning
(Caruana, 1997; Ruder, 2017) with our AraT5 mod-
els. This approach consists of training the model on
multiple tasks simultaneously (i.e., the model and
its parameters are shared across all tasks) in order
to eventually improve performance on each indi-
vidual task. In our case, we fine-tune our models
on many tasks at the same time using: (i) The three
dialect datasets: ARLUEDia-B, ARLUEDia-R, and
ARLUEDia-C and (ii) the social meaning datasets

642



of ARLUESM. Table B.3 and Table B.4 show the
results of multi-task experiments for dialect set-
tings and social meaning, respectively. Our results
show that multi-task training outperforms single
task models in the majority of the dialects experi-
ments (n=7 out of 9 experiments, 77.78% of the
tasks) and half of the social meaning tasks (n=18
out of 36 experiments, 50% of the tasks). These
results are promising, and hence we plan to fur-
ther investigate multi-task learning with our new
models in the future.

C ARGEN

C.1 Arabic Paraphrase Data

AraPara. is a new multi-domain Arabic paraphras-
ing dataset we create using English-Arabic parallel
OPUS data (Tiedemann, 2012). To ensure high-
quality, we follow four careful steps: (1) We pick
1 million English-Arabic parallel sentences from
OPUS (Tiedemann, 2012) covering the different
domains. (2) We translate the English sentences
using a high-quality in-house English→Arabic MT
model. (3) We run the multi-lingual semantic simi-
larity model from Yang et al. (2019) on the Arabic
machine translated sentences and the human trans-
lation (i.e., original Arabic sentences from OPUS),
keeping only sentences with an arbitrary semantic
similarity score between 0.70 and 0.99. This al-
lows us to filter out identical sentence pairs (i.e.,
similarity score = 1) and those that are not good
translations (i.e., those with a semantic similarity
score < 0.70). (4) In order to maximize syntactic
and lexical diversity of the pairs of paraphrased sen-
tences, we perform an analysis based on word over-
lap between the semantically similar pair sentences
(i.e., the output of the previous step). We then
perform a manual analysis of the data, identify-
ing sentences with unigram token overlap between
35% and 70% as sufficiently distinct paraphrase
pairs. This gives us 122K paraphrase pairs. We
split these sentence pairs into 116K for training
and 6K for validation.

C.2 Evaluation on DEV

In this section we describe the ARGENMT datasets
splits and report the evaluation results in valida-
tion datasets. Details about ARGENNTG are in Ta-
ble C.1 and ARGENMT datasets splits are shown in
Table C.2. Moreover, The evaluation on validation
datasets for ARGENTS are described in Table C.3
and C.4, respectively. Finally, Table C.5 shows

Split Article/Title Avg article len Avg title len

TRAIN 93.3K 256.46 10.06

DEV 11.7K 253.11 10.03

TEST 11.7K 260.32 10.03

Total 116.6K 256.63 10.04

Table C.1: Main characteristics of ARGENNTG data splits.
For each split, we provide the number of article-title pairs and
the average length of the articles and titles.

the validation results of ARGENNTG, ARGENQG,
ARGENTR, and ARGENPHP datasets.

D Qualitative Analysis of Models

In this section, we explore ability of our models
to generate MSA and dialectal Arabic under vari-
ous conditions. We now overview various types of
analyses in this regard. While samples presented
here are handpicked, we note that they are mostly
representative of outputs from our models since we
mainly chose them to demonstrate different linguis-
tic attributes that we believed would be relevant to
the analysis.
Effect of Sample Length on MT. We were inquis-
itive how MT models fine-tuning our pre-trained
language models compare to mT5 under different
length conditions. For this, we (1) merge all MSA
and dialectal Test datasets in our Arabic→English
experiments to form a single dataset that we then
(2) split into three bins/Test sets based on sentence
length as shown in Table D.1. As the Table shows,
our AraT5MSA outperform mT5 in all but one con-
dition (where our model acquires marginally less
performance). We also performed similar evalu-
ation on the merged Dev sets of all MSA and di-
alectal Arabic MT datasets in the Arabic→English
direction. We do not show related results here, but
we note our AraT5MSA outperforms mT5 on all
conditions.
MT Model Output. Table D.2 shows three exam-
ples of Arabic→English MT models. Sentence (1)
is in MSA source, sentence (2) is in Levantine Ara-
bic source, and sentence (3) is in Egyptian source.
In all three examples, on or more of our models
generate(s) more fluent translations than mT5. This
includes ability of our models to translate dialectal
sentences where mT5 seems to struggle (e.g., mT5
is not able to translate the equivalents of “drive"
from Egyptian Arabic).
Code-Switched Translation Model Output. Ta-
ble 7 shows two code-switched examples from
ARGENCS. Sentence (1) is Algerian dialect at
source translated into French, while sentence (2)
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Varieties Dataset Region Country-Level City-Level DEV TEST

ADPT Zbib et al. (2012)
Levantine - - - 138K
Nile Egypt - - 38K

Bible I Maghrebi
Tunisia - - 600

Morocco - - 600

DIA

MADAR I Bouamor et al. (2018)

Nile

Egypt Cairo - 6.5k
Egypt Alexandria - 2k
Egypt Aswan - 2k
Sudan Khartoum - 2k

Gulf

Qatar Doha - 6.5k
Yemen Sana’a - 2k
Oman Muscat - 2k
KSA Riyadh - 2k
Jedd Muscat - 2k
Iraq Baghdad - 2k
Iraq Basra - 2k
Iraq Mosu - 2k

Leventian

Lebanon Beirut - 6.5k
Palestine Jerusalem - 2k
Jordan Amman - 2k
Jordan Salt. - 2k
Syria damascus - 2k
Syria Alep - 2k

Maghrebi

Algeria Alger - 2k
Lybia Trip - 2k
Lybia Beng - 2k
Tunisia Tunis - 6.5k
Tunisia Safax - 2k
Morocco Fes - 6.5k
Morocco Rabat - 2k

MSA

Bible II
- - - - 600

- - - - 600

MADAR II Bouamor et al. (2018) - - - - 6.5k
IWSLT TED15 Cettolo et al. (2016) - - - - 1.1k
IWSLT TED16 / Cettolo et al. (2016) - - - - 1.1k
IWSLT QED16 (Cettolo et al., 2016) - - - - 550

UN Ziemski et al. (2016) - - - 4k 4k
OPUS-X-Ara - - - 5k 5k

Table C.2: Arabic to English datasets included in ARGENMT. MADAR I: corpus consists of 2k sentences (Test)
of 21 city-level dialects each. MADAR II: 12k sentences (5.5k for Dev, and 6.5k for Test sets) each of five other
city-level dialects and MSA. Bible I: 600 sentences each as Dev and Test sets for Moroccan, Tunisian, and MSA.
Bible II: Two Dev and Test splits (600 sentences each) are used for Bible MSA.
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Dataset Test Split S2S2M S2S10M mT5 AraT5Tw AraT5MSA AraT5 SOTA

ADPT† Lev 4.90 7.50 10.12 10.53 9.33 9.53 11.00
Egy 5.04 9.21 11.63 10.68 11.33 11.87 13.40

Bible I†
Tun. 4.44 4.80 6.98 4.63 7.48 6.50 7.20
Mor. 3.22 3.47 7.65 5.98 8.25 7.83 4.10

DA MADAR I†

Egy. 17.1 17.71 24.07 21.68 24.75 24.29 27.1
Qat. 16.52 17.92 23.45 22.32 23.98 23.58 28.10
Leb. 9.61 12.93 18.19 16.06 18.64 16.82 21.80
Tun. 9.06 9.30 10.62 9.23 10.97 10.25 12.10
Mor. 8.46 8.40 11.83 8.39 12.09 11.26 10.00

QAraC† − 10.31 10.46 11.87 10.73 11.30 10.64 11.70

MSA

Bible II† Test 1 11.43 11.33 15.68 13.13 16.43 15.89 16.60
Test 2 5.88 6.41 12.76 9.69 13.53 11.96 12.9

MADAR I† MSA 40.75 41.84 39.11 38.06 39.92 39.25 45.8

IWSLT‡ QED16 28.39 29.04 29.18 28.59 30.19 29.97 −
UN†† Ar-En 51.54 51.97 50.84 50.14 52.11 51.54 −

Average 14.67 15.66 18.50 16.94 18.90 18.31 17.06

Table C.3: ARGENMT datasets on Dev splits. S2S: Sequence-to-sequence Transformer models trained from
scratch without use of a language model. SOTA: †(Sajjad et al., 2020), ‡(Durrani et al., 2017), ††(Junczys-
Dowmunt et al., 2016).

Dataset Metric mT5 AraT5Tweet AraT5MSA AraT5

WikiLin.
Rouge1 71.03 74.20 72.64 73.87

Rouge2 62.87 66.37 64.24 65.76

RougeL 70.99 74.14 72.55 73.79

Table C.4: Performance of our models on document
summarization Dev splits.

Dataset mT5 AraT5Tweet AraT5MSA AraT5

ARGENNTG 19.22 19.38 20.19 20.01

ARGENQG 13.95 11.25 12.96 15.36

ARGENTR 64.81 62.95 69.30 65.54

ARGENPHP 30.70 31.54 33.15 32.36

Table C.5: Performance of our models on title, question
generation, transliteration, and paraphrasing DEV split
based on Bleu score.

Jordanian dialect translated into English. In both
cases, our models not only handle the dialects but
also their use in code-switched contexts better than
mT5.
Paraphrasing, Transliteration, and Title Gen-
eration Output. Tables D.3, D.4, and D.5 each
shows two output samples from our paraphrasing,
transliteration, and title generation models, respec-
tively. In each case, the samples are high-quality,
informative, and fluent. Our paraphrase samples
also tightly capture the meaning of the source sen-
tences.

Dataset mT5 AraT5Tweet AraT5MSA AraT5
All Length

MSA 28.38 27.03 29.16 28.65
DA 20.19 17.73 20.54 20.10
All 21.14 18.83 21.55 21.09

Sequence length < 10

MSA 35.73 35.50 36.96 36.44
DA 20.81 18.73 21.29 20.68
All 21.70 19.75 22.23 21.65

20 ≤ Sequence length ≤ 10

MSA 26.18 24.31 26.90 26.24
DA 19.74 16.30 19.78 19.56
All 21.03 17.94 21.22 20.91

20 < Sequence length
MSA 19.50 16.91 19.28 19.45
DA 13.51 11.52 13.69 13.44
All 15.20 13.05 15.26 15.13

Table D.1: Sequence length based results on
ARGENMT Test datasets.
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Target:
EN: Do you know that one of the intense pleasures of travel and one of the delights of ethnographic research is the opportunity to live amongst those

who have not forgotten the old ways, who still feel their past in the wind, touch it in stones polished by rain, taste it in the bitter leaves of plants.

mT5
you know, one of the great enjoyments of travel and one of the pleasure ofs statistics research is the opportunity to live among those who

have not forgotten old methods, who still feel their past in wind, touch the rain-saving stones and taste it in the snail of plants.

AraT5Tw
you know, one of the big pleasures of travel and one of the physical research approaches is a living chance among those who have not

forgetted old methods, who still feel their past in the wind, touch it in the stones that rained and taste it in the fresh plant leaves .

AraT5MSA
Do you know that one of the great pleasures of travel and one of the joys of ethnographic research is the opportunity to live among those who have

not forgotten the ancient methods, who still feel their past in the wind, touch it in rain-purified stones and taste it in the bitter leaves of plants ?

AraT5
you know, one of the great benefits of travel and one of the physiology research is the opportunity to live among those who have not

forgotten the old methods, who still feel their past in the wind, they feel their past in the stones that are refined by rain, and they taste it in the leaf.
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Target: EN: I’m looking for a nice, quiet grill-type restaurant. would you point them out on this map?

mT5 You find a nice and sweet cooking restaurant with a map sign?

AraT5Tw a snack on a nice and sweet sweat restaurant snack , you put on them a map sign?

AraT5MSA You’re looking at a nice and sweet snack restaurant with a sign on the map?

AraT5 looking for a nice and sweet restaurant to eat , put a sign on them for the map?
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Target: EN: It’s really different driving on the right side of the street.

mT5 that’s really different that one walks on the right side of the street.

AraT5Tw that’s really different that one drives by the right side of the street.

AraT5MSA That’s really different that one runs on the right side of the street.

AraT5 That’s really different that one drives on the right side of the street.

Table D.2: MSA and DIA sentences with their English translations using our Models and mT5. Data samples are
extracted from the Dev datasets. Green refers to good translation. Red refers to problematic translation.
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Table D.3: Paraphrasing examples extracted from Dev data splits.
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Table D.4: Transliteration examples extracted frm from Dev data splits.
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Table D.5: Title generation samples from Dev set using our Models.

647


