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Abstract

Large pretrained generative models like GPT-
3 often suffer from hallucinating non-existent
or incorrect content, which undermines their
potential merits in real applications. Existing
work usually attempts to detect these halluci-
nations based on a corresponding oracle refer-
ence at a sentence or document level. How-
ever ground-truth references may not be read-
ily available for many free-form text genera-
tion applications, and sentence- or document-
level detection may fail to provide the fine-
grained signals that would prevent fallacious
content in real time. As a first step to address-
ing these issues, we propose a novel token-level,
reference-free hallucination detection task and
an associated annotated dataset named HADES
(HAllucination DEtection dataSet) 1. To cre-
ate this dataset, we first perturb a large number
of text segments extracted from English lan-
guage Wikipedia, and then verify these with
crowd-sourced annotations. To mitigate label
imbalance during annotation, we utilize an iter-
ative model-in-loop strategy. We conduct com-
prehensive data analyses and create multiple
baseline models.

1 Introduction

Automatic text generation using neural natural lan-
guage generation (NLG) systems is increasingly
fluent and thus seemingly plausible in many real-
world applications. Large-scale pretrained mod-
els like GPT-3 (Brown et al., 2020) are proven to
be powerful in understanding and performing free
form text generation tasks at human-quality level
with a few in-context examples, which dramati-
cally reduces the manual labor needed in many
text-based applications and services. Despite their

∗Work was done when Tianyu (intern) and Yizhe was at
Microsoft.

1Code and data are provided in https://github.
com/microsoft/HaDes

great success, however, neural NLG systems using
very large pre-trained models struggle to gener-
ate factually accurate and trustworthy text (Devlin
et al., 2019; Radford et al., 2019), and exhibit a
propensity to hallucinate non-existent or incorrect
content that is unacceptable in most user-oriented
applications. This poses a major challenge for de-
ploying production NLG systems with realtime
generation, where post-examination is impossible.

Existing work has sought to detect hallucination
and quantitatively measure generation consistency
against a provided reference. Such reference-based
hallucination detection has been proposed for ab-
stractive summarization (Maynez et al., 2020), ma-
chine translation (Wang and Sennrich, 2020), data-
to-text generation (Rebuffel et al., 2021), and im-
age caption generation (Rohrbach et al., 2018). For
many free-form text generation tasks, however, ref-
erences are not readily available. For example, in
a production NLG system such as a social chatbot
using real-time response generation or a document
auto-completion system, the generation model of-
ten cannot pair its outputs with sufficient reference
information, rendering reference-based methods
less applicable: i) It may be difficult to even know
where to obtain the reference, as obtaining it may
be as hard as generating consistent information in
the first place; ii) Generation may be at a real-time
online setting that demands leveraging only exist-
ing context to create new content.

One common setup for qualitatively measuring
the level of hallucination is performed at sentence-
or document-level (Dhingra et al., 2019; Scialom
et al., 2019). Related tasks such as fake news detec-
tion (Zellers et al., 2019) or fact checking (Thorne
and Vlachos, 2018) also adopt this strategy. How-
ever, sentence- or document-level detection may
not always provide high-resolution signals suffi-
cient to pinpoint the hallucinated text, or can only
judge whether a generated sentence or a document
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Input: …. She had a large family and lived

with her grandparents …. In 1933 she gave

birth to her first child …. In July 1926, many

of her friends attended her funeral …

Label1: grandparents → Not Hallucination
Label2: funeral → Hallucination

(C) Data Format in HADES

Input: Operation Valkyrie ( german : unternehmen

walkure ) was a german world war ii emergency 

continuity … civil order of the nation. Failure of the army 

to assume control of civil order might have been caused 

by the allied bombing of german cities , or because of 

the millions of jewish forced laborers employed by 

german factories . … modified the plan with the 

intention of using it to take control of german forces , to 
directly attack the ss , and arrest the ss leaders …

Label: to directly attack → Hallucination

Figure 1: Overview for reference-free token-level hallu-
cination detection task.

as a whole is a hallucinated artifact. Consequently,
these high-level strategies may be insufficient to
avoid hallucinations. As an alternative, at decoding
time of an NLG system, we suggest that if the locus
of hallucination can be identified at the token level,
it may be possible to guide beam search or suppress
the probability of certain tokens at real-time.

To this end, we propose a reference-free, token-
level hallucination detection task and introduce an
annotated training and benchmark testing dataset
that we call HADES (HAllucination DEtection
dataSet). The reference-free property of this task
yields greater flexibility in a broad range of gen-
eration applications. We expect the token-level
property of this task to foster the development of
models that can detect fine-grained signals of poten-
tial hallucination. In conjunction with consulting
context to identify self-contradictory statements
and access to commonsense and world knowledge,
such fine-grained signals, when detected, should
further mitigate real-time hallucination.

Our contributions include: 1) We propose a
reference-free, token-level hallucination detection
task for free-form text generation. 2) We support
this task with a dataset that we call HADES, with
∼11k instances extracted from English Wikipedia
using an iterative data collection strategy to address
data imbalance issues. We also present comprehen-
sive analyses on the statistical features to shed light
on what is commonly recognized as hallucination
in crowd-sourced judgments and its salient charac-
teristics in free-form text generation. 3) We create
multiple baselines, including feature based mod-
els and pretrained models as a first step towards
addressing the proposed task.

2 Task Overview

We formulate our hallucination detection task
as a binary classification task. As shown in
Fig 1, our goal is to assign either a “hallucina-

Raw Text: … Failure of the 
government1 to maintain2 control of 
civil affairs3 might have been caused 
by the allied bombing of german cities , 
or uprising4 of the millions of foreign5
forced laborers working in6 german
factories . … modified the plan with 
the intention of using it to take control 
of german cities10 , disarm11 the ss , 
and arrest the nazi leadership12 …

Perturbed Text: … Failure of the 
army1 to assume2 control of civil 
order3 might have been caused by the 
allied bombing of german cities , or 
because4 of the millions of jewish5
forced laborers employed by6 german
factories . … modified the plan with 
the intention of using it to take control 
of german forces10 , to directly attack11
the ss , and arrest the ss leaders12 …

Do you think ‘disarm11’ in
SRC consistent waith ‘to 
directly attack11’ in SUB
according to the context?

(A) Contextual Perturbation (B) Human Annotation

Not really. I think ‘to 
directly attack11’ in SUB is
inconsistent with‘disarm11’
in SRC.

Do you think ‘working in6’
in SRC consistent with
‘employed by6’ in SUB
according to the context?

Yes. I think ‘employed by6’ 
in SUB is consistent with
‘working in6’ in SRC.

Figure 2: The data collection process of HADES.

tion”2(abbreviated as “H”) or a “not hallucination”
(abbreviated as “N ”) label to the highlighted spans.

To simulate real-world NLG applications, we
propose two sub-tasks with “offline” and “online”
settings. In the offline setting, it is assumed that
generation is complete, so the the model is able
perceive the bidirectional context. This could be
used in the post-generation examination of NLG
systems. For online detection, the model can only
access the unidirectional preceding context, which
simulates on-the-fly generation. Online detection
is important in practice as it enables NLG systems
to proactively forestall potential hallucinations.

3 Dataset Creation

To collect the HADES dataset, we first perturb
“raw text” web data into “perturbed text” (Fig 2A)
(Sec 3.2). We then ask human annotators to assess
whether the perturbed text spans are hallucinations
given the original text (Fig 2B) (Sec 3.3).

3.1 Raw Data Collection

Our raw data are sampled from English WIKI-40B
(Guo et al., 2020) dataset. WIKI-40B-EN is a
cleaned collection of English Wikipedia articles.
We randomly sample from the first paragraphs of
these articles and filter out short text of fewer than
5 sentences. We use Wikipedia as our text source
since it is stylistically formal and of high quality,
and covers diverse topics and domains.

2“Hallucination” in our paper refers to certain types of
mistakes (Fig 3) made by the NLG models. The notions of
“consistency” and “not hallucination” are only for annotation
purposes (Sec 3.3).
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3.2 Contextual Perturbation
To acquire machine generated text in the free-form,
we perturb the raw text 3 using BERT. In apply-
ing this contextual perturbation we maintained two
principles: i) the fluency and syntactic correctness
of the perturbed text should be preserved; ii) the
perturbed text should be lexically diverse.

We leave the first two sentences in the raw text
unchanged to serve as the preceding context, so as
to avoid the “early token curse” (Press et al., 2020)
where tokens are evaluated at the beginning with
limited context. The text perturbation process is
split into three pipelined operations, namely MASK,
REPLACE and RANK.

• i) In the MASK operation, we mask the to-
kenized words to be replaced with the spe-
cial token “[MASK]” in the BERT vocabulary.
Starting from the third sentence, we randomly
mask word spans by a pre-defined mask ratio
ρ. By default we only mask one word in each
perturbation, except for named entities identi-
fied by Spacy. We view the entity boundaries
as minimal masking units to avoid collocation
errors (e.g. “San Diego” should be masked as
a whole). To reduce trivial instances, we do
not mask stop words or punctuation identified
by NLTK (Bird, 2006).

• ii) In the REPLACE operation, we leverage
a pretrained BERT-base model to predict the
masked span. The mask-then-predict train-
ing framework of the BERT model contex-
tualizes the replacement with both preced-
ing and subsequent text. For better fluency,
we replace the masked tokens from left to
right, e.g. a 3-token REPLACE operation
will be “[MASK] [MASK] [MASK]” → “[A]
[MASK] [MASK]” → “[A] [B] [MASK]” →
“[A] [B] [C]”4. When performing the replace-
ment, we remove the original token from the
predicted distribution over the vocabulary at

3In a pilot study, we tried to annotate a token-level dataset
based on GPT-3 generated text. However, we found that
annotators had trouble achieving consensus if we don’t provide
the “original text”. The size of the resulting data would be
small. We thus reduce the ambiguity and subjectivity in the
annotation process by asking if the pinpointed position in
perturbed text is consistent/hallucinated compared with the
original reference text.

4It is possible to substitute the original tokens with more
or fewer of tokens. However enumerating all possible token
lengths is difficult, and empirically we see marginal gain in
diversity in the resulting perturbed text. In our experiments
we use same number of tokens for replacement.

each position of the text span, to avoid dupli-
cated text after perturbation. We compared
several decoding strategies in token substi-
tution, including greedy, top-k (k=5/10/50)
and top-p (p=0.95/0.9/0.8) (Holtzman et al.,
2020) sampling methods. For comparison we
sample 30 perturbed text for each sampling
method and count the number of incoherent
perturbations. We choose top-k (k=10) sam-
pling as its good trade-off between diversity
(via number of distinct tokens) and coherence
(via number of incoherent perturbations).

• iii) For each perturbed text, we substitute mul-
tiple word spans. Although being locally co-
herent, the perturbed text may still exhibit
some global incoherence and syntactic is-
sues, especially for longer text. We thus post-
process the perturbed text with a RANK opera-
tion as an additional screening step. For each
raw text, we generate 20 perturbed candidates
and rank them according to language model
perplexity using a GPT-2 (117M) model. We
only keep the the candidate with lowest per-
plexity to ensure the fluency and syntactic cor-
rectness.

3.3 Data Annotation
We ended up with ∼1M perturbed text segments
in the pool after contextual perturbation, not all of
which contain hallucination, as the BERT model
can generate factual information given that it is
pretrained on a rich open web corpus. Thus, we
sought to further annotate the automatically per-
turbed texts via crowd-sourcing. Human annotation
is prohibitively expensive at this scale, so instead
of annotating all 1M perturbed texts, we annotated
a subset that is less trivial and would lead to a more
balanced distribution, using an iterative model-in-
the-loop annotation approach that is conceptually
related to active learning (Cohn et al., 1996; Jia and
Liang, 2017; Zellers et al., 2018; Nie et al., 2020).

Human annotation settings To perform the an-
notations, we hired judges on an internal (the
name is redacted for double-blind review) crowd-
sourcing platform comparable to AMT. The judges
were limited to the North American English speak-
ers with good records (recognized as experts in the
platform, rejection rate ≤ 1%) and were screened
via a simple 10-question qualification test (answer-
ing 8 out of 10 questions correctly). They were
paid 0.15$ per HIT, which is more than prevailing
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local minimum wage. Protocols were implemented
to block spammers in real time 5. For each anno-
tation, both original text and perturbed text were
shown to the judges, with perturbed text span high-
lighted. The annotators were asked to determine
whether the perturbed text spans are H (halluci-
nation) or N (not hallucination) with the original
text in terms of factualness and semantic coher-
ence given the context. Each pair was judged by
4 annotators, and up to 6 if consensus was not
reached. We retained only those annotations for
which consensus was reached. Out of 12,719 an-
notated instances, 86.12% instances reach consen-
sus and are included in HADES dataset; 78.47%
instances reach ≥ 80% agreement among annota-
tors, e.g. 4/5 or 5/6 vote for “hallucination” label;
71.24% instances reach 100% agreement in the
annotation. For inter-annotator agreement (IAA),
the Krippendorf’s alpha between the annotators is
0.87.

Iterative Model-in-the-loop annotation Anno-
tating all perturbed text segments is expensive and
time-consuming. Thus, we resort to annotating a
subset. We applied two principles for selecting the
data to be annotated: i) the data should be balanced.
We found that with randomly sampled instances,
the annotated label distribution is heavily skewed
toward the “hallucination” class. Presumably most
contextualized perturbations result in factual incon-
sistency to certain extent. However, we aim to have
the number of instances in both classes on par with
each other, so that the ROC (receiver operating
characteristic) curve of tested models can be better
characterized. ii) the data for annotation should be
less trivial 6. The obvious instances contribute little
to model training and method benchmarking, but
cost as much annotation effort as other instances.

The challenge is that we cannot know a priori the
annotation labels and ease of labeling, hence select-
ing less trivial instances and forming a balanced
label distribution for annotation is not straightfor-
ward. To address this challenge, we adopt an itera-
tive Model-in-the-loop annotation strategy. Specifi-
cally, we split the annotations into several rounds.

5If a worker keeps choosing the same label for all HITs, or
the average time spent per HIT is less than 10 seconds, or more
than 30% of their judgments conflict with others’, we would
manually check their annotations and block the spammers.

6Many perturbations are trivial to predict, e.g. replace-
ments that change a specific date to a non-date-related phrase
must be a hallucination.

For each round 7, we first retrain a hallucination
detection model (initiated with BERT) based on the
annotated instances in the previous rounds. This
model is used for selecting the next batch of data
to be annotated from the remaining unlabeled data.

To filter out trivial instances and focus on the
more useful cases, we use a heuristic rule for the au-
tomatic screening by abandoning instances where
the detection model assigns low or high probabil-
ity to “hallucination” class (the threshold varies in
different rounds to yield reasonable number of can-
didates). To eliminate cases where the perturbed
text paraphrases the original text, we also mea-
sured the cosine similarity between the replaced
text (through “[CLS]” representation) and corre-
sponding original content using a RoBERTa model
(without fine-tuning), and then filtered out cases
with a similarity score greater than 0.9. We also
remove a large portion of obvious hallucination
instances where the target text span is recognized
as a DATE or NAME, and replaced by a different
DATE8 or NAME.

In the initial rounds of annotation, we observed
extreme label imbalance (around 90% are H class)
between H (hallucination) and N (not hallucina-
tion) cases. To rebalance the label distribution so
that each class received a decent amount of anno-
tation, we performed additional subsamping based
on the label predicted by the aforementioned de-
tection model. We assume the human annotation
for H and N cases is the oracle, indicating actual
H/N . Since the actual “hallucinated” is dominant,
we seek to subsample from instances that are pre-
dicted as H by the detection model to make the
distribution of actual H/N even. To do this, we
estimate the true positive rate (TPR, α), true neg-
ative rate (TNR, β) and true precision (γ) of the
detection model based on the annotation from last
round. The hope is that after subsampling, the ac-
tual H (TP + FN) is roughly equal to actual N (FP
+ TN). The estimated subsampling ratio R for the
predicted H (TP + FP) is given by9:

R =
−2αβγ + αβ + βγ + αγ − γ

(2γ − 1)α(1− β)
(1)

7Except the first round, where we use random sampling.
8We only remove cases where the replaced date is definitely

different (e.g., from “Monday” to “Tuesday”). We do not
remove ambiguous cases such as from “today” to “Tuesday”.

9Details are provided in the appendix.
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Machine Generated Text in HADES (Hallucination → Factuality) Hallucination Type
He became deputy major-general to the forces, with the acting rank of brigadier general. 
(brigadier → major)

Domain-specific
Knowledge

Retirement compensation arrangements (RCAS) are ... no tax is paid by the owner / 
employee until benefits are received at death. (death → retirement)

Commonsense 
knowledge

This meeting discussed the drug and alcohol problems for many in their community.
(many → teenager)

Incoherence or 
improper collocation

... is a designer / craftsman ... he has also produced one-of-a-kind tables, chairs, and other 
furniture ... the New York Times described him as one of 2019‘s leading businessmen. 
(businessmen → chair makers)

Unrelated to the 
central topic

Alfonzo Florez Ortiz ... was a Colombian road racing cyclist from 1985 to 1987 ... he was 
born in April, 1992 in Medellin. (born → died)

Conflict with 
preceding context

He also aided prominent documentary writer Joseph Margulies on his book , Guantanamo 
and the Abuse of Presidential Power. (documentary writer → civil rights attorney)

Conflict with 
succeeding context

Figure 3: Overview for different types of hallucination in the proposed HADES dataset.

3.4 Data Analysis

Below we provide data statistics and characterize
the composition and properties of HADES.

Data statistics In total, after accumulating an-
notations for several rounds, we obtain 12,719 in-
stances with 71,226 HITS from judges. We con-
duct 14 rounds of annotation, increasing the anno-
tation scale with each round (ranging from ∼200
instances/round to ∼4000 instances/round). Out
of 12,719 annotated instances, 10,954 instances
reached consensus among judges and are included
in the HADES dataset. We split the dataset into
train, validation and test sets with sizes of 8754,
1000, 1200 respectively. In the final dataset, “hal-
lucination” cases slightly outnumber “not halluci-
nation” cases, with a ratio of 54.5%/45.5%. We
summarize some typical hallucination types seen
in the HADES dataset in Fig 3.

Parsing features In Fig 4 we show the ratio of
“hallucination”(H)/ “not hallucination” (N ) cases
for different Part-of-Speech (POS) and Name En-
tity Recognition (NER) tags, identified by Spacy.
From a POS perspective, around two-thirds of
verbs and verbal phrases in the dataset are iden-
tified as “not hallucination”, while in other types of
words/phrases, “hallucination” cases are in the ma-
jority, e.g., most adverbs (ADV), adjectives (ADJ)
and acronyms of proper nouns (PROPN) are la-
beled as “hallucination”. Presumably many verbs
or verbal phrases are lower in word concreteness
(Nelson and Schreiber, 1992) than other word types
(e.g. “make” and “create” can be used interchange-
ably in many circumstances), and thus, as we ob-
serve in our dataset, are less prone to be perturbed

into hallucinations. For NER tags, about 90% of
word spans are not recognized as name entities.
However, of the 10% of remaining instances, over
90% are “hallucination” cases.

Label Word Prob∗ Entropy TF-IDF PPMI
H 5.8525.6 2.581.49 .021.019 .198.134
N 1.307.67 1.781.07 .019.014 .216.129

(A) Meanstd statistics for Hallucination (H) and not
Hallucination (N ) labels (* indicates ×1e−8).

(B) Feature correlation heatmap between hallucination label
and word probability, entropy, TF-TDF and PPMI.

Table 1: Analysis for statistical and model-based fea-
tures of HADES.

Statistical and model-based features To ana-
lyze the characteristics of hallucinations in HADES,
we compute the correlation between a selected
group of statistical/model-based features and hal-
lucination labels. As shown in Table 110 , we
obtain the average word probability and average
word entropy of a given text span with a BERT
base model (without fine-tuning), as well as term
frequency–inverse document frequency (TF-IDF),

10More statistical feature analysis is in the appendix.
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Hallucination
Not Hallucination

Figure 4: Distributions of POS (left), NER (middle) and a breakdown of non-null NER tags (right) in HADES.

positive pointwise mutual information (PPMI) fea-
tures of the given word span. By comparing the
features of the two labels (H/N ) (Table 1A), we
observe that in our dataset, hallucinations typically
associate with higher entropy. A counter-intuitive
observation is that the hallucinations tend to have
higher average probability than factually consis-
tent content. We presume the underlying reason
might be that the word distribution generated by
machine may diverge from the word distribution of
real human-written text (Holtzman et al., 2020; See
et al., 2019) owing to self-reinforcing the current
generation based on previous generation. Conse-
quently, many overconfident generation outputs are
likely to fall into hallucination. We observe no
strong correlation between hallucination labels and
TF-IDF or PPMI as demonstrated in Table 1B.

4 Baseline Models

As an initial step towards tackling the proposed hal-
lucination detection task and benchmarking meth-
ods, we create several baseline detection models11.

Feature-based models As elaborated in Sec 3.4,
the statistical/model-based features like average
word probability, average entropy, TF-IDF, PPMI,
as well as parsing features like POS and NER tags
can be vague indicators of hallucinations. The for-
mer two are context-aware and the latter four are
not. We incorporate them as features to build clas-
sifiers including logistic regression (LR) and sup-
port vector machine (SVM) using scikit-learn (Pe-
dregosa et al., 2011). The maximum number of
iteration is set as 100, with an early-stop strategy
which stops training if the loss does not drop within

11The proposed token-level, reference-free hallucination
detection hasn’t been covered in the existing literature. Thus
this thread is first-of-its-kind. We are unable to find a feasible
baseline that perfectly fits in our setting, therefore we propose
multiple feature-based/pretrained baselines.

5 iterations.

Transformer-based models We also build base-
line detection models based on pretrained trans-
former models including BERT, GPT-2, XLNet
(Yang et al., 2019) and RoBERTa (Liu et al., 2020).
These transformer-based models represent the state-
of-the-art, and can potentially better leverage con-
text or embedded world knowledge to detect self-
contradictory or anti-commonsense content.

Specifically, for an input text segment, we fine-
tune a pretrained model M to predict binary hallu-
cination labels y for each given text span. During
inference time, from the last layer hidden states
H ∈ Rl×h (h, l are hidden size and sequence
length, respectively) of M, suppose the target
text span starts at position s and ends at posi-
tion t, we first obtain the representation w ∈ Rh

for the target span with max pooling (i.e., w =
max pool(Hs:t)). We then map w to a binary hal-
lucination label y ∈ {0, 1} with a MLP network
using tanh as activation. During training time, we
fine-tune the model using cross entropy objective
between the predicted labels and the actual labels.

5 Experimental Setup

Baseline configurations For the transformer-
based baselines, we experiment with a variety
of pretrained models via Hugging Face Trans-
formers (Wolf et al., 2020), including BERT-
large (335M), GPT2-medium (345M), XLNet-
large (340M), RoBERTa-large (355M). We use
Adam optimizer (Kingma and Ba, 2015) with dif-
ferent learning rates, i.e. 5e-3 for GPT2 and BERT
and 1e-3 for other models.

We explored multiple model architectures and
setups to determine the optimal configuration using
BERT-large model. These include i) span repre-
sentation with mean/max pooling ; ii) number of
layers of the MLP network; iii) hidden dimension
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Model Acc G-Mean (↑) BSS (↓) AUC
Not Hallucination Hallucination
P R F1 P R F1

LR 62.25 60.77 - - 62.35 72.08 66.86 62.10 51.24 60.33
SVM 63.67 61.50 - - 62.89 76.18 68.90 65.05 49.65 56.31
BERT 71.92 71.95 19.06 78.63 74.46 71.29 72.84 69.31 72.61 70.92
RoBERTa 72.83 70.94 18.78 78.72 74.06 74.76 74.41 71.43 70.67 71.05
XLNet 72.33 71.39 18.79 78.93 71.15 80.13 75.37 74.07 63.60 68.44

Table 2: Benchmark (numbers in percentages (%)) for the offline setting on HADES, where detecting models have
access to the bidirectional context. ↓/↑ indicates lower/higher is better. Significant tests are in the appendix.

Model Acc G-Mean (↑) BSS (↓) AUC
Not Hallucination Hallucination
P R F1 P R F1

GPT-2 71.58 70.98 19.13 77.71 71.32 77.29 74.19 71.93 65.19 68.40
BERT 71.00 70.43 18.66 78.83 70.91 76.50 73.60 71.12 64.84 67.84
RoBERTa 70.67 70.14 19.77 77.07 70.74 75.87 73.22 70.58 64.84 67.59
XLNet 70.08 69.17 19.76 76.59 69.39 77.60 73.27 71.08 61.66 66.04

Table 3: Benchmark (numbers in percentages (%)) for the online setting on HADES, where detection models only
have the access to left context. ↓/↑ indicates lower/higher is better. Significant tests are in the appendix.

of the MLP ; iv) whether or not to freeze the pa-
rameters of M up to the last layer, and choose the
best configuration according to model performance
on the validation set. The best configuration uses
max-pooling, employs 2 layers of MLP with hidden
dimension of h/2, and freezes the model parame-
ters up to the last layer of M and just fine-tunes the
binary MLP classifier. We apply the same network
configuration to all other pretrained models as em-
pirically we see marginal performance gain after
enumerating different configurations for individual
pretrained models other than BERT.

As discussed in Sec.2, HADES can serve as
benchmark for hallucination detection in both of-
fline (model can see bidirectional context) and on-
line (only preceding context can be leveraged) set-
tings. Note that we apply the feature-based base-
lines only in the offline setting (Table 2), because a
good estimation of those features requires bidirec-
tional context. The transformer with causal atten-
tion (GPT-2) can only fit in the online setting.

Evaluation metrics We evaluate the baselines on
HaDes with standard classification metrics includ-
ing accuracy, precision, recall, F1 and AUC (Area
Under Curve) with respect to ROC. We also utilize
the G-Mean metric which measures geographic
mean of sensitivity and specificity (Espı́ndola and
Ebecken, 2005) and they were reported useful es-
pecially for the imbalanced label distribution sce-
narios. We also employ the Brier Skill Score (BSS)

metric (Center, 2005), which calculates the mean
squared error between the reference distribution
and the hypothesis probabilities.

6 Results

Baseline performance Table 3 and Table 2 show
the performance of the baseline models 12 in both
online and offline settings respectively. In both set-
tings, the predictions for “not hallucination” cases
have higher F1 scores than “hallucination” cases.
All models perform better in the offline setting com-
pared with the online setting, indicating that the
succeeding context of the target words helps iden-
tify hallucinations. The transformer-based base-
lines are generally on par with each other. Under
the offline setting, the pretrained models outper-
form feature-based models by a large margin; this
indicates that the powerful contextualized feature
extractor is important for successfully identifying
hallucinations at fine granularity. Under the online
setting, we observe that, for most of the metrics,
GPT-2 yields the best performance of all baselines.

12To identify the clear winner among baseline models, we
report the significant tests for the baseline models in Table 3
and Table 2 as follows: For the offline setting (Table 2), there
is no obvious winner among pretrained models, e.g. RoBERTa
wins in ACC; XLNet wins in F1 for not hallucination cases;
BERT wins in G-mean. For the online setting (Table 3 ),
we ran significant tests for the mean performance (over 5
runs) between GPT-2 and BERT; GPT-2 and XLNet; GPT-2
and RoBERTa, the differences in terms of ACC; G-mean; F1
scores for both hallucination and not hallucination labels are
significant (alpha=0.01) after Bonferroni correction.
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Figure 5: The visualization of predicted hallucination scores for a sample of GPT-3 generated text, provided by
BERT (large, offline) detector. Darker green signifies higher risk to be hallucinations.

Figure 6: The performance of BERT-large based detect-
ing model with different context lengths.

Presumably, the causal language model pretraining
method makes GPT-2 perform better in the auto-
aggressive (online) detection setting.

Context matters in HADES To investigate ex-
tent to which contextual information helps the hal-
lucination detection in HADES, we run BERT-large
detection model with different context lengths and
characterize its performance in both online and
offline settings in Fig 6. Starting from the target
words, we set a fixed size (5/10/20/40/80/160) con-
text window and truncate all text beyond this win-
dow. As we enlarge the context window, model
performance grows rapidly when context length is
smaller than 80, and then gradually converges. This
observation highlights the importance of context in
hallucination detection. Interestingly, we observe
that the model obtains higher performance in the
offline mode than in the online setting. The per-
formance gap between the two settings maximizes
when context length is around 75, and vanishes
with long (> 150) or short (< 20) context win-
dows. We surmise that for long (> 150) context
window, the preceding context information might
already be adequate for detection, while for short
(< 20) context windows, the context, regardless
whether it is unidirectional or bidirectional, might
not contain enough information for detection.

Model predictions on GPT-3 generated text
We visualize the predictions of BERT-large (offline)
model on GPT-3 generated text in Fig 5. According
to the 2021 census instruments 13, some identified
spans like “greenhouse gas emission” and “com-
plete enumeration” are indeed not included in the
census, we assume they are recognized due to the
topic or knowledge irrelevance with the “census of
agriculture” in the pretrained corpus. Interestingly,
the detection model predicts the high hallucination
risk on “structures and buildings”, which has subtle
differences with “total greenhouse area including
enclosed structures” (included in the instruments).
The case study demonstrates the potentials of our
model in identifying hallucinated content in the
actual outputs of large-scale pretrained models.

7 Related Work

Reference-based Hallucination Detection
Apart from human verification (Chen and Bansal,
2018), researchers have developed effective
reference-based methods which automatically
detect hallucination in the generated text using
statistical n-gram matching (Dhingra et al., 2019;
Liu et al., 2019), edit distance heuristics (Zhou
et al., 2021), natural language inference (Kryscin-
ski et al., 2020; Falke et al., 2019), information
extraction (Zhang et al., 2020; Goodrich et al.,
2019) or question answering (Scialom et al.,
2019; Eyal et al., 2019; Wang et al., 2020a). Our
approach differs from them in that we investigate
the reference-free hallucination detection scenario.

To reduce hallucinations in the reference-based
setting, researchers have applied iterative training
(Nie et al., 2019), post editing (Dong et al., 2020),

13https://www.statcan.gc.ca/en/
statistical-programs/instrument/3438_
Q1_V6
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soft constraints, e.g. attention manipulation (Kid-
don et al., 2016; Hua and Wang, 2019; Tian et al.,
2019) or optimal transport (Wang et al., 2020b),
and template/scaffold guided schema with explicit
plans (Ma et al., 2019; Moryossef et al., 2019; Bal-
akrishnan et al., 2019; Du et al., 2020; Liu et al.,
2021), e.g. text sequences which specify the narra-
tive ordering, and implicit plans (Wiseman et al.,
2018; Ye et al., 2020; Shen et al., 2020; Li and
Rush, 2020), e.g. (structured) hidden variables that
corresponds to certain surface realization.

Reference-free Detection Approaches
Reference-free hallucination detection is closely
related to fake news detection (Zellers et al.,
2019; Zhou and Zafarani, 2020; Zhong et al.,
2020), which aims to identify deliberate disin-
formation in a reference-free manner on social
media and usually involves common-sense and
world knowledge reasoning (Monti et al., 2019),
or fact checking (Thorne et al., 2018), where
practitioners are asked to verify given claims
without references by retrieving related evidence
from Wikipedia. Another line of research is to
classify sentence-level language specificity (Li and
Nenkova, 2015; Gao et al., 2019), which scales
from 1 (very general) - 5 (very specific) for short
text, e.g. tweets, according to human annotation.

The proposed hallucination detection aims to
examine the text in a finer granularity than fake
news detection and fact checking. In the proposed
task, most parts of the text remain faithful; our
goal is to identify subtle hallucinations at the token-
level. Fake news detection or specificity assess-
ment, on the other hand, usually focus on sentence-
or document-level detection.

8 Conclusions

We have proposed a token-level reference-free hal-
lucination detection task and introduced a bench-
mark dataset HADES for identifying fine granular-
ity hallucination in free-form text generation. To
create this dataset, we perturbed texts to simulate
hallucination in NLG system, and performed an in-
terative model-in-the-loop annotation approach to
annotate the perturbed text in an imbalanced label
scenario. We have further provided comprehensive
analyses of HADES and evaluated several baseline
models to establish initial benchmarks. We hope
that the proposed task and dataset will shed light
on high-resolution hallucination detection in free-
form text generation and will eventually lead to

real-time hallucination prevention.

Broader Impact and Ethnic Consideration

This study aims to facilitate the recognition of po-
tential hallucinated content produced by large-scale
pretrained models in the free-form generation. We
support this goal with a novel reference-free, token-
level hallucination task and the corresponding anno-
tated dataset HADES. The detection model trained
with HADES could be potentially useful in both
online and offline settings. For online settings it
is possible to guide beam search or suppress the
probability of hallucinated tokens through the de-
tection models. For offline settings our system may
expedite the human-in-the-loop post-examination
in product deployment.

We design our model to detect hallucination to
factual statement. The learned knowledge should
be able to be transferred to other domain like so-
cial chatbot once the chat is regarding certain facts
(e.g. a celebrity, a historical event). Wikipedia
dataset covers a lot of facts, domains and top-
ics, making it ideal for our study. We thus col-
lect the HADES dataset from Wikipedia. All
text on Wikipedia is licensed under the Creative
Commons Attribution/Share-Alike 3.0 Unported
License. During the annotation, all involved anno-
tators voluntarily participated with decent payment.
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A Detailed Statistical Analysis

In Table 4, we provide detailed statistical analy-
ses for different POS and NER tags in the HADES

dataset. Although the average word probability
and average word entropy features differ among
POS/NER tags, hallucinated content typically as-
sociates with higher word probability and word
entropy irrespective of POS/NER tag. Strong cor-
relation between hallucination labels and TF-IDF
or PPMI features is not observed.

B Annotation Interface

The annotation interface is provided in Fig 7.
Note that throughout the annotation process we

choose to involve an even number of, e.g. 4 or 6,
annotators (Sec 3.3) for an instance. The reason
is that, we manage to involve extra annotators for
controversial cases. If we pick an odd number of,
e.g. 5 rather than 4, annotators, for each datapoint
(binary classification) all possible results would
be 0:5/1:4/2:3/3:2/4:1/5:0 in terms of the ratio of
Hallucination/Consistent labels, which means no
more annotators would be involved as they always
reach consensus (majority wins).

C Subsampling Ratio For Label
Rebalance

We adopt an iterative model-in-the-loop method in
data annotation. Since observe a label imbalance
between “hallucination” (H) and “not hallucina-
tion” (N ) in the initial rounds of annotation, we
employ subsampling to rebalance the label distribu-
tion in Sec 3.3. We accumulate the data annotated
in the all previous rounds, and train a detection
model using the accumulated data. Then we apply
the detection model to the unannotated data in the
candidate data pool in order to select next batch of
data as elaborated in Sec 3.3.

We assume that the human annotation for H
and N cases is the oracle, indicating actual H/N .
Since the actual “hallucinated” is dominant, we try
to subsample from the instances that are predicted
by the detection model to be H, in order to even
out the distribution of actual H/N . To do this,
we estimate the true positive rate14 (TPR, α), true
negative rate (TNR, β) and true precision (γ) of the
detection model based on the annotations from the
previous rounds.

14Defining H as the positive class.

TPR =
TP

(TP + FN)
≜ α (2)

TNR =
TN

(TN + FP)
≜ β (3)

precision =
TP

(TP + FP)
≜ γ (4)

Where TP, FP, TN, FN are the abbreviations
of “true positive”, “false positive”, “true negative”
and “false negative” cases. We aim to subsample
from the instances that are predicted as H from
the detection model (TP + FP) with a subsampling
ratio s, so that the actual H (TP + FN) is roughly
equal to actual N (FP + TN) after the resampling.
We denote TP and TN as x and y and represent FN
and FP with x, y, α, γ, β:

FN =
1− α

α
x (5)

FP =
1− β

β
y (6)

By substituting FN, FP into Eq. (4), we have:

γ =
x

x+ 1−β
β y

(7)

To make the distribution of actual H/N even
(sTP+FN=sFP+TN), we have:

sx+
1− α

α
x = s

1− β

β
y + y (8)

By combining Eq. (7) and Eq. (8), we figure out
the optimal subsampling ratio s∗.

s∗ =
−2αβγ + αβ + βγ + αγ − γ

(2γ − 1)α(1− β)
(9)
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Tag Word Prob(×1e−8) Entropy TF-IDF PPMI
H N H N H N H N

POS:NOUN 6.9832.0 1.686.34 2.751.52 1.861.13 .025.021 .023.018 .213.145 .228.140

POS:VERB 2.519.33 0.692.89 2.251.25 1.761.00 .019.012 .018.011 .206.112 .216.119

POS:ADJ 8.1644.8 2.8618.9 2.951.46 2.381.23 .021.017 .017.009 .180.128 .164.117

POS:ADV 5.1314.2 2.6512.2 2.561.18 1.971.09 .016.011 .014.008 .181.114 .182.105

POS:PROPN 14.333.6 4.3517.8 3.121.73 1.561.39 .029.026 .033.029 .198.150 .312.275

POS:other 9.5631.1 3.2815.7 2.641.61 1.260.97 .013.013 .011.010 .158.107 .205.092

NER:null 5.3725.6 1.247.19 2.521.47 1.791.06 .021.019 .019.014 .200.132 .215.126

NER:other 8.4325.4 5.0621.5 2.931.56 1.651.44 .023.023 .0260.024 .189.146 .263.237

All 5.8525.6 1.307.67 2.581.49 1.781.07 .021.019 .0190.014 .198.144 .216.129

Table 4: Detailed statistical features (Meanstd) for “hallucinated” (H) and “not hallucinated” (N ) cases.

Figure 7: The annotation interface for the proposed hallucination detection task.
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