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Abstract
Paraphrase generation has been widely used in
various downstream tasks. Most tasks benefit
mainly from high quality paraphrases, namely
those that are semantically similar to, yet lin-
guistically diverse from, the original sentence.
Generating high-quality paraphrases is chal-
lenging as it becomes increasingly hard to pre-
serve meaning as linguistic diversity increases.
Recent works achieve nice results by control-
ling specific aspects of the paraphrase, such
as its syntactic tree. However, they do not al-
low to directly control the quality of the gener-
ated paraphrase, and suffer from low flexibil-
ity and scalability. Here we propose QCPG,
a quality-guided controlled paraphrase gener-
ation model, that allows directly controlling
the quality dimensions. Furthermore, we sug-
gest a method that given a sentence, identi-
fies points in the quality control space that
are expected to yield optimal generated para-
phrases. We show that our method is able
to generate paraphrases which maintain the
original meaning while achieving higher di-
versity than the uncontrolled baseline. The
models, the code, and the data can be found
in https://github.com/IBM/quality-c

ontrolled-paraphrase-generation.

1 Introduction

Paraphrase generation, namely rewriting a sentence
using different words and/or syntax while preserv-
ing its meaning (Bhagat and Hovy, 2013), is an
important technique in natural language processing,
that has been widely used in various downstream
tasks including question answering (Fader et al.,
2014a; McCann et al., 2018), summarization (Rush
et al., 2015), data augmentation (Yu et al., 2018)
and adversarial learning (Iyyer et al., 2018). How-
ever, not all paraphrases are equally useful. For
most real-world applications, paraphrases which
are too similar to the original sentence are of lim-
ited value, while those with high linguistic diversity,
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Figure 1: Density of paraphrases in WikiAnswers as
a function of the semantic similarity and the linguistic
diversity. The marked area, which contains high quality
paraphrases, is very sparse (The measures used in the
figure are described in Section 2.1) .

i.e. with large syntactic/lexical differences between
the paraphrase and the original sentence, are more
beneficial to the robustness and accuracy of auto-
matic text evaluation and classification, and can
avoid the blandness caused by repetitive patterns
(Qian et al., 2019). The quality of paraphrases is
often evaluated using three dimensions, where high
quality paraphrases are those with high semantic
similarity as well as high lexical and/or syntactic
diversity (McCarthy et al., 2009).

Generating high quality paraphrases can be chal-
lenging (for both humans and automatic models)
since it is increasingly difficult to preserve meaning
with increasing linguistic diversity. Indeed, when
examining the quality of paraphrases among para-
phrase generation datasets, one can find a wide
range of paraphrase qualities, where the area of
high quality is often very sparse (see Figure 1).
This in turn results in scarcity of supervised data
for high-quality paraphrase generation.
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A recent approach aiming to produce high qual-
ity paraphrases is controlled paraphrase generation,
which exposes control mechanisms that can be ma-
nipulated to produce diversity. While the controlled
generation approaches have yielded impressive re-
sults, they require providing the model with very
specific information regarding the target sentence,
such as its parse tree (Iyyer et al., 2018) or the list
of keywords it needs to contain (Zeng et al., 2019).
However, for most downstream applications, the
important property of the paraphrase is its overall
quality, rather than its specific syntactic or lexi-
cal form. The over-specificity of existing control-
based methods not only complicates their usage
and limits their scalability, but also hinders their
coverage. Thus, it would be desirable to develop
a paraphrase generation model, which uses a sim-
ple mechanism for directly controlling paraphrase
quality, while avoiding unnecessary complications
associated with fine-grained controls.

In this paper we propose QCPG, a Quality Con-
trolled Paraphrase Generation model, that given
an input sentence and quality constraints, repre-
sented by a three dimensional vector of semantic
similarity, and syntactic and lexical distances, pro-
duces a target sentence that conforms to the quality
constraints.

Our constraints are much simpler than previously
suggested ones, such as parse trees or keyword lists,
and leave the model the freedom to choose how to
attain the desired quality levels.

Enabling the direct control of the three quality
dimensions, allows flexibility with respect to the
specific requirements of the task at hand, and opens
a range of generation possibilities: paraphrases of
various flavors (e.g. syntactically vs. lexically di-
verse), quasi-paraphrases (with lower semantic sim-
ilarity), and even non-paraphrases which may be
useful for downstream tasks (e.g. hard negative
examples of sentences that are linguistically simi-
lar but have different meanings (Guo et al., 2018;
Reimers and Gurevych, 2020)).

Our results show that the QCPG model indeed
enables controlling paraphrase quality along the
three quality dimensions.

Furthermore, even though the training data is
of mixed quality, and exhibits scarcity in the high
quality area (see Figure 1), our model is able to
learn high quality paraphrasing behavior, i.e. it
increases the linguistic diversity of the generated
paraphrases without decreasing the semantic simi-

larity compared to the uncontrolled baseline.

2 Method

In this section we provide a general description
of our approach. We first explain how the differ-
ent quality dimensions are measured. We then de-
scribe the controlled paraphrase generation model,
QCPG, and finally we suggest a method that given
the task requirements, detects the input control val-
ues which maximize the quality of the generated
paraphrases. Figure 2 summarizes our proposed so-
lution for generating controlled paraphrases, which
is detailed in the rest of the section.

2.1 Quantifying Paraphrase Quality

The most common dimensions for measuring
paraphrase quality are the semantic, syntactic
and lexical dimensions. Several previous works
used also a fluency evaluation metric (Siddique
et al., 2020). However, since our focus is on
the supervised setting, we rely on the gold para-
phrases as fluency guidance for the model (Mc-
Carthy et al., 2009). Thus, given a sentence s
and a paraphrase s′, we define the paraphrase
quality as a three dimensional vector q(s, s′) =
(qsem(s, s′), qsyn(s, s

′), qlex(s, s
′)), where qsem is

a measure of semantic similarity, and qsyn and qlex
are measures of syntactic and lexical variation, re-
spectively. For the syntactic score, inspired by
Iyyer et al. (2018) we choose qsyn(s, s

′) to be the
normalized tree edit distance (Zhang and Shasha,
1989) between the third level constituency parse-
trees of s and s′, after removing the tokens - to
increase the decoupling from the lexical distance
metric. We define the lexical score qlex(s, s

′) to
be the normalized character-level minimal edit dis-
tance between the bag of words. This measure is
independent of word order, and hence increases the
decoupling from syntactic measures. Additionally,
calculating the token distances on the character
level enables to capture tokens that share the same
stem/lemma. Character-level distance is also more
robust to typos that may be found in noisy data.
As for the semantic score, several strong metrics
have been recently proposed for measuring seman-
tic similarity between sentences. In order to se-
lect qsem(s, s′), we studied the agreement between
the candidate metrics and human judgments, using
only development data, and found Bleurt (Sellam
et al., 2020) to have the highest correlation with hu-
man judgments (see Appendix A). Thus, we define
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Figure 2: Solution Architecture. The input to the paraphrase generation model, QCPG, is composed of two elements:
a sentence s, and a three-dimensional quality vector c = (csem, csyn, clex), which controls the quality of the
generated paraphrase. Selecting appropriate values of c is crucial for obtaining high-quality paraphrases. The
quality predictor model, QP, helps select suitable input quality vectors, by predicting the typical quality, r(s), of the
paraphrases of s. The control vector c is the sum of r(s), and an offset vector o, which indicates the extent to which
the requested quality deviates from the typical value. Dev-set results can help the user in selecting suitable values of
o, as shown in Figure 5

qsem(s, s′) to be the Bleurt score, normalized using
the sigmoid function to ensure a uniform range of
values, [0, 1], for all three quality dimensions. For
ease of presentation all metrics are presented on a
0− 100 scale.

2.2 The QCPG Model
The main component of our solution is a quality
controlled paraphrase generation model (QCPG),
which is an encoder-decoder model trained on the
task of controlled paraphrase generation. Given
an input sentence s and a control vector c =
(csem, csyn, clex), the goal of QCPG is to generate
an output paraphrase QCPG(s, c) that conforms
to c. We train QCPG using the training set pairs
(s, t), by setting c to be q(s, t), and maximizing
P (t|s, c = q(s, t)) over the training set via the
autoregressive cross entropy loss.

2.3 Control Values Selection
A major challenge in the research of controlled
paraphrase generation, is selecting appropriate in-
put control values that can be achieved by the
model (Goyal and Durrett, 2020). Clearly, given a
sentence, not all paraphrase qualities are achievable.
Some sentences are more amenable to paraphrasing
than others. For example, named entities and num-
bers are much harder to be replaced while keeping
sentence meaning, and hence, the potential lexical
diversity of paraphrases involving such terms is
relatively limited. Forcing QCPG to conform to
quality control values that are too high with respect
to the input sentence, may lead to suboptimal qual-
ity of the resultant paraphrases. Thus, for a more

effective use of QCPG, the control values should
be determined with respect to the input sentence.

Below we describe the second part of our so-
lution, namely a method that given a sentence,
predicts the input control values, c(s), that opti-
mize the expected quality of the paraphrases gen-
erated by QCPG. For simplicity we assume that
the quality distribution p(q|s) of all paraphrases
of sentence s, is approximately normally dis-
tributed around a sentence dependent mean q0(s),
and that the variance is approximately sentence-
independent. We further assume that given an input
sentence s, the difficulty to generate a paraphrase
of a given quality, q, is dominated by p(q|s) rather
than by the quality vector q itself.

Following our assumptions, the level of dif-
ficulty can be expressed by the offset, o =
(osem, osyn, olex) of q from q0(s). Thus, the in-
put control, c(s), for QCPG, is the sum of q0(s)
and an offset o.

Our aim is to analyze the model results for vary-
ing levels of difficulty, namely under different off-
sets, o, from q0(s).

The Quality Predictor (QP): Since q0(s) is
unknown, we introduce QP, a regressor whose
output, termed the reference of s, r(s) =
(rsem(s), rsyn(s), rlex(s)), approximates q0(s).
During training, QP aims to predict q(s, t) given
s, where (s, t) are the input-output pairs of the
training data.

To summarize, we define sentence-aware quality
control by decomposing the QCPG input control,
c, into a sum of a sentence dependent reference
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point, r(s), and a sentence independent offset, o.

3 Data and Implementation Details

3.1 Datasets

To test the ability of our model to learn high quality
behavior from mixed quality data we use weakly
annotated datasets. These datasets are large but
noisy, and contain only a relatively small amount
of high quality paraphrases.

MSCOCO: This dataset consists of 123K im-
ages, where each image contains at most five
human-labeled captions (Lin et al., 2014). Similar
to previous works we consider different captions
of the same image as paraphrases.

WikiAnswers (WikiAns for short): The
WikiAnswers corpus contains clusters of ques-
tions tagged by wiki-answers.com users as similar.
There are 30, 370, 994 clusters with 25 question in
each on average. In total, the corpus contains over
70 million question pairs (Fader et al., 2014b).

ParaBank2.0: A dataset containing clusters of
sentential paraphrases, produced from a bilingual
corpus using negative constraints, inference sam-
pling, and clustering (Hu et al., 2019). The dataset
is composed of avarage of 5 paraphrases in every
cluster and close to 100 million pairs in total.

To get comparable results across all datasets, we
randomly sub-sampled ParaBank2.0 and WikiAns
to the same size as MSCOCO, and split them to
train, dev and test sets, of sizes 900K, 14K and
14K respectively. We carefully made sure that
there are no pairs from the same cluster in differ-
ent splits of the data. The full data splits will be
published with our code.

3.2 Implementation Details

All models are trained with batch size of 32 on 2
NVIDIA A100 GPUs for 6 epochs. Full details
as well as train and dev results can be found in
Appendix C.1.

QCPG: We use the pre-trained T5-base (Raffel
et al., 2020) as the encoder-decoder model. The
control input vector to QCPG is quantized at every
dimension into 20 equally spaced values ranging
from 0 to 100. Each value is assigned to a special
saved-token. The three tokens corresponding to
the quantized values of the control vector c, are
concatenated to the head of the input sentence, and
together used as input to the model. r(s) and o are
also quantized in a similar way.

QP: An Electra base model (Clark et al., 2020)
finetuned with MSE loss to predict the typical qual-
ity values (see Section 2.3).

Baseline Model (BL): A T5-base model fine-
tuned on the training data.

For all the models, we adopt the experimental
setup used in (Devlin et al., 2019), i.e. we train the
model with several learning rates and choose the
one that achieves the highest dev set performance
(see appendix C.1).

4 Results

4.1 Controlling the Quality Dimensions

The aim of the following analysis is to study the
level of control achieved by QCPG. To this end,
we measure the model response to changes in the
input offsets. We compute the expected difference
in paraphrase quality, as a result of applying an
input offset o compared to zero offset as a refer-
ence. More formally, we define the 3-dimensional
responsiveness vector of QCPG at an offset o,
R(o) as Q(o) − Q((0, 0, 0)), where Q(o) is the
expected quality of the paraphrases generated by
QCPG at an offset o. We estimate Q(o) by aver-
aging q(QCPG(s, r(s) + o)) over the input sen-
tences s of the dev set, and denote this estimate by
Q̃(o) = (Q̃sem(o), Q̃syn(o), Q̃lex(o)), and the
corresponding estimate of R(o) by R̃(o).

Specifically, in the following analysis we are in-
terested in studying the model response to each
of the dimensions separately, i.e. how changing
the input offset along a given quality dimension
dim – the controlled dimension – while keeping
the two other dimensions constant, affects the re-
sponsiveness in each of the three dimensions. A
good control mechanism would imply that increas-
ing the input offset in one dimension will result in
a monotonically increasing responsiveness in that
dimension, with relatively small responsiveness in
the other two dimensions.

Figure 3 shows, for each of the three datasets,
the responsiveness in the three quality dimensions,
when changing the input offset along each of the
three dimensions, while fixing the input offsets in
the other two dimensions at 0. Examining the ac-
tual values of quality in the paraphrases of the dev
sets, reveals that the standard deviation is different
in each dimension. Hence, for clarity of presen-
tation, we present the input offset values and the
responsiveness in units of standard deviation as
measured in the respective dimension and dev set.
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For the range of offsets displayed in Figure 3,
the responsiveness in the controlled dimension in-
creases monotonically with the input offsets across
all datasets and dimensions. As expected, the re-
sponsiveness in the uncontrolled dimensions does
not zeros due to the inherent coupling between
the dimensions. For example, many changes that
increase syntactic diversity, also increase lexical
diversity (e.g. a move from passive to active voice).
Still, our control mechanism is able to increase the
responsiveness in the controlled dimension with
relative low responsiveness in the uncontrolled di-
mensions. Specifically, focusing on the relation
between semantic similarity and expression diver-
sity, the figure shows that there is a minor decrease
in semantic similarity in response to an increase
in lexical and syntactic diversity. In the next sec-
tion, we will show that this does not prevent our
model from generating paraphrases that are not
only more lexically and syntactically diverse, but
also more semantically similar to the source sen-
tences, compared to the paraphrases generated by
the uncontrolled baseline.

Figure 3 focused on small to moderate input off-
sets, i.e. offsets up to 2 stds from the reference
point. However, as we speculated before, with in-
creasing offsets, i.e. the more the requested control
value deviates from the typical value, it becomes
increasingly difficult to generate a paraphrase that
conforms to the requested control value. Figure 4
depicts the responsiveness in the syntactic and lexi-
cal dimensions for a larger range of offset values.
For the semantic dimension, the typical values are
too high to allow large positive offsets, which for
most sentences result in exceeding the upper limit
of the semantic score. Indeed, as can be seen in
Figure 4, when moving to high offset values, the
responsiveness in the syntactic and lexical dimen-
sions starts to decrease. This behavior is in line
with our aforementioned hypothesis, and reflects
the detrimental effect of feeding QCPG with in-
put control values that are too far from the typical
paraphrase qualities of the input sentence. The non-
monotonic behavior of the responsiveness implies
that the input offsets should be selected carefully in
order to optimize the quality of the resultant para-
phrases. In Section 4.2 we suggest a method for
identifying these optimal offsets.

4.2 Selecting Optimal Input Control Values

In this section, we suggest a method that given task
requirements, selects the input offsets that are ex-
pected to yield the desired quality of paraphrases.
The idea is to compute the estimated expected qual-
ity, Q̃(o), for each input offset o, using the dev
set as described in Section 4.1, and then search
the 3D grid of input offsets to find the point for
which Q̃(o) is best suited for the user’s require-
ments. We envision this analysis as a preliminary
step in which the user chooses the input control pa-
rameters that best achieve his desired paraphrasing
operation point, and then uses the chosen values at
inference – which is why we use the dev set.

We study the behavior of Q̃(o) as a function of
the 3D grid of offset points in the relevant range, i.e
every o where osem, osyn and olex in 0, 5, 10...50.
Figure 5 depicts Q̃(o) for WikiAns, on a slice of
the full offset grid. The results for the full grid
on all datasets are shown in Figure 6. The right-
hand-side map depicts the estimated linguistic di-
versity (the average of Q̃syn(o) and Q̃lex(o)) and
the left-hand-side depicts the semantic similarity,
Q̃sem(o)). The maps are presented for osem = 50,
and for different values of osyn and olex. As
expected, the two measures are anti-correlated,
where areas with increased semantic similarity
are characterized by decreased linguistic diversity.
The QCPG results are compared to two reference
points, which are invariant to o and are marked
on the colorbars with black squares: ’Dataset’
is the semantic-similarity/linguistic-diversity av-
erage value over the corresponding dev set para-
phrases, and ’Baseline’ is the average semantic-
similarity/linguistic-diversity of the uncontrolled
baseline over the corresponding dev set. Notice
that the average diversity level achieved by the un-
controlled baseline is lower than that of the dev
set mean, reflecting the difficulty of this model to
generate diverse paraphrases. QCPG on the other
hand, with suitable input offset values, is able to
generate paraphrases which are on average higher
than the baseline both in their linguistic diversity
and in their semantic similarity, and in fact even
higher in many cases than the values of the ground
truth paraphrases in the dev-set.

In general, the estimates of the expected qual-
ity achieved by QCPG at different input offsets,
enable a user to generate paraphrases at different
operation points, by manipulating the input offset
control o to meet her desired quality values. Con-
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Figure 3: Controllability of QCPG. The responsiveness of QCPG to changes in the input quality vector. In each
graph only one dimension of the input is changed (the control dimension), where the other two dimensions are fixed
at zero offset. The control dimensions in the top middle and bottom rows are the lexical syntactic and semantic
dimensions respectively. Each color represents a different quality dimension of the generated paraphrases. The
responsiveness in the control dimension is plotted in a dashed line. Responsiveness and offsets are shown in standard
deviation units.
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Figure 5: Estimated Quality at different offset values for WikiAns. Average of linguistic diversity (left) and semantic
similarity (right) of the paraphrases generated for the dev-set sentences, as a function of osyn and olex, for fixed
osem = 50. The average quality of the gold-label paraphrases, and the average values achieved by the uncontrolled
baseline, are marked on the color bars. Red/blue shades correspond to above/below the dev-set mean.

sider for example a typical use case, of aiming to
maximize linguistic diversity under a constraint on
semantic similarity. An example of such a case
is an operation point, denoted by QCPG⋆, which
aims to exemplify the advantage of QCPG over the
baseline, by maximizing linguistic diversity under
the constraint that the semantic similarity is at least
5 points higher than the baseline. The input off-
set values to obtain this operation point depend on
the dataset, and can be found using heatmaps such
as in Figure 5. For WikiAns the input offset for
the QCPG⋆ operation point values are (50, 35, 5)
(entry marked by the black square).

4.3 Quality Evaluation on the Test Set
In the previous section we saw, using estimates
based on the dev sets, that there are many opera-
tion points which generate paraphrases with higher
quality than those achieved by the uncontrolled
baseline. We now turn to evaluate one such op-
eration point, namely QCPG⋆, using the source
sentences of the test sets which were not used in
the selection of the input offset values.

Automatic Evaluation We use four quality mea-
sures to evaluate different aspects of generated para-
phrases. The three quality measures used in the
control of QCPG (Section 2.1) and Self-BLEU
(Zhu et al., 2018) as adapted in Li et al. (2019); Liu
et al. (2020a), which aims to measure the linguistic
diversity in the generated paraphrases by penaliz-
ing copying from input sentences. As can be seen
in Table 1, QCPG⋆ outperforms the baseline in all

metrics across all datasets, as predicted using the
dev-set heatmaps. A clear advantage is obtained
even for Self-BLEU, which was not part of the met-
rics used as input controls. Importantly, the quality
of the paraphrases generated by our model is com-
parable to, or at times better than the quality of
the paraphrases in the ground truth of the datasets.
Examples of paraphrases generated by QCPG⋆

compared to the ground truth paraphrases appear
in Table 10. This is an important step towards the
goal of obtaining paraphrases in the sparse area of
high quality (recall the top right corner of Figure
1).

Additionally, we examined QCPG from another
perspective: the effect of the quality guidance on
the model’s ability to predict the ground truth para-
phrases. Tables 5 and 6 show the BLEU scores
(Papineni et al., 2002) obtained by QCPG and the
uncontrolled baseline respectively. The results ver-
ify that the input quality vectors induced by the
target sentences are effectively utilized by QCPG
to achieve better prediction performance.

Human Evaluation While linguistic diversity
can be automatically measured by reliable met-
rics such as Self-BLEU, measuring semantic sim-
ilarity is more challenging. We therefore rely on
automatic metrics for evaluating the lexical and
syntactic diversity, but use human annotation for
validating the semantic evaluation. To this end, we
selected a sample of 50 source sentences from each
test set, and generated one paraphrase using the
uncontrolled baseline and one using QCPG⋆. The
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MSCOCO WikiAns ParaBank2

qsem ↑ qsyn ↑ qlex ↑ Self-BLEU↓ qsem ↑ qsyn ↑ qlex ↑ Self-BLEU↓ qsem ↑ qsyn ↑ qlex ↑ Self-BLEU↓
Gold 29.9 34.5 28.0 8.7 34.6 30.7 24.4 16.4 75.0 18.5 20.9 23.9
BL 50.0 27.8 23.0 18.8 46.6 24.7 20.9 23.4 77.8 16.8 18.6 29.4
QCPG⋆ 56.6 29.6 42.4 18.0 48.5 41.5 24.8 21.4 81.4 18.9 19.6 27.1

Table 1: Automatic evaluation of the QCPG model on the test set. The semantic similarity (qsem), syntactic
diversity (qsyn) and lexical diversity (qlex), are measured using Bleurt, Tree edit distance, and character-level edit
distance respectively, as described in Section 2. Self-BLUE is an external measure of linguistic diversity (see text
for details). BL: uncontrolled baseline. Gold: the test set ground truth paraphrases. QCPG⋆ is the QCPG model in
the operation point defined in Section 4.2. Best performance amongst the compared models is highlighted in bold.
Best results amongst the models and the gold labels are underlined.

Votes Agreement

QCPG⋆ BL (Tie) Cohen’s Kappa
MSCOCO .56 .36 (.08) .38
WikiAns .48 .36 (.16) .47
ParaBank2 .30 .26 (.44) .57

Table 2: Human evaluation of semantic similarity. The
numbers represent the proportion of annotators that
voted for each method. QCPG⋆: the QCPG model
in the operation point defined in Section 4.2. BL: Un-
controlled Baseline.

annotators were shown the source sentence, along
with the two generated paraphrases (randomly or-
dered), and were asked which of the two better pre-
serves the semantic meaning of the source sentence
(ties are also allowed). In total, 150 triplets were
evaluated by 5 judges. Table 2 demonstrates an
advantage for QCPG⋆ in all datasets, with a large
margin in MSCOCO and WikiAns. This advantage
is statistically significant (p−value < 0.05) as ob-
tained by applying the Wilcoxon signed-rank test
to the difference between the number of annota-
tors that voted for QCPG⋆ and those voted for the
baseline, across all datasets. Thus, the human eval-
uation is in line with the results of the automatic
semantic similarity measure. We also verified, that
the results of this sample, in terms of linguistic
diversity, are very similar to those shown in Table
1.

For examples of paraphrases generated by
QCPG⋆ see Table 10 in the Appendix.

5 Related Work

Many recent works on paraphrase generation have
been focused on attempting to achieve high-quality
paraphrases. These works can be divided into su-
pervised and unsupervised approaches.

Supervised Approaches To achieve diversity,

some works focused on diverse decoding using
heuristics such as Hamming distance or distinct
n-grams to preserve diverse options during beam
search (Vijayakumar et al., 2018). Other works
generate multiple outputs by perturbing latent rep-
resentations (Gupta et al., 2018; Park et al., 2019).
or by using distinct generators (Qian et al., 2019).
These methods achieve some diversity, but do not
control generation in an interpretable manner.

The works that are most similar to ours strive
to gain diversity using controlled-paraphrase gen-
eration, by exposing control mechanisms that are
manipulated to produce either lexically (Zeng et al.,
2019; Thompson and Post, 2020) or syntactically
(Chen et al., 2019; Goyal and Durrett, 2020) di-
verse paraphrases. One approach is to use an ex-
emplar sentence for guiding the syntax of the gen-
erated paraphrase (Chen et al., 2019; Bao et al.,
2019; Hosking and Lapata, 2021). An alternative is
to directly employ constituency tree as the syntax
guidance (Iyyer et al., 2018; Li and Choi, 2020).
Goyal and Durrett (2020) promote syntactic diver-
sity by conditioning over possible syntactic rear-
rangements of the input. Zeng et al. (2019) use
keywords as lexical guidance for the generation
process. Here we introduce a simple model for
jointly controlling the lexical, syntactic and seman-
tic aspects of the generated paraphrases.

Unsupervised Approaches Niu et al. (2020)
rely on neural models to generate high quality para-
phrases, using a decoding method that enforces
diversity by preventing repetitive copying of the
input tokens. Liu et al. (2020b) optimize a quality
oriented objective by casting paraphrase generation
as an optimization problem, and searching the sen-
tence space to find the optimal point. Garg et al.
(2021) and Siddique et al. (2020) use reinforcement
learning with quality-oriented reward combining
textual entailment, semantic similarity, expression
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diversity and fluency. In this work, we employ
similar metrics for guiding the generation of para-
phrases within the supervised framework.

6 Discussion

In this paper, we propose a novel controlled para-
phrase generation model, that leverages measures
of paraphrase quality for encouraging the genera-
tion of paraphrases with desired quality. We demon-
strate the high level of control achieved by the
model, and suggest a method for coping with the
challenging problem of finding suitable control val-
ues.

Aside from offering a simple and effective way
for controlling models’ output quality, the qual-
ity control paradigm enables a holistic view of the
data, the training process and the final model anal-
ysis. Namely: (I) Examination of the training data
through the lens of data quality enables to charac-
terize the data at hand, its strengths and limitations.
(II) A quality-aware training process can be viewed
as multi-task learning, where each quality level is a
separate task with its own accurate supervision, as
opposed to the standard quality-agnostic approach,
where low quality data is in fact used as a poor
supervision for a model which aims at generating
higher quality output. (III) Analyzing the model be-
havior under different quality controls, allows finer
understanding of the different model behaviors and
the trade-offs between their output qualities. Better
understanding the expected output quality of neural
NLG models, for different input quality controls,
can increase the trust in their output.

Finally, our model analysis consistently shows
that although the models generally follow the qual-
ity requirements, there is still room for improve-
ment. A possible direction for future research is
exploring methods, such as reinforcement learning,
for further improving the ability of the model to
satisfy the quality requirements.
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A Selecting the semantic similarity
measure

Recently, several strong metrics have been pro-
posed for measuring semantic similarity between
sentences (Reimers and Gurevych, 2019; ?; Sel-
lam et al., 2020). In order to select the semantic
similarity metric for QCPG, we performed a small
experiment over the three dev sets, with the aim of
measuring the agreement of the candidate metrics
with human judgments. To this end, we leveraged
two properties that characterize weakly labeled
datasets, the underlying clusters of sentences, and
the high variability of semantic similarity. Given
a dataset, we randomly selected 100 clusters, and
picked three sentences at random from each clus-
ter. For each triplet of sentences t = (t1, t2, t3)
we asked 5 human annotators to choose which of
the two sentences, t2 or t3, better preserves the
semantic meaning of t1. In order to find the candi-
date similarity measure with the highest agreement

MSCOCO WikiAns ParaBank2

SBERT .52 .43 .41

BERTSCORE .38 .3 .31
BLEURT .45 .4 .36

Table 3: Correlation of different semantic similarity
models with human evaluations.

with human judgments, we first computed, for each
triplet, the difference between the number of anno-
tators voted for t2 and those voted for t3. We then
computed for each candidate measure, the differ-
ence between the similarity of t2 to t1 and and of
t3 to t1. We then measured Kendall’s Tau correla-
tion (Daniel, 1990) between the difference vector
of the human judgments and that of the judgments
of each of the candidate measures. Table 3 shows
the resultant correlations. The highest correlations
are obtained for SBERT (Reimers and Gurevych,
2019), but since it was trained on WikiAns and
MSCOCO, we could not use it in our study. We
selected Bleurt due to its highest correlation with
human judgments over the three datasets (among
the methods that were not exposed to the consid-
ered datasets). We normalize Bleurt score using
the sigmoid function to ensure a uniform range of
values, [0, 1], for the three quality dimensions.

B Correlation of semantic similarity
measures with linguistic diversity

We study the coupling between the different seman-
tic similarity measures and the linguistic diversity.
We assume that the level of coupling of a good sim-
ilarity measure will resemble that of humans, and
will be less sensitive to lexical and syntactic proper-
ties of the paraphrase. Table 4 presents the Kendall
tau correlation between the different similarity mea-
sures and the linguistic diversity. Results for hu-
man judgments are also shown for a reference. The
correlation calculation is performed between the
vectors of differences as described in section A).
The results show that Bleurt demonstrates the low-
est coupling with linguistic diversity among the
automatic measures (aside from SBERT which, as
mentioned before, was trained with MSCOCO and
WikiAns). The comparison to human judgments
shows that Bleurt is more influenced by linguistic
features, indicating that automatic measures need
to be further improved to reach the decoupling level
achieved by humans.
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MSCOCO WikiAns ParaBank2

Human -0.17 -0.19 -0.25

SBERT -0.17 -0.37 -0.29

BERTSCORE -0.39 -0.48 -0.51
BLEURT -0.25 -0.36 -0.39

Table 4: Correlation of different semantic similarity
models with linguistic diversity.

Dataset LR Dev BLEU ↑ Dev Loss ↓ Train Loss

MSCOCO

1e-3 10.19 2.10 1.52
1e-4 10.94 1.89 1.65
5e-3 0.00 2.23 2.76
5e-4 10.53 2.07 1.51

ParaBank2

1e-3 27.28 1.38 0.65
1e-4 30.22 1.15 0.69
5e-3 0.00 3.45 3.88
5e-4 28.40 1.37 0.61

WikiAns

1e-3 13.09 2.24 1.46
1e-4 15.22 1.95 1.59
5e-3 0.00 3.62 4.03
5e-4 13.51 2.17 1.43

Table 5: Training and dev set loss of the finetuned T5
baseline.

C Models Details and Training Results

The learning rates for the QCPG and the Baseline
models were selected in the following way. For
a given dataset, we finetuned the models with 4
learning rates (1e-3, 1e-4, 5e-3, 5e-4) (The training
results of the baseline presented in Table 5 and the
results of QCPG presented in Table 6.). For the
baseline we selected the one which yielded the
best BLEU score (Papineni et al., 2002) on the
corresponding dev set The best learning rate for
every dataset was chosen based on the Dev set
BLEU score. For the QCPG we chose the model
that best conforms to the control input as measured
by the MSE between the input control vector and
the output quality vector (see Table 9). The QP
model is an Electra-Base model finetuned with 4
different learning rates (1.5e-4, 1e-4, 3e-5, 5e-5).
We choose the learning rate the yields the minimal
MSE on the dev set (For full results see Table 8)

C.1 Full Heatmaps
The full heatmaps can be found in Figure 6.

Dataset LR Dev BLEU Dev Loss Train Loss

MSCOCO

1e-3 11.14 2.01 1.47
1e-4 11.24 1.80 1.61
5e-3 0.00 2.29 2.89
5e-4 10.86 1.98 1.46

ParaBank2

1e-3 32.03 1.28 0.60
1e-4 34.28 1.05 0.65
5e-3 0.00 3.37 3.86
5e-4 32.77 1.25 0.56

WikiAns

1e-3 17.29 2.08 1.40
1e-4 19.48 1.81 1.52
5e-3 0.00 3.57 4.01
5e-4 18.21 1.99 1.36

Table 6: Training and dev set loss of the QCPG.

Dataset Diversity Lexical Syntactic Semantic

MSCOCO 25.4 23.0 27.8 50.0
ParaBank2 17.7 18.6 16.8 77.8
WikiAns 22.8 20.9 24.7 46.6

Table 7: Automatic evaluation of the chosen finetuned
T5 baseline.

Dataset LR Dev MSE ↓ Train MSE

MSCOCO

1.5e-4 0.0242 0.0240
1e-4 0.0242 0.0240
3e-5 0.0206 0.0161
5e-5 0.0205 0.0164

ParaBank2

1.5e-4 0.0260 0.0239
1e-4 0.0248 0.0239
3e-5 0.0169 0.0124
5e-5 0.0170 0.0126

WikiAns

1.5e-4 0.0402 0.0374
1e-4 0.0404 0.0374
3e-5 0.0317 0.0200
5e-5 0.0445 0.0372

Table 8: Training results of the QP models.

Dataset LR MSE ↓

MSCOCO

1e-3 0.0124
1e-4 0.0119
5e-3 0.2943
5e-4 0.0118

ParaBank2
1e-3 0.0140
1e-4 0.0129
5e-4 0.0125

WikiAns

1e-3 0.0166
1e-4 0.0153
5e-3 0.3091
5e-4 0.0155

Table 9: MSE between the required control and the
evaluations of the outputs of the QCPG models.
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MSCOCO

Source Ground-truth QCPG⋆

A table filled with assorted pre-
pared foods in a buffet fashion.

Fresh fruits, vegetables, and
other foods are spread out on the
table.

A table with food on it in a buffet
line.

Ornately decorated assortment of
vases displayed on shelf.

A display of pottery in a glass
case

A decorated shelf with vases on
display

Group of people seated at a long
table eating pizza

A group of people are sitting
around a wooden table.

A group of people sitting at a
long table with pizza.

A building with a clock and
weather vane is outlined against
the blue sky.

a building with a clock inside of
it

A clock and weather vane on a
blue sky.

A knitted teddy bear hanging off
an afghan

A blue crocheted teddy bear
hanging off of a crocheted blan-
ket

A knitted teddy bear hanging
from a quilt

Two men pose next to a huge vase
with an owl painted on it.

a big vase sits in the middle of a
couple of people

Two men standing next to a large
vase with an owl on it.

WikiAns

Source Ground-truth QCPG⋆

What did the cheyennes indians
do for a living?

Cheyenne indians live in the der-
est?

What kind of jobs did the
Cheyenne Indians have?

What temperature scale do you
use in australia?

Temperature scale used for scien-
tific work?

What is the temperature scale for
Australia?

Are there any other names for tay
sachs disease?

Who is warren tay and bernard
sachs?

Other names for tay sachs dis-
ease?

What should you give to your el-
der sister on her birthday?

What should you get your little
sister for her 9th birthday?

Your older sister’s birthday what
to give?

How changes in the respiration
rate affect blood pH?

How does Increase in respiration
of water affect pH?

Explain how the respiration rate
affects the pH?

What is the value of a dollar bill
signed by joseph w barr?

What is the value of a dollar bill
1963 signed by joseph barr?

Joseph W Barr dollar bill value?

What are the three meninges that
cover the brain and spinal cord?

The three memebranous cover-
ings that protect the brain and
spinal cord?

What three meninges cover the
brain and spinal cord?

ParaBank2

Source Ground-truth QCPG⋆

We’re having trouble with Roger. I’ve got issues on Roger. We have a problem with Roger.

Everything on schedule. All on schedule. All in the plan.

The internet no longer maked the
distance matter: the world may
indeed be our classroom.

Because of the Internet, distance
doesn’t matter anymore: the
world may indeed be an our class-
room.

The Internet doesn’t matter: the
world could be our school.

Article 2 deals with the scope of
application of a directive extend-
ing cooperation between Mem-
ber States to include taxes of
whatever type.

Article 2 concerns an area
which is covered by a Direc-
tive which broadens cooperation
among Member States so as that
it covers taxes of any kind.

Article 2 concerns the scope of
the directive extending the co-
operation between the Member
States to include taxation of any
kind.

You’re free to move forward. You’re free to move on. You can go on.

Table 10: Paraphrases generated by QCPG⋆compared to ground-truth paraphrases.608



Figure 6: Heatmaps of linugstic diversity (left column) and semantic similarty (right column) as a function of input
control offsets for the datasets.
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