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Abstract

Example sentences for targeted words in a dic-
tionary play an important role to help read-
ers understand the usage of words. Tradition-
ally, example sentences in a dictionary are usu-
ally created by linguistics experts, which are
labor-intensive and knowledge-intensive. In
this paper, we introduce the problem of dic-
tionary example sentence generation, aiming
to automatically generate dictionary example
sentences for targeted words according to the
corresponding definitions. This task is chal-
lenging especially for polysemous words, be-
cause the generated sentences need to reflect
different usages and meanings of these tar-
geted words. Targeted readers may also have
different backgrounds and educational levels.
It is essential to generate example sentences
that can be understandable for different back-
grounds and levels of audiences. To solve
these problems, we propose a controllable
target-word-aware model for this task. Our
proposed model can generate reasonable exam-
ples for targeted words, even for polysemous
words. In addition, our model allows users
to provide explicit control over attributes re-
lated to readability, such as length and lexical
complexity, thus generating suitable examples
for targeted audiences. Automatic and human
evaluations on the Oxford dictionary dataset
show that our model can generate suitable ex-
amples for targeted words with specific defini-
tions while meeting the desired readability.

1 Introduction

A dictionary usually consists of targeted words,
part-of-speech (POS) tags, definitions and corre-
sponding example sentences. Definitions and their
corresponding examples enable audiences to better
master new words, understand unfamiliar texts and
the usage of the words in typical sentences, where
a definition is a simple description for the meaning
of the targeted word, and an example shows audi-
ences how to use the word under this definition.

Both definitions and examples are critical, playing
an important role in language acquisition and nat-
ural language understanding. However, it is often
the case that audiences cannot find satisfactory ex-
ample sentences for rarely used or newly coined
words. On the other hand, it is time-consuming
for experts to create dictionary examples for these
words. With the advancement of AI technologies,
it is a natural direction to study how to generate
dictionary examples automatically, to assist dictio-
nary compilation and help humans understand the
corresponding targeted words.

Dictionary example sentence generation aims
to generate example sentences for targeted words
to reflect their definitions and usages automati-
cally. Recently, definition generation (Noraset
et al., 2017; Gadetsky et al., 2018; Ishiwatari et al.,
2019) has been extensively studied, yet generating
example sentences is not well-studied. To the best
of our knowledge, we are the first group to intro-
duce this challenging problem. One main challenge
for this task is that targeted words must appear
in outputs. Another challenge is that polysemous
words (e.g. ‘bank’), which have multiple senses,
even multiple POS tags, are ubiquitous. Thus, a
polysemous word in generated examples should
convey the given sense and POS tag.

Lexically constrained text generation is meant to
incorporate some specific keywords into outputs,
which has been widely studied. Previous lexically
constrained models inject the given keywords into
outputs either by manipulating the decoding pro-
cess (Mou et al., 2015; Hokamp and Liu, 2017), or
using the keywords as the initial state and refining
it with a series of actions, such as insertion and
replacement until it is completed (He and Li, 2021).
It is natural to use these lexically constrained mod-
els as baselines, since they have solved the first
challenge. In response to the second one, we fur-
ther extend these lexically constrained models by
feeding the definition into the encoder and then
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injecting the targeted word during decoding. How-
ever, these models have two inherent drawbacks for
this task: (1) During inference, these models gener-
ate a sentence based on the definition and force the
targeted word to appear in outputs. However, they
fail to explore the correlation between the targeted
word and input, thus sacrificing the generation qual-
ity to ensure the targeted word appears in outputs.
(2) These models are computation-intensive, as
they need to manipulate the decoding process.

To circumvent these problems, the proposed
model is expected to understand this task so that
there is no need to interfere with the decoding pro-
cess. To achieve this goal, we directly feed the
targeted word and definition into the model. This
simple change brings two advantages over lexically
constrained generation models: (1) During training,
our model fully explores the correlation between
targeted words and definitions, and gradually ac-
quires this task. As a result, even the proposed
model does not control decoding, outputs contain
targeted words in 99.6% of cases. (2) With the
release of control over decoding, our model signifi-
cantly improves the generation quality and dramat-
ically reduces the inference latency.

Apart from the above two challenges, the pro-
posed model should generate suitable examples to
match the readability levels of different audiences,
such as children and college students. To address
the third challenge, the proposed model is expected
to control the readability-related attributes of out-
puts, namely length and lexical complexity. In-
spired by Keskar et al. (2019), the proposed model
is trained on discrete control tokens, which are re-
lated to the length and lexical complexity of gold
example sentences. By doing so, the proposed
model will learn to associate the control tokens
with the length and lexical complexity of outputs.
As a result, we can control the readability of outputs
by varying the length and lexical control tokens.

Our contributions are summarized as follows:
(1) We introduce the dictionary example sentence
generation task. (2) We propose a large dataset for
dictionary example generation. (3) We propose a
controllable target-word-aware model and several
baselines for this task1. (4) We propose two BERT-
based classifiers to automatically evaluate whether
the target word in the generated example conveys
the given sense and POS tag, respectively. (5) Our

1Our dataset and code are available at
https://github.com/NLPCode/CDEG.

experiment results on the Oxford dictionary dataset
show that our model outperforms baselines in terms
of generation quality, diversity, POS and definition
accuracy. More importantly, our model can tailor
examples to fit the needs of targeted audiences by
controlling the length and lexical complexity.

2 Problem Statement

Dictionary Example Sentence Generation aims
to generate a fluent example E = {e1, . . . , eT } for
the targeted word w∗ under a specific definition
D = {d1, . . . , dS}, where w∗ should appear in E
and convey D. During training, this task aims to
maximize the conditional probability of E:

p(E|w∗, D; θ) =
T∏
t=1

p(et|ei<t, w
∗, D; θ). (1)

3 Methodology

3.1 Motivation
Our motivation is to make the model understand
dictionary example sentence generation so that we
do not need to interfere with the decoding pro-
cess. Intuitively, if the model has mastered the
requirements of this task, the model will know rea-
sonable outputs should contain the targeted word
under the specific sense when seeing the target
word and definition. Driven by this motivation,
we use an encoder-decoder architecture, initialized
with BART (Lewis et al., 2020), where the encoder
directly takes the targeted word and definition as
inputs. During training, the model gradually learns
to incorporate the targeted word under the specific
meaning into output, otherwise, it will suffer a large
cross-entropy loss between the predicted distribu-
tions of the decoder and golden examples.

To gain control over the readability of outputs,
the model is also trained on the readability-related
control tokens of gold examples. In this way, the
model will gradually learn to correlate the spe-
cial token with a readability attribute of outputs,
otherwise, it will also suffer a large cross-entropy
loss. See Section 3.2 for readability-related con-
trol tokens. The overview of the proposed model
is shown in Figure 1. The encoder input consists
of five parts: the targeted word, POS tag, length,
lexical complexity, and definition. Each part be-
gins with a special token, indicating the start of this
part. For example, <Word> means the following
content is the targeted word. The decoder aims to
generate examples based on the encoder inputs.
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<Definition> Definition  <Word>  Word <Len> <Len_C><POS> <POS_C> <LC> <LC_C> <S> Example 

Encoder Decoder

Figure 1: The overview of our proposed model. <Word>,<POS>,<Len>,<LC> and<Definition> are special
tokens, which are used to separate the different parts of an encoder input. <POS_C> is the POS tag of a targeted
word. <Len_C> and <LC_C> refer to the length and lexical complexity of an example. <S> denotes the start
of a sentence.

Words (tokens) Examples (tokens)

‘banked’ (b, anked) ‘a banked racetrack’ (a, Ġbank, ed, Ġrac, etr,
ack)

Add an initial space to words/examples

‘ banked’ (Ġbank, ed ) ‘ a banked racetrack’ (Ġa, Ġbank, ed, Ġrac,
etr, ack )

Table 1: Tokens are achieved by using the BART tok-
enizer to tokenize the inputs w/o (top) or w/ (bottom) a
leading space. BART uses ‘Ġ’ to denote a space.

3.2 Readability-Related Control Tokens

To control the readability of outputs, we need to
find out which attributes of outputs are related to
readability. Flesch-Kincaid Grade Level (FKGL)
and Flesch Reading-Ease Score (FRES) (Kincaid
et al., 1975) are widely used to assess the difficulty
of English text. Both metrics are related to the av-
erage sentence length and assume that the longer
the sentence, the more difficult the text is to under-
stand. On the other hand, lexical complexity also
affects readability (Shardlow, 2014). For example,
too many complicated words appearing in a text
may hinder audiences’ understanding of the text.
Length (Len). Len denotes the number of tokens
in a tokenized2 example. Figure 2 (d) shows that
example lengths range from 3 to 60. Hence, we add
58 learnable Len control tokens to the vocabulary.
Lexical Complexity (LC). Word frequencies are
the most reliable predictor of word complexity
(Paetzold and Specia, 2016). Given this, we use
word frequencies as a proxy of LC. In the follow-
ing, we will show how to compute the LC of an
example. First, we tokenize all examples in the
training set with NLTK word tokenizer3. Next, we
rank unique words by word frequencies in descend-
ing order. Then, we compute the word ranks for all
words in one example. After that, we calculate the
third-quartile of log-ranks and use it as the LC for
the example. Finally, we discretize all LC values
into 40 discrete LC labels. LC label distribution is
shown in Figure 2 (e). Therefore, we add 40 train-
able LC control tokens (0-39) to the vocabulary.

2Sentences are tokenized by BART Tokenizer.
3https://www.nltk.org/api/nltk.tokenize.html
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Figure 2: Subfigures (a) and (b) show the unique
lemma distribution over #Senses, and #POS tags in the
training set, respectively. #Senses denotes the number
of unique definition triplets (lemma, POS, definition).
In this paper, we use a definition triplet to denote a
sense for a lemma. Subfigure (c) shows the distinct
definition distribution over POS tags in the training set.
Subfigures (d) and (e) show the Len and LC label dis-
tributions of examples in the training set.

3.3 Improve the Word Coverage

Since we utilize the BART tokenizer, feeding the
original form of a targeted word into the encoder
may hinder the decoder from injecting it into the
output. As shown in Table 1, the token sequence for
the targeted word ‘banked’ does not appear in the
tokenized example (row 1). Therefore, the model
must learn to map {b, anked} to {Ġbank, ed} to
include it in outputs, which undoubtedly increases
the difficulty of incorporating the word into outputs.
This problem is caused by the discrepancy between
the token sequences of the targeted word and ex-
ample. To solve this, we add an initial space to the
targeted word and example so that the tokenized
word appears in the tokenized example (row 2). By
doing so, the decoder can copy the targeted word
from the encoder to outputs instead of mapping,
thus improving the word coverage by 8.6%.

3.4 Training and Inference

During training, we feed the targeted word, golden
POS, Len and LC labels of examples into the en-
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<CLS>

BERT 
Class Label

Word <SEP> Definition/POS Example<SEP>

Figure 3: The overview of the BERT-based defini-
tion/POS evaluation model. <CLS> is the special sym-
bol for classification output, and <SEP> is the special
symbol to separate different parts.

Partition Training Validation Test Total
#Lemmas 47,889 6,311 6,256 48,352
#Senses 90,044 7,931 7,843 105,818
#Examples 1,138,316 87,373 87,050 1312739
Avg. Sense Len 11.92 11.29 11.31 11.83
Avg. Example Len 20.72 20.56 20.57 20.70
Avg. #Senses p.
Lemma 2.19 5.29 5.32 2.84

Table 2: Statistics of the Oxford dictionary dataset.
#Lemmas and #Senses denote the number of unique
lemma and definition triplets (lemma, POS, definition),
respectively. #Examples is the number of examples.

coder, and then fine-tune the model by minimizing
the cross-entropy loss. During inference, we set
Len and LC to fixed values to generate examples
with expected Len and LC.

3.5 Assess the Definition and POS Accuracy
In text style transfer, Shen et al. (2017), Hu et al.
(2017) and Li et al. (2018) used a pre-trained clas-
sifier to assess whether outputs have the desired
attribute. Inspired by this, we propose a definition
classifier to evaluate whether the targeted word w∗

in the example E conveys the given meaning D.
The definition model takes a triple of word, defi-
nition and example (w∗, D,E) as input. To train
the definition model, we first create the synthetic
data {(w∗, D,E,L)}. If w∗ in E conveys D, the
label L is 1, denoting the data instance is positive.
Otherwise, L is 0, denoting the data instance is neg-
ative. We directly select the positive data instance
(w∗, D,E) from the Oxford training or validation
set. Then, we create three kinds of negative data
instances based on a positive data instance by (1)
replacingw∗ with another word inE or vocabulary;
(2) replacing D with another definition of w∗ or
other words; (3) replacing E with another sentence,
which does not contain w∗. For ease of understand-
ing, we show several synthetic data instances in
Table 12 in the Appendix. We fine-tune BERT-
base (Devlin et al., 2019) on the synthetic training
set (see Figure 3 for the model input), achieving
89.9% F1 on the validation set. Similarly, we train
a BERT-based POS classifier to assess whether w∗

in E reflects the given POS tag, which achieves

98.5% F1 on the synthetic validation set. We show
the statistics of synthetic data for the definition and
POS models, and their performance on the valida-
tion set in Appendix A and B.

4 Experiments

4.1 Experiment Setups
Dataset and Pre-processing. We evaluate our pro-
posed model on Oxford Dictionary4. Gadetsky et al.
(2018) released a dataset based on this resource for
definition generation. However, this dataset is un-
suitable for dictionary example generation due to
the following limitations (Chang et al., 2018): (1)
each definition has only one example sentence; (2)
some examples in their dataset do not contain tar-
geted words. To solve these problems, we collect a
new Oxford dataset by filtering out definitions with
the number of examples less than two, and exam-
ples not containing the targeted word. In addition,
we remove targeted words containing letters less
than two or greater than 20. Each data instance
is a quadruplet, containing a targeted word, POS
tag, definition and examples of the word usage. We
split the dataset into training, validation and test
sets based on the triplets (lemma, POS, definition),
which are mutually exclusive across three sets (see
Table 2 for statistics of this dataset).

Different from the training set, the validation/test
set only contains polysemous words with at least
two definitions, since it is more challenging to gen-
erate examples for polysemy. During training, each
sense along with all corresponding example sen-
tences will be used to update models. During infer-
ence, we will generate only one example sentence
for each sense, but each lemma in English may have
multiple inflections (For example, inflected forms
of the verb ‘bank’ include ‘banked’, ‘banking’, etc).
Given that we use BLEU to evaluate the generation
quality, we only keep the word form with most ex-
ample sentences for each definition tuple (lemma,
POS, definition) in the validation/test set. For the
sense (‘bank’, Verb, ‘heap (a substance) into a mass
or mound’) in the test set, two examples contain
‘banked’ and only one example contains ‘banking’,
so we keep examples containing ‘banked’.

The data distributions of the training set are
shown in Figure 2. See Appendix C for the data
distributions of validation and test sets.
Baselines. We first implement two retrieval base-
lines by randomly selecting examples containing

4https://en.oxforddictionaries.com/
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# Models/Metrics Coverage ↑ POSA ↑ DefA ↑ B-2 ↑ B-4 ↑ SB-4 ↓ D-2 ↑ D-4 ↑ AveLen Latency ↓
Retrieval Models
1 One-Billion-Word 96.4% 82.9% 35.6% 12.5% 1.6% 18.7% 53.4% 76.6% 28.7 9.033
2 Training set 97.3% 84.0% 35.6% 17.3% 6.8% 18.2% 54.3% 77.1% 27.3 0.371
Lexically Constrained Models without Definitions
3 sep-B/F 100.0% 86.1% 32.6% 25.1% 4.7% 44.8% 29.3% 61.0% 18.2 0.964
4 asyn-B/F 100.0% 86.1% 32.3% 24.5% 4.5% 43.0% 30.1% 63.1% 19.6 0.931
5 GBS 100.0% 83.8% 33.4% 17.0% 2.5% 61.6% 23.7% 44.4% 19.9 7.854
6 X-MCMC-C 100.0% 0.1% 7.5% 15.6% 2.3% 15.1% 53.2% 95.0% 12.1 24.23
Lexically Constrained Models with Definitions
7 sep-B/F 100.0% 87.7% 77.1% 27.9% 6.4% 30.0% 43.5% 83.2% 15.5 1.002
8 asyn-B/F 100.0% 89.6% 77.5% 27.8% 6.2% 30.0% 42.9% 83.9% 16.9 0.991
9 GBS 100.0% 91.3% 77.5% 26.3% 6.1% 28.1% 44.6% 84.2% 15.9 8.025
Our Models + Word + POS + Len14 + LC25

10 Random (greedy) 99.8% 96.9% 81.8% 28.0% 5.4% 40.5% 34.3% 69.9% 14.0 0.164
11 BART-base (greedy) 99.6% 97.2% 87.7% 28.8% 7.6% 23.9% 49.5% 86.4% 14.0 0.161
12 BART-base (beam 5) 99.5% 97.4% 87.8% 31.4% 9.6% 26.2% 46.8% 84.2% 14.1 0.195

Table 3: Results on the Oxford test set. For our model, the subscript integers denote the selected control labels for
Len and LC, with which the model performs best on the validation set. ‘greedy’ and ‘beam 5’ denote generating
sentences using greedy or beam search with a beam size of 5. ‘AveLen’ means the average length of examples.
‘Latency’ is the average decoding time (second) per sentence computed on the test set without mini-batching.

the targeted words from the One-Billion-Word5

corpus or the training set, respectively. We adopt
four lexically constrained generation models: two
variants of the backward forward model (sep-B/F
and asyn-B/F) (Mou et al., 2015), grid beam search
(GBS) (Hokamp and Liu, 2017) and X-MCMC-C
(He and Li, 2021). We implement the former three
baselines based on GPT-2 small (117M). We train
X-MCMC-C with the code provided by He and
Li (2021), which is based on XLNet-base (110M).
These methods generate sentences containing tar-
geted words without considering definitions. To
remedy this, we re-implement the former three
models based on BART-base (139M), where the en-
coder takes the definition as input and the decoder
incorporates the word during inference.
Implementation Details. We initialize our model
with BART-base, which has comparable parameters
to generation baselines. For generation baselines
and our models, we use AdamW (Loshchilov and
Hutter, 2019) with an initial learning rate of 1e− 5
to update parameters for four epochs and choose
the checkpoints with the lowest validation loss.

During inference, we run beam search decod-
ing with beam width = 5 on generation baselines
and our model. We also run greedy decoding on
our model. Following He and Li (2021), we run
X-MCMC-C for 200 steps and select the example
with the lowest negative log-likelihood (NLL) as
output. To discourage the generation of repetitive
tokens, we apply the repetition penalty strategy
Keskar et al. (2019) with the penalized parameter
= 1.3 to all models. We implement all models with
the HuggingFace Transformers library (Wolf et al.,

5http://www.statmt.org/lm-benchmark/

2019). All models are trained and tested on a single
GeForce RTX 2080 Ti GPU.
Evaluation Metrics. We evaluate the generated
examples from four aspects: Q1: Whether the gen-
erated example contains the targeted word? Q2:
Whether the targeted word in the generated exam-
ple conveys the given sense? Q3 & Q4: Whether
the outputs are fluent and diverse? First, we check
whether the targeted word appears in the example,
indicated as word Coverage. If so, we will further
assess whether the targeted word conveys the given
POS tag and sense with the BERT-based POS and
definition models, called POS Accuracy (POSA)
and Definition Accuracy (DefA).

As for Q3, it is non-trivial to evaluate the gener-
ation quality. In this paper, we do not use NLL as a
metric for sentence fluency, since lower NLL does
not always denote better sentence quality (Holtz-
man et al., 2020). We use BLEU (Papineni et al.,
2002) to measure the n-gram similarity between the
generated examples and human references, which
is a widely-used automatic metric for generation
quality. One concern is that BLEU may be not ideal
for dictionary example generation, since there may
exist many sentences that could be appropriate for
a given word and definition. To remedy this, each
sense (i.e., definition triplet) in the validation and
test sets contains an average of 11 examples, which
provide a richer and more diverse test-bed for fur-
ther automatic evaluation. To answer Q4, we use
Self-BLEU (Zhu et al., 2018) and Distinct n-gram
(Li et al., 2016) to measure the generation diver-
sity. Self-BLEU-4 (SB-4) is computed by treating
one sentence as the hypothesis, and the first 1K
generated sentences excluding the hypothesis as
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references. Distinct bigram (D-2) and 4-gram (D-
4) indicate the proportions of unique bigrams and
4-grams, respectively.

4.2 Experimental Results

Table 3 reports the main experiment results on the
test set, from which we can draw four conclusions:
(1) Generation models are critical. We cannot
retrieve examples for all words. For example, only
97.3% of the words in the test set appear in the
training set. We do not see any improvements with
a larger dataset (rows 2), yet brings a much higher
retrieval latency. By comparison, the generation
models have the potential to generate examples for
unseen words, thus greatly improving coverages.
(2) The definition is helpful. Compared with gen-
eration baselines w/o definitions (rows 3-6), their
counterparts w/ definitions (rows 7-9) significantly
improve DefA to around 77%. As we have men-
tioned before, all words in the test set are polyse-
mous (see Figure 6 (a)). That is why the definition
is useful and indispensable for this task.
(3) The pre-trained model does matter. Com-
pared with the random counterpart (row 10), our
model initialized with the BART-base model (row
11) can generate more fluent (B-4) and diverse (SB-
4, D2, D4) sentences while improving DefA by
around 6%. That is possibly because BART ac-
quires some syntactic and semantic knowledge dur-
ing pre-training, which is useful for this task.
(4) The proposed models outperform other gen-
eration baselines in most metrics. One problem
with lexically constrained generation models (rows
7-9) is that they do not explicitly explore the corre-
lation between the targeted word and input. When
feeding a definition into these models, they just
generate a sentence based on the encoder input and
force the targeted word to appear in outputs. By
interfering with decoding, they can achieve 100%
word coverage, yet this is achieved at the cost of
generation quality, POSA and DefA. Another prob-
lem is that their manipulations of decoding cause
higher inference latency.

By comparison, our proposed model directly
takes the targeted word as input instead of com-
pulsorily injecting it into outputs during inference.
This simple change brings two advantages over the
lexically constrained generation methods: (1) Our
model can fully explore the correlation between
the targeted word and the definition, and gradually
acquires this task during training. As a result, when

# Variants Coverage↑ POSA↑ DefA↑ B-4↑ D-4↑
1 Full model 99.6% 97.2% 87.7% 7.6% 86.4%
2 – Word 14.5% 17.3% 16.1% 3.6% 85.9%
3 – POS 99.6% 96.6% 87.6% 7.5% 86.6%
4 – Definition 99.4% 97.4% 35.8% 4.3% 73.2%

Table 4: Results of ablation study on the test set. Com-
pared with the full model (row 11 of Table 3), the met-
ric with the largest change in each row is underlined.

Space Pointer Coverage↑ POSA↑ DefA↑ B-4↑ D-4↑
91.0% 89.1% 81.2% 7.1% 87.1%√
99.6% 97.2% 87.7% 7.6% 86.4%√
89.7% 88.0% 79.4% 7.5% 86.5%√ √
99.5% 97.2% 86.9% 8.2% 85.1%

Table 5: Results of ablation study on the test set.

feeding a targeted word and a definition into the
proposed model, it will understand that the reason-
able outputs should contain the targeted word under
the specific sense. That is why even the proposed
model does not control the decoding process, it
does not sacrifice the word coverage (e.g. 99.6%
word coverage in row 11). (2) Eliminating interfer-
ence to decoding brings substantial improvements
in generation quality (B-4), POSA, and DefA, and
dramatically reduces inference latency.

4.3 Ablation Study
We perform an ablation study to demonstrate the
importance of each design. We first train variants of
the full model by removing the word, POS, and def-
inition, and then run greedy decoding on the well-
trained models to generate examples. We show the
results on the test set6 in Table 4. Compared with
the full model (row 1), we note that: (1) remov-
ing the targeted word significantly decreases the
word coverage (row 2). (2) POS helps to improve
the POSA (row 3). (3) the definition improves the
DefA (row 4). These observations verify the effec-
tiveness of these components. Len and LC control
tokens are mainly used to control the readability
of outputs, which do not degrade the generated
examples (see Table 13 in the Appendix).

We also test the effect of leading space. As
shown in Table 5, adding the space increases the
word coverage by 8.6%, establishing the impor-
tance of this design. The pointer network (Gul-
cehre et al., 2016; See et al., 2017) is used to copy
content from the source into outputs. However,
only using the pointer network cannot improve the
word coverage, as it does not solve the mapping
issue mentioned in Section 3.3. Therefore, we do
not use the pointer network.

6We observe similar results on the validation set.
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Figure 4: The impact of control tokens on generated examples. Subfigures (a) and (b) demonstrate the statistics of
the corresponding attributes of the generated examples on the test set, including average, standard deviation (std),
and mean squared error (MSE) values. Subfigure (c) shows the Pearson correlation coefficients for LC and a set of
metrics. All examples are generated by running greedy decoding on the model (row 11 of Table 3) with Len14+LC
(Subfigures (a) and (c)), and Len+LC25 (Subfigure (b)) control tokens. Expected LC/Len is the gold LC/Len label
used to generate examples; LC/Len means the average lexical complexity/length of outputs.

Cases Coverage↑ POSA↑ DefA↑ B-4↑ #POS #Senses
2 99.6% 97.7% 92.2% 6.1% 1.2 2.0
3 99.7% 96.6% 88.8% 6.6% 1.4 3.0
≥4 99.5% 97.4% 85.4% 8.6% 1.9 10.6

Noun 99.7% 98.7% 88.5% 7.1% 1.5 6.3
Adjective 99.2% 95.1% 87.5% 6.9% 1.6 5.1

Verb 99.8% 98.6% 89.1% 9.6% 1.8 10.2
Adverb 99.6% 84.9% 75.7% 4.5% 1.6 6.1

Table 6: Results on different cases, where the test
set is separated according to the #Senses (part one),
and POS tags (part two), respectively. All examples
are generated by the model (row 11 of Table 3) with
Len14+LC25. #Sense and #POS denote the average
number of senses and POS tags owned by each word.

4.4 More Analysis and Discussion

Effect of Control Tokens. In Table 13, we have
shown that Len and LC control tokens affect read-
ability via HF, but two questions are still unclear:
Q1: Whether these control tokens have the desired
effects on their associated attributes, length and
lexical complexity? Q2: What is the correlation
between LC and readability? To answer Q1, we
generate examples by running greedy decoding on
our model (row 11 of Table 3) with different con-
trol tokens. From Figure 4 (a) and (b), we see that:
(1) the average LC and Len of outputs increase
linearly with the gold LC and Len labels; (2) the
MSE values between Len and gold Len labels are
negligible, while the MSE values between LC and
gold LC labels are relatively large, especially when
LC > 30 indicating that the control ability of the
model on LC decreases, possibly due to the limited
training data (see Figure 2 (e)). Therefore, we can
conclude that Len and LC control tokens do affect
their associated attributes.

To answer Q2, we compute the Pearson cor-
relation coefficients (PCC) between LC and two

widely used readability metrics, FKGL and FRES.
Since LC is based on the word frequency, we com-
pute the PCC between LC and the proportion of
high-frequency words with a word rank lower than
2K (HF (2K)). FKGL and FRES are related to
the average number of syllables of outputs (Ave-
Syl), so we also compute PCC between LC and
AveSyl. As shown in Figure 4 (c), LC values of
outputs are strongly positively correlated with the
gold/expected LC labels, which again verifies our
model’s control ability over LC. We also notice that
PCC between LC and HF is -0.99, proving that LC
can control the other readability-related metrics of
outputs by controlling HF. We show more results
of control tokens in Appendix H.
Effect of the Number of Senses. As shown in
the first part of Table 6, with the increase of the
number of definitions, it becomes more and more
challenging to generate examples satisfying the def-
inition(s), thus causing a decrease in DefA.
Effect of POS Tags. As shown in the second part
of Table 6, our model performs worst on the ad-
verb case, especially in POSA and DefA. We found
that our model may ignore the adverb POS tag and
use the adjective POS tag (see the targeted word
‘worse’ in Table 15). We presume that there are two
possible reasons: (1) in the training set, the adverb
training data is far less than the adjective data (see
Figure 2 (c)), so the adverb embedding may not
be well learned and updated; (2) for some adverb,
such as ‘worse’, the adjective definition is much
more common, so the pre-trained model, BART,
may bias towards the adjective meaning.

Overall speaking, as shown in Table 7, our model
can generate high-quality examples for different
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Words POS Definitions Generated examples

banks Noun the land alongside or sloping down to a river or
lake The river banks are a natural habitat for wildlife.

banked Verb heap (a substance) into a mass or mound The ground was banked with mud and the water had been pumped into a bucket.

star Noun an outstandingly successful person or thing in a
group The star of the show is a young man who has been in the spotlight for years.

star Noun a fixed luminous point in the night sky . . . The star is a bright, luminous object that shines brightly in the night sky.

satisfy Verb meet the expectations, needs, or desires of (some-
one) The company has been trying to satisfy customers with its new products.

satisfy Verb fulfil (a desire or need) The only way to satisfy this desire is by making a new one.
sentences Noun a set of words that is complete in itself . . . The first two sentences are the same, but they have different meanings.
sentence

Verb declare the punishment
decided for (an offender)

The court will sentence him to life in prison.
sentenced The offender was sentenced to a total of six months in prison.
sentencing The judge was sentencing the offender to a maximum of five years in prison.
sentences The court sentences him to life in prison without parole.

Table 7: Examples generated with different words, POS tags and definitions from the test set. All examples are
generated by running greedy decoding on the model trained with the targeted word, POS tag, and definition.

Word: banks
POS: Noun Definition: the land alongside or sloping down to a river or lake

Human Massive housing projects are springing up on the banks of lakes.
Len5 The banks of the river.
Len10 The river banks are a haven for the fish.
Len20 The river banks are a natural habitat for wildlife, and the water is not too polluted or salty.
Len14+LC10 The river banks are the only way to get water from this area.
Len14+LC20 The river banks are a natural habitat for the birds and their larvae.
Len14+LC30 The river banks are the most productive of all the estuaries.

Table 8: The impact of control tokens on generated examples. All examples are generated by the model (row 11
of Table 3) with different control tokens. Text in bold and italics denotes low-frequency words with the word rank
higher than 5K.

Models Fluency Definition POS
asyn-B/F 4.08 2.19 77.3%

GBS 4.43 2.27 84.0%
Our model 4.83 2.59 90.7%
Our model LC10 LC20 LC30

Readability 1.08 1.44 1.68

Table 9: Human evaluation results on the test set for
fluency, definition and POS scores, and readability of
our model with different LC control tokens are shown
at the top and bottom. The differences between models’
scores and baselines’ are statistically significant due to
the paired t-test comparisons (p-value<0.05).

words and the same word with different definitions,
such as ‘star’ and ‘satisfy’. Moreover, our model
can generate plausible examples for different in-
flected forms of words, such as ‘sentence’. Table
8 shows that we can control the length and lexical
complexity of examples generated with our model
by varying the control labels.

To summarize, our model not only can generate
meaningful examples for existing words, but also
has a strong control ability over the length and
lexical complexity of outputs.

Please refer to Appendix E, F and G for the effect
of word frequencies, unseen words and the size of
training data. Please refer to Appendix I for more
detailed sample analysis.

4.5 Human Evaluation
We conduct a human evaluation to further compare
our model with asyn-B/F and GBS (rows 8, 9 and
11 of Table 3). For each model, we randomly select
50 generated examples and invite three annotators 7

to label the sentences. Annotators first rate the sen-
tence fluency on a 5-point Likert scale from 1 (not
fluent) to 5 (extremely fluent). Then, annotators
assess whether the meaning of the targeted word
in the output is the same as the given definition
on a 3-point Likert scale, from 1 (totally differ-
ent) to 3 (exactly the same). Finally, annotators
judge whether the POS of the targeted word in the
output is consistent with the given POS. We show
the detailed annotation method in Appendix D. As
shown in Table 9, our proposed model outperforms
baselines in human evaluation on all metrics.

PCCs between two automatic evaluation metrics
(DefA, POSA) and related human evaluation scores
are 73.5% and 90.3% (p-value<0.05), indicating
positive and strong correlations.

We also conduct a human evaluation to assess
our model’s control ability over readability. We
first randomly select 50 groups of examples gen-
erated by our model with different LC (10, 20,

7All annotators are Ph.D. students and are independent of
our research group.
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30) + LC14. Then, we ask annotators to rank the
sentences on readability in each group. The most
difficult sentence receives a score of 3, the others
receive scores of 2, 1. Annotators can give the
same rank to different examples if they have no
preference. As shown at the bottom of Table 9,
the difficulty of the generated sentences increases
with LC, verifying that our model can control the
readability of outputs via LC control tokens. Inter-
rater agreement measured by Fleiss’ kappa (Fleiss,
1971) is 0.51, 0.73, 0.90 and 0.60 for fluency, def-
inition, POS and readability, indicating moderate,
substantial, almost perfect and moderate inter-rater
agreement, according to Landis and Koch (1977).

5 Related Work

Word Sense Disambiguation. Word Sense Dis-
ambiguation (WSD) (Navigli, 2009) is a fundamen-
tal task and long-standing challenge in NLP, which
aims to associate an ambiguous word in context
with the exact sense from a finite set of possible
choices. Previous work formulates the task as a to-
ken classification problem (Raganato et al., 2017)
or sentence-pair (context and gloss pair) classifica-
tion problem (Huang et al., 2019). WiC (Pilehvar
and Camacho-Collados, 2019) is framed as a bi-
nary classification problem, which aims to identify
if the occurrences of the targeted word in the first
context and second context correspond to the same
meaning or not. Our proposed work is related to
word disambiguation, yet it is a generation task,
which is more challenging.
Controllable Text Generation. Controllable text
generation aims to generate text in a controlled way,
which has attracted wide attention. One line of re-
search injects pre-specified keywords into outputs
by controlling the decoding process (Mou et al.,
2015; Hokamp and Liu, 2017; Post and Vilar, 2018)
or refining candidate outputs iteratively (Miao et al.,
2019; Sha, 2020; He and Li, 2021; He, 2021). An-
other kind of work uses control tokens to manip-
ulate text attributes, such as the length (Kikuchi
et al., 2016; Fan et al., 2018), topic (Ficler and
Goldberg, 2017; Keskar et al., 2019), and grade
level for text simplification (Scarton and Specia,
2018; Nishihara et al., 2019).

In this paper, we first introduce the dictionary
example generation task, which also requires the
targeted word to appear in outputs. To this end, we
use a target-word-aware model to generate exam-
ples for given words. Different from the former

line of work, our proposed model does not inter-
fere with the decoding process, thus reducing the
inference time and improving the generation qual-
ity. Moreover, we expect to tailor-made outputs for
different audiences. Inspired by the latter kind of
work, our model takes readability-related control
tokens to generate suitable example sentences with
the desired readability.
Dictionary Example Generation. Two recent
works are related to dictionary example genera-
tion. One work is GPT-3 (Brown et al., 2020),
a large-scale autoregressive language model. To
qualitatively test GPT-3’s ability for the few-shot
task of using a new/nonexistent word in a sentence,
Brown et al. (2020) gave GPT-3 the definition of a
nonexistent word, such as “screeg”, and then asked
GPT-3 to use it in a sentence. However, they did
not formally define this task.

Similar to our work, another concurrent work
(Barba et al., 2021) also gives a formal statement
of the dictionary example generation task. How-
ever, they did not evaluate the quality of generated
examples directly. In their work, they aimed to im-
prove WSD models by augmenting WDS datasets
with the generated examples. Compared with their
work, we directly evaluate whether the targeted
work in the generated example reflects the given
sense and POS tag with the proposed BERT-based
classifiers. Our work also explores how to generate
suitable examples for different targeted audiences.

6 Conclusions

In this paper, we first introduce the dictionary ex-
ample sentence generation problem, and propose a
controllable target-word-aware model and several
strong baselines for it. We propose two BERT-
based classifiers to evaluate the definition and POS
accuracy of generated examples. Our experiment
results on the Oxford dictionary dataset show that
our model outperforms baselines in most metrics
and can generate appropriate examples meeting
different audiences’ understanding levels.
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Models Labels Training Validation

POS Negative 3,337,293 417,733
Positive 1,138,316 141,626

Definition Negative 4,219,163 532,272
Positive 1,138,316 141,626

Table 10: Statistics of the synthetic training and valida-
tion sets for BERT-based POS and definition models.

Models Labels P R F1

POS
Negative 0.994 0.991 0.993
Positive 0.974 0.983 0.978

Macro-average 0.984 0.987 0.985

Definition
Negative 0.968 0.944 0.956
Positive 0.806 0.882 0.843

Macro-average 0.887 0.913 0.899

Table 11: Results of the BERT-based POS and defini-
tion models on the synthetic validation set. “P” and “R”
denote precision and recall.

A BERT-based Definition Evaluation
Classifier

The definition classifier takes a triple of word, def-
inition and example (w∗, D,E) as input, which
aims to assess whether the targeted word w∗ in
the example E conveys the given meaning D. To
train the definition model, we should create the syn-
thetic data {(w∗, D,E,L)}. If w∗ in E conveys
D, the label L is 1, denoting the data instance is
positive. Otherwise, the label L is 0, denoting the
data instance is negative.

We can directly select the positive data instance
(w∗, D,E) from the Oxford training or validation
set. For each positive data instance, we first create
one negative data instance by replacing the targeted
word w∗ with another word in the example E with
a 50% probability or another word in the vocab-
ulary with a 50% probability. Next, we create at
most two negative instances by replacing the defini-
tion D with any two definitions of the word. Then,
we construct a negative instance by replacing the
definition D with any definition of other words. Fi-
nally, we create a negative instance by replacing
the example E with another sentence with a 50%
probability, which does not contain the targeted
word w∗. For ease of understanding, we show sev-
eral synthetic data instances for the BERT-based
definition model in Table 12. We show the statistics
of the synthetic data in Table 10.

We fine-tune the BERT-base-cased model on the
synthetic training set for two epochs with the initial
learning rate of 1e−5 and select the best checkpoint
on the validation set. We show the performance of

the definition model on the synthetic validation set
in Table 11.

B BERT-based POS Evaluation
Classifier

The POS model takes a triple of word, POS tag,
and example (w∗, P, E) as input, which aims to
assess whether the targeted word w∗ in the exam-
ple E conveys the given POS tag P . To train the
POS model, we should create the synthetic data
{(w∗, P, E, L)}. If w∗ in E conveys P , the label
L is 1, denoting the data instance is positive. Oth-
erwise, the label L is 0, denoting the data instance
is negative.

We can directly select the positive data instance
(w∗, P, E) from the Oxford training or validation
set. For each positive data instance, we first create
several negative data instances by replacing the
POS tag P with all other POS tags of the targeted
word. Then, we construct at most two negative
instances by replacing the POS tag P with any
two POS tags not belonging to the targeted word.
Finally, we create a negative instance by replacing
the example E with another sentence with a 50%
probability, which does not contain the targeted
word w∗. We show the statistics of the synthetic
data in Table 10.

We resort to the same training strategy with the
definition model and show the performance of the
POS model on the synthetic validation set in Table
11.

C Data Distributions of Validation and
Test Sets

Figure 5/6 (a) and (b) show the unique lemma distri-
bution over the number of senses, and the number
of POS tags in the validation/test set, respectively.
Similar to the training set, the validation and test
sets have ten POS tags (noun, adjective, verb, ad-
verb, preposition, interjection, numeral, pronoun,
determiner, conjunction). Figure 5/6 (c) shows the
distinct definition distribution over POS tags in the
validation/test set.

D Details on Human Evaluation

For human evaluation, we first show graders the
inputs used to generate example sentences, con-
sisting of the targeted word, POS tag, and specific
definition. Next, we show them a group of sen-
tences generated by asyn-B/F, GBS and our pro-
posed model. To avoid bias, sentences in each
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Word Definition Example Label

bank The land alongside or sloping down to a river or lake. Willows lined the bank of the stream. 1

stream The land alongside or sloping down to a river or lake. Willows lined the bank of the stream. 0

bank Heap (a substance) into a mass or mound. Willows lined the bank of the stream. 0

bank The land alongside or sloping down to a river or lake. I’m happy with his performance. 0

Table 12: Synthetic data instances for the BERT-based definition model.
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Figure 5: Subfigures (a) and (b) show the unique
lemma distribution over #Senses, and #POS tags in the
validation set, respectively. Subfigure (c) shows the dis-
tinct definition distribution over POS tags in the valida-
tion set.

1 2 3 [4, 72]

Pr
op

or
tio

n

0

33.2%
18.6%

48.2%

(a) #Sense

1 2 [3, 6]

56.3%
42.8%

0.9%

(b) #POS tags

Noun Adjective Verb Adverb Others

53.0%

19.1% 23.3%

3.2% 1.4%

(c) POS tags

Figure 6: Subfigures (a) and (b) show the unique
lemma distribution over #Senses, and #POS tags in the
test set, respectively. Subfigure (c) shows the distinct
definition distribution over POS tags in the test set.

group are shuffled before annotation. Then, anno-
tators should compare these sentences and score
them on three criteria: sentence fluency, POS and
definition accuracy.

D.1 Fluency

To evaluate the sentence fluency, graders should
answer the first question:
Q1: How fluent do you think the sentence is?

Specifically, graders are asked to score the sen-
tence fluency on a 5-point Likert scale from 1 to 5,
based on the following rules:
1: the sentence cannot be understood and all seg-
ments are not fluent;
2: the sentence cannot be understood, but some
segments are fluent;
3: the sentence can be understood to some extent,
but with many grammatical errors;
4: the sentence can be understood with several
grammatical errors;
5: the sentence is extremely fluent without any

grammatical errors.

D.2 Definition Accuracy

To assess the definition accuracy, graders need to
answer the second question:
Q2: How consistent do you think the meaning of
the targeted word in the generated sentence is with
respect to the given definition?

To finish this task, we ask graders to refer to all
definitions and examples of the targeted word on
Oxford Dictionary. Concretely, graders are asked
to score the definition accuracy on a 3-point Likert
scale from 1 to 3, based on the following rules:
1: the meaning reflected by the targeted word in
the generated sentence is totally different from the
given definition;
2: the meaning reflected by the targeted word in
the generated sentence is similar or relevant to the
given definition;
3: the meaning reflected by the targeted word in
the generated sentence is exactly the same as the
given definition.

Suppose that the targeted word, POS tag, given
definition are ‘bank’, verb, ‘Heap up (a fire) with
tightly packed fuel so that it burns slowly.’ We will
ask graders to label the following four examples as
1, 1, 2 and 3.
(1) ‘a grassy bank’
In this example, the POS tag of ‘bank’ is a noun
different from the given POS tag, so graders need
to label this example as 1.
(2) ‘I banked the aircraft steeply and turned.’
In this example, the POS tag of ‘bank’ is a verb,
yet it conveys an entirely different meaning ‘(with
reference to an aircraft or vehicle) tilt or cause to
tilt sideways in making a turn.’ Therefore, we ask
graders to label this sentence as 1.
(3) ‘Purple clouds banked up over the hills.’
Graders need to label this as 2, since ‘bank’ con-
veys a relevant meaning (‘Form into a mass or
mound.’) to the given definition.
(4) ‘She banked up the fire.’
Graders are asked to label this as 3, since ‘bank’
exactly reflects the given definition.
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# Variants Coverage↑ POSA↑ DefA↑ B-4↑ D-4↑
1 BART-base 99.6% 97.2% 87.7% 7.6% 86.4%
2 – Word 14.5% 17.3% 16.1% 3.6% 85.9%
3 – POS 99.6% 96.6% 87.6% 7.5% 86.6%
4 – Definition 99.4% 97.4% 35.8% 4.3% 73.2%
5 – Len 99.6% 97.4% 87.4% 7.2% 83.5%
6 – LC 99.7% 97.2% 88.1% 7.7% 84.2%

Table 13: Results of ablation study on the test set.

Cases Coverage↑ POSA↑ DefA↑ B-4↑ #POS #Senses
[1, 1K] 99.5% 94.3% 74.3% 7.8% 2.2 19.8
(1K, 2K] 99.3% 97.1% 83.5% 8.9% 1.9 13.9
(2K, 5K] 99.1% 97.6% 83.5% 8.8% 1.7 10.7
(5K,
10K]

99.6% 97.5% 85.7% 9.1% 1.6 8.0

>10K 99.7% 97.7% 91.0% 7.0% 1.5 4.1
Seen 99.6% 97.1% 87.1% 7.9% 1.6 7.7

Unseen 99.7% 98.8% 92.3% 6.0% 1.5 2.9

Table 14: Results on different cases, where the test set
is separated according to word frequencies (part one)
and unseen/seen words (part two), respectively. All
examples are generated by running greedy decoding
on the model (row 11 of Table 3) with Len14+LC25.
#Sense and #POS denote the average number of defini-
tions and POS tags owned by each word.

These examples and definitions are extracted
from Oxford Dictionary.

D.3 POS Accuracy

As for POS, annotators should judge whether the
POS tag of the targeted word in the generated ex-
ample is consistent with the given POS tag.

E Effect of Word Frequencies

As shown in the first part of Table 14, high-
frequency words have more definitions and POS
tags, and in turn have lower POSA and DefA. As
for the sentence quality, high-frequency words have
more definitions, while low-frequency (rare) words
may not appear in the training set. Both factors
may hinder the model from generating satisfactory
sentences. That is why words in range (5K, 10K]
have the best generation quality (B-4).

F Effect of Unseen and Seen Words

We split the words in the test set into seen and
unseen. If a word in the test set has at least one
definition in the training set, it will be regarded as a
seen word. Otherwise, it will be treated as unseen.
The bottom of Table 14 shows that seen words
have more #Def than unseen words, since most
seen words are high-frequency words, resulting in
a lower DefA.
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Figure 7: Results of our proposed model variants (row
11 of Table 3) trained with different size of training
data.

G Effect of the Size of Training Data

From Figure 7, we see that the size of training data
matters, as there is a clear performance gain in
sentence quality (B-4), diversity (D-4), definition
accuracy and POS accuracy when the data size
increases. In addition, the control ability of our
model over Len and LC also improves with the
increase of the data size.

H Effect of Control Tokens

To further evaluate the effect of control tokens, we
generate examples by running greedy decoding
on the model (row 11 of Table 3) with different
control tokens and show the results on the test
set in Figure 8. We witness that the proportion
of high-frequency (HF 2K) words significantly
reduces from around 90% to 30% with the increase
of LC, which again verifies that LC affects
the readability of generated examples (see row
4, col 1-3 of Figure 8). However, there is an
opposite trend for NLL, in line with the conclusion
given by Holtzman et al. (2020) that generic
(high-frequency) text tends to have low NLL. As
for the generation diversity, the model achieves
the highest D-4 when LC is around 25, where
the model can balance the high-frequency and
low-frequency words.

I Further Sample Analysis

We show some example sentences generated by
different models in Table 15. Compared with base-
lines, our models can generate fluent example sen-
tences, and the targeted words in the generated
sentences can reflect the given meanings in most
cases. For example, for the first case (‘happy’),
both sep-B/F and asyn-B/F fail to generate mean-
ingful sentences. Although GBS can generate a
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fluent sentence, the meaning reflected by the tar-
geted word is not the same as the given definition.
As for the fourth case (‘plain’), all baselines ig-
nore the given definition and use the more general
definition (‘Not decorated or elaborate; simple or
basic in character.’) and adjective POS tag to gen-
erate examples. By comparison, all our models can
generate satisfying example sentences.

However, for the last case (‘worse’), our mod-
els seem to ignore the adverb POS tag and use the
adjective POS tag. We presume that there are two
possible reasons: (1) in the training set, the adverb
training data is far less than the adjective data, so
the adverb embedding may not be well learned and
updated; (2) for the given word, ‘worse’, the adjec-
tive definition is much more common, so the pre-
trained model, BART, may have a bias towards the
adjective meaning. Therefore, it is still challeng-
ing to generate example sentences for polysemous
words with uncommon definitions and POS tags.

To demonstrate the impact of Len and LC con-
trol tokens on generated examples, we show some
examples generated by running greedy decoding
on our proposed model (row 11 of Table 3) with
different control labels in Table 16.
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(b) Len+LC20
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(c) Len+LC25
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(e) Len+LC20
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(g) LC
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(h) Len10+LC
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(i) Len14+LC
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Figure 8: The impact of control tokens on generated examples. The first and third rows demonstrate the statistics
of the corresponding attributes of the generated examples on the test set, including average, standard deviation
(std), and mean squared error (MSE) values. The second and fourth rows illustrate the results on NLL, B-2, D-4
and HF (2K) of the test set. All examples are generated by running greedy decoding on the model (row 11 of Table
3) with Len (rows 1-2, col 1), Len+LC20, (rows 1-2, col 2), Len+LC25, (rows 1-2, col 3), LC (rows 3-4, col 1),
Len10+LC, (rows 3-4, col 2), and Len14+LC, (rows 3-4, col 3) control tokens. Len means sentences are generated
using different Len without using LC. Len+LC20 denotes sentences are generated using different Len and a fixed
LC of 20. The meaning of other abbreviations can be inferred from these two abbreviations.
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Word POS Definition

happy Adjective satisfied with the quality or standard of
Human reference Are you happy with the role of these representative groups in the diversity programme?
Lexically Constrained Models w/ Definitions

sep-B/F A quality happy hour. It was well worth the wait, and we were very pleased with ourselves for
our efforts.

asyn-B/F A quality happy hour. The food was good and the service excellent, but it wasn’t cheap either.
GBS The quality of the food is not very good, but it’s happy to eat what you like.
Our Models+Word+POS+Len14+LC25

BART-base (greedy) I’m not happy with the way they’ve been treated by me.
BART-large (greedy) I’m not happy with the quality of my own e-mail.
BART-large (beam 5) I wasn’t happy with the quality of the food and the service.
BART-large (top-k 50) I am happy with the quality of the product and its ergonomics.

happy Adjective willing to do something
Human reference United Future is always pleased and happy to support sensible legislation.
Lexically Constrained Models w/ Definitions
sep-B/F That’s not to say that he is one of the happy ones, but I think it would be better for him.
asyn-B/F That’s not to say that he is one of the happy people I’ve ever met.
GBS I am happy to say that the Government has decided not to do anything about it.
Our Models+Word+POS+Len14+LC25

BART-base (greedy) I’m happy to be a part of the new millennium’s celebrations.
BART-large (greedy) I’m happy to do that, but don’t be so harsh.
BART-large (beam 5) I’m happy to do that, but I don’t like it.
BART-large (top-k 50) I’m happy to do that as long as it doesn’t hurt.

sample Verb try the qualities of (food or drink) by tasting it

Human reference There will be cookery demonstrations, videos, information and, of course, a chance to sample
some of the delicious food that will be on display.

Lexically Constrained Models w/ Definitions
sep-B/F You will be able to taste and sample a variety of wines from the region.
asyn-B/F You will be able to taste and sample a range of wines, beers and spirits from around the world.
GBS The sample was tastefully tanned and tasted very well.
Our Models+Word+POS+Len14+LC25

BART-base (greedy) We sample the wines and savoury snacks of our local restaurants.
BART-large (greedy) The judges sample the wines and then invited their guests to sample them.
BART-large (beam 5) Guests will be able to sample a variety of cheeses and wines.
BART-large (top-k 50) We sampled the wines and appetizers and had a chance to sample.

plain Adverb used for emphasis
Human reference Your statement on Nicaragua shows how utterly naive and just plain stupid you are.
Lexically Constrained Models w/ Definitions
sep-B/F This is in stark contrast to the plain fact that it’s not just a matter of whether or not you want them.
asyn-B/F This is in stark contrast to the plain fact that most of us have no idea what we are talking about.
GBS I’m not sure if it’s a good thing or bad, but there is something plain and simple about this.
Our Models+Word+POS+Len14+LC25

BART-base (greedy) The whole thing is just plain uninteresting, and it’s frustrating.
BART-large (greedy) I’m just plain tired of the constant barrage of e-mails.
BART-large (beam 5) It’s just plain tacky, and I don’t like it.
BART-large (top-k 50) It was just plain rude, and I didn’t mean to offend.

worse Adverb more seriously or severely
Human reference At this point, Kohaku’s stomach had already began hurting far worse than Muteki’s.
Lexically Constrained Models w/ Definitions
sep-B/F He said he was seriously worse off than before and had to be taken out of hospital for treatment.

asyn-B/F He said he was seriously worse affected by the accident and had been taken to hospital for
treatment.

GBS He was seriously injured in a car accident on the way home from work and worse still had to be
taken by ambulance.

Our Models+Word+POS+Len14+LC25

BART-base (greedy) The situation has gotten worse since the end of the Cold War.
BART-large (greedy) The situation is getting worse, and the people are being scapegoated.
BART-large (beam 5) He was in a wheelchair and his condition was getting worse and worse.
BART-large (top-k 50) He was seriously ill, but his condition didn’t get worse overnight.

Table 15: Example sentences generated by different models with definition triplets (word, POS, definition) ex-
tracted from the test set. ‘top-k 50’ refers to running top-k decoding with k=50 on our model.
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Word: banks
POS: Noun Definition: the land alongside or sloping down to a river or lake

Human
reference Massive housing projects are springing up on the banks of lakes.

Len5 The banks of the river.
Len10 The river banks are a haven for the fish.
Len15 The river banks are a natural habitat for the birds and their migratory.
Len20 The river banks are a natural habitat for wildlife, and the water is not too polluted or salty.

Len25
The river banks are a natural habitat for wildlife, and the water is not too salty to be used as an aquatic
environment.

Len30
The river banks are a natural habitat for wildlife, and the water is not too salty to be used as an aquatic
feeder or even a fertilizer.

Len5+LC25 The banks of the Thames.
Len10+LC25 The banks of the River Thames are also flooded.
Len15+LC25 The river banks are a haven for the wildlife and its inhabitants, too.
Len20+LC25 The river banks are a haven for the wildlife, and they’re also an important habitat for birds.
Len25+LC25 The river banks are a haven for the wild, and there is no need to worry about the dangers of overfishing.

Len30+LC25
The river banks are a haven for the wild, and there is no need to worry about the waterlogged trees that
litter the shoreline.

Len14+LC10 The river banks are the only way to get water from this area.
Len14+LC20 The river banks are a natural habitat for the birds and their larvae.
Len14+LC30 The river banks are the most productive of all the estuaries.

Word: banked
POS: Verb Definition: deposit (money or valuables) in a bank

Human
reference Obviously, we banked the money because we didn’t know whether or not it was a donation.

Len5 A banked account.
Len10 The money was banked in a Swiss franc.
Len15 The money was banked in a trust account and the company’s shares.
Len20 The money was banked in a trust account and the company’s accounts were transferred to its subsidiary.

Len25
The money was banked in a trust account, which is now being used to pay for the purchase of new homes
and apartments.

Len30
The banked money was deposited in a safe deposit box, which is where the cash will be stored for up to
three months before it goes into circulation.

Len5+LC25 A banked loan.
Len10+LC25 The money was banked in a Swiss franc.
Len15+LC25 The money was banked in a trust account at the Bank of England.
Len20+LC25 The money was banked in a trust account and the company’s assets were transferred to its subsidiaries.

Len25+LC25
The money was banked in a trust account, which is now owned by the Bank of England and administered
through its subsidiaries.

Len30+LC25
The money was banked in a trust account, which is now owned by the Bank of England and has been
deposited into an escrow fund.

Len14+LC10 The money was banked in the first place and sent to us.
Len14+LC20 The money was banked in a trust account and sent to China.
Len14+LC30 The money was banked in the Bank of England’s Money Reserve.

Table 16: The impact of control tokens on generated examples. All examples are generated by running greedy
decoding on our proposed model (row 11 of Table 3) with different control tokens. Text in bold and italics denotes
low-frequency words with the word rank higher than 5,000.
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