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Abstract

Compositionality—the ability to combine fa-
miliar units like words into novel phrases and
sentences—has been the focus of intense in-
terest in artificial intelligence in recent years.
To test compositional generalization in seman-
tic parsing, Keysers et al. (2020) introduced
Compositional Freebase Queries (CFQ). This
dataset maximizes the similarity between the
test and train distributions over primitive units,
like words, while maximizing the compound
divergence—the dissimilarity between test and
train distributions over larger structures, like
phrases. Dependency parsing, however, lacks
a compositional generalization benchmark. In
this work, we introduce a gold-standard set
of dependency parses for CFQ, and use this
to analyze the behavior of a state-of-the art
dependency parser (Qi et al., 2020) on the
CFQ dataset. We find that increasing com-
pound divergence degrades dependency pars-
ing performance, although not as dramatically
as semantic parsing performance. Addition-
ally, we find the performance of the depen-
dency parser does not uniformly degrade rel-
ative to compound divergence, and the parser
performs differently on different splits with
the same compound divergence. We explore
a number of hypotheses for what causes the
non-uniform degradation in dependency pars-
ing performance, and identify a number of
syntactic structures that drive the dependency
parser’s lower performance on the most chal-
lenging splits.

1 Introduction

People understand novel combinations of familiar
words in part due to the principle of composition-
ality: We expect the meaning of a phrase to be
a predictable composition of the meanings of its
parts. Unlike humans, many neural models fail to

∗ Majority of work completed during internship at Ele-
ment AI, now ServiceNow Research. Corresponding author,
emily.goodwin@mail.mcgill.ca

SPARQL Query:

SELECT count(*) WHERE {
?x0 ns:film.actor.film M1 .
?x0 ns:film.editor.film M0.
?x0 ns:film.producer.film M0 .
?x0 ns:people.person.gender ns:m.02zsn
}

Dependency Parse:

Did M1 ’s female actor edit and produce M0 ?

AUX

NSUBJ

CONJ

OBJ

PUNCT

root
NMOD

AMODCASE CC

1Figure 1: An example question from the CFQ dataset,
with the associated SPARQL query and dependency
parse.

generalize compositionally; a growing interest in
this area has led to novel architectures and datasets
designed to test compositional generalization (see
§ 7).

One recently-introduced semantic parsing
dataset, Compositional Freebase Queries (CFQ),
consists of English questions with corresponding
database queries written in SPARQL. Figure 1
shows an example question and SPARQL query.
To test compositional generalization, CFQ includes
test and train sets with a highly similar distribution
of primitive units (like words) and increasingly di-
vergent distribution of larger compound units (like
phrases). The most challenging of these splits, with
the highest compound divergence, are dubbed max-
imum compound divergence (MCD) splits.

Although CFQ has proven to be a valuable re-
source, the difficulty of the splits appears to be
influenced by factors other than compositional gen-
eralization. First, some evidence suggests that the
complexity of the SPARQL output is in part re-
sponsible for CFQ performance (Furrer et al., 2020;
Herzig et al., 2021). Furthermore, splits of the same
compound divergence are not equally difficult. One
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possible explanation is a difference in the syntactic
constructions of different splits; however, this has
not yet been explored in CFQ. To address these
issues, we created a dependency-parsing version of
CFQ. Using our dataset, we evaluated a state-of-
the-art dependency parser for compositional gener-
alization, and used the dependency annotations to
identify syntactic structures predictive of parsing
failure on each MCD split.

We found that the dependency parser is more
robust to increased compound divergence than the
semantic parser, but performance still decreased
with higher compound divergence. We also found
the dependency parser, like semantic parsers, var-
ied widely in performance on different splits of
the same compound divergence. Finally, we found
that a small number (less than seven) of syntactic
constructions seem to drive the difficulty of the
MCD splits. Our dataset is publically available on
github.1

1.1 Motivation for Dependency Parsing

In this section, we discuss three problems of CFQ,
and our motivation for studying compositional gen-
eralization in dependency parsing.

First, CFQ is hard: seq2seq models trained from
scratch score at most 12% on MCD2 and MCD3
sets (Google Research, 2020). Because of its diffi-
culty, CFQ may lack sensitivity to capture small but
significant progress in neural modelling of compo-
sitionality. Second, recent work shows that CFQ’s
difficulty is in part due to the output representation
being raw SPARQL: Models perform better when
outputs are replaced with compressed versions of
SPARQL, that are more aligned with the natural-
language-like questions (Furrer et al., 2020; Herzig
et al., 2021). In interpreting performance on CFQ,
we might be conflating challenges of compositional
generalization with challenges related to the output
representation.

Third, different splits of the same compound di-
vergence vary widely in difficulty: seven of the nine
semantic parsers currently listed on the leaderboard
perform at least twice as well on MCD1 as MCD
2, despite the splits having the same compound
divergence (Google Research, 2020). Performance
on CFQ is thus heavily influenced by some factor
about the splits other than compound divergence.

Finally, CFQ lacks a description of the specific
syntactic generalizations tested by each split. Re-

1https://github.com/emilygoodwin/CFQ-dependencies

lated benchmarks, like COGS (Kim and Linzen,
2020) and CLOSURE (Bahdanau et al., 2020), test
a clearly-defined set of generalizations (for exam-
ple, training a noun in subject position and testing
in object position). CFQ splits, by contrast, opti-
mize a gross metric over the distribution of all syn-
tactic compounds in the dataset. This complicates
in-depth analyses of CFQ results: For a particular
split, it is unclear what syntactic constructions are
tested in out-of-distribution contexts. Meanwhile,
for a particular test sentence, it is unclear which of
its syntactic structures caused the model to fail.

To address the issues with the CFQ semantic
parsing benchmark, we studied compositional gen-
eralization in syntactic parsing. While syntactic
parsing is simpler than mapping to a complete
meaning representation, a language-to-SPARQL
semantic parser must understand the question’s
syntax. For example, to generate the triple ?x0
ns:film.editor.film M0 in the SPARQL
query shown in Figure 1, a semantic parser must
first identify that “actor” is the subject of “edit”.

We chose dependency trees as the target syntac-
tic formalism due to the maturity of the universal
dependencies annotation standard, the popularity
of dependency trees among the NLP practitioners,
and the availability of popular high-performance
software such as Stanza (Qi et al., 2020). Impor-
tantly, dependency parsing does not require auto re-
gressive models; instead, graph dependency parsers
independently predict edge labels. This different
way of employing deep learning for parsing has
the additional advantage of allowing us to sepa-
rate the challenge of compositional generalization
from challenges related to auto regressive models’
teacher forcing training. Finally, having gold de-
pendency annotations for CFQ questions enables
detailed analysis of the relation between the model
errors and syntactic discrepancies that are featured
by the MCD splits.

2 Compound Divergence in CFQ

CFQ is designed to test compositional generaliza-
tion by combining familiar units in novel ways. To
ensure the primitive units are familiar to the learner,
CFQ test and train sets are sampled in a way that en-
sures a low divergence in the frequency distribution
of atoms. Here, atoms refers to individual predi-
cates or entities, (like “produced” or “Christopher
Nolan”), and the rules used to generate questions.

To ensure the compounds in test are novel, train
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and test sets were sampled in a way that ensures
higher divergence between the frequency distribu-
tion of compounds, weighted to prevent double-
counting of any nested compounds which co-occur
frequently.

Keysers et al. (2020) released dataset splits with
compound divergence on a scale between 0 (a ran-
dom split) and .7 (Maximum Compound Diver-
gence, or MCD, splits).

3 Corpus Construction: Dependency
Parses for CFQ

To train a dependency parser and analyze syntactic
structures in the CFQ dataset, we created a corpus
of gold dependency parses. Because the questions
in CFQ are synthetically generated, we were able to
write a full-coverage context-free grammar for the
CFQ language (see Appendix C). Using this gram-
mar, and the chart parser available in Python’s nat-
ural language toolkit, we generated a constituency
parse for each question. Finally, we designed an
algorithm to map to the dependency parse.

To map from constituency to dependency parses,
we wrote a dependency-mapping rule for each pro-
duction rule in the CFG (Collins, 2003). Each
dependency rule describes the dependency relation
between the elements in the constituent; for exam-
ple, if the production rule is VP −→ V NP, the
dependency-mapping rule connects the head of the
right-hand node (the head of NP) as a dependent of
the left-hand node (the V), with the arc label OBJ.
We follow version two of the Universal Depen-
dencies Corpus annotation standards (Nivre et al.,
2020),2 but simplify the categorization of nominal
subjects for active and passive verbs into one cat-
egory (NSUBJ), and do not include part of speech
tags in the dataset.

Our algorithm then recursively walks the con-
stituency tree from bottom to top, mapping non-
head children of each node to their syntactic heads
and passing the head of each constituent up the
tree. A number of sentences in the CFQ dataset
exhibit dependency structures which cannot be di-
rectly read off the constituency parse in this man-
ner: Such right-node-raising constructions involve
a word without a syntactic head in the immediate
constituent. For example, in “Was Tonny written
by and executive produced by Mark Marabella?”
the first instance of “by” is a dependent of “Mark
Marabella”, but its immediate constituent is “di-

2www.universaldependencies.org

rected by”. To handle right-node raising cases, our
dependency-mapping algorithm identifies preposi-
tions with no head in the immediate constituent,
and passes them up the tree until they can be at-
tached to their appropriate syntactic head.

Finally, we performed a form of anonymization
on the questions, replacing entities with single-
word proper names. This reflects the anonymiza-
tion strategy used in Keysers et al. (2020), and
prevents the dependency parser from failing be-
cause of named entities with particularly complex
internal syntax (for example, “Did a Swedish film
producer edit Giliap and Who Saw Him Die?”)

The experiments in this paper are based on the
original CFQ splits. However, these validation sets
are constructed from the same distribution as the
test sets; some information about the test distribu-
tion is therefore available during train. To ensure
that the model only had access to the training distri-
bution during the training phase, we followed the
suggestion of Keysers et al. (2020) and discarded
the MCD validation sets,3 randomly sampling 20%
of the training data to use instead (see § 5.1 of that
paper for more details). The resulting splits have
11, 968 test sentences and 76, 595 train sentences.

4 Compound Divergence Effect on
Dependency Parsing

4.1 Training Stanza

To evaluate the effect of compound divergence on
dependency parsing, we used Stanza (Qi et al.,
2020), a state-of-the-art dependency parser, on the
gold label dependency parses described in §3. We
trained Stanza five times on each of 22 splits from
the CFQ release: one random split (which has a
compound divergence of 0), 18 splits with increas-
ing compound divergence (ranging from .1 to .6)
and three MCD splits (divergence of .7).

To evaluate performance on each test set, we
used the CoNLL18 shared task dependency pars-
ing challenge evaluation script (CoNLL Shared
Task, 2018), which gives a Labeled Attachment
Score (LAS) and Content-word Labeled Attach-
ment Score (CLAS), reflecting how many of the
total dependency arcs in the test set were correctly
labeled, and how many of the arcs connecting con-
tent words were correctly labeled, respectively.

In addition, we calculated the percentage of

3We also re-sampled a validation set from the random split
training set, so that MCD and random splits are trained on the
same amount of data.
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test questions for which every content word arc
was correctly labeled, which we call Whole Sen-
tence Content-word Labeled Attachment Score
(WSCLAS). This all-or-nothing evaluation scheme
for each sentence more closely resembles the exact-
match accuracy of semantic parser evaluation.4

4.2 Dependency Parsing Results

We plot Stanza’s performance as a function of the
split compound divergence in Figure 2. Increas-
ing compound divergence had a negative effect
on performance: Stanza’s accuracy on the random
split (zero compound divergence) was near perfect,
with an average CLAS of 99.98% and WSCLAS of
99.89%. Meanwhile, accuracy on the three MCD
splits (divergence of .7) dropped to an average
CLAS of 92.85% and WSCLAS of 74.92%.
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Dependency Parser Accuracy by
Compound Divergence
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Figure 2: The effect of compound divergence on
Content-word Labeled Attachment Score (CLAS) and
Whole-Sentence Content Labeled Attachment Score
(WSCLAS).

A linear regression predicting CLAS found a
slope of −6.91, and predicting WSCLAS found
a slope of −28.89; in other words, for each .1 in-
crease in compound divergence the linear model
predicts a 2.889% lower WSCALS, and .691%
lower CLAS. These linear models are also shown
in Figure 2.

We note, however, two exceptions to the gener-
ally negative relationship between compound di-
vergence and accuracy, which indicate that other
characteristics of the test set have a large effect
on accuracy. First, all splits with a target com-
pound divergence of .4 performed stronger than

4The code to calculate WSCLAS is also available at
https://github.com/emilygoodwin/CFQ-dependencies

Dependency Parser Semantic Parser
Split WSCLAS CLAS LAS Exact Match

mean (sd) mean (sd) mean (sd) mean (95% conf interval)

MCD1 96.57 ±1.31 99.38 ±0.29 99.64 ±0.16 37.4 ±2.2
MCD2 71.42 ±2.59 91.53 ±1.00 93.28 ±0.88 8.1±1.6
MCD3 56.76 ±2.81 87.66 ±0.93 90.87 ±1.01 11.3 ±0.3

Random 99.89 ±0.01 99.98±0.00 99.99 ±0.00 98.0 ±0.3

Table 1: Stanza’s performance on MCD splits in terms
of Whole Sentence Content-word Labeled Attachment
Score (WSCLAS), Content-word Labeled Attachment
Score (CLAS), and Labeled Attachment Score (LAS).
Means and standard deviations are calculated over five
randomly-seeded runs. The semantic parsing scores are
reproduced from (Keysers et al., 2020); the mean exact-
match of 5 experiments with 95% confidence intervals
is reported for each MCD split in their github reposi-
tory.5

those at divergence .3 and .2. Secondly, we ob-
served considerable variation in performance on
different splits that have the same compound diver-
gence, particularly the MCD splits.

Stanza’s performance on the three maximum-
compound-divergence splits and one random split
is shown in Table 1. While all three MCD splits
were harder than the random split, performance
varied from 96.57% WSCLAS (MCD1) to 56.76%
WSCLAS (MCD3). Thus, while compound diver-
gence is a factor in performance, idiosyncrasies
in the individual splits also have large effects on
performance.

Finally, we note that while Stanza was more ro-
bust to compound divergence than the semantic
parser, it also ranked the splits differently in dif-
ficulty. Table 1 reproduces mean accuracies from
Keysers et al. (2020)’s strongest-performing seman-
tic parser, a universal transformer (Dehghani et al.,
2019). The universal transformer’s exact-match
is lower than Stanza’s WSCLAS on every MCD
split. Additionally, while Stanza performed worst
on MCD3, the universal transformer and most other
semantic parsers in the CFQ leaderboard performed
worst on MCD2 (Google Research, 2020). In the
next sections, we explore what causes the variation
in performance on different MCD splits.

5 Construction Complexity and the
MCD Splits

The compound divergence metric treats all com-
pounds of any number of words identically; there-
fore, the differences between the MCD splits may
be driven by differing distributions of compounds
of different complexities. In this section, we show
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that this is not the case. We first describe how
we characterize syntactic constructions using the
dependency annotations.

5.1 Syntactic Constructions

Did M1 ’s female actor edit and produce M0 ?

AUX

NSUBJ

CONJ

OBJ

PUNCT

root
NMOD

AMODCASE CC

entity adjective role

NMODNMOD

AMOD

root

role verb verb

NSUBJ

CONJroot

1
Figure 3: A dependency parse and two of its subtrees

We explored differences in the distributions of
syntactic constructions by looking at a restricted
set of the subtrees of each dependency parse, which
we will now describe.

With respect to any target node in the corpus,
we consider a syntactic construction to be any sub-
tree that consists of that target node together with a
constituent-contiguous subset of the target node’s
immediate children. Here, constituent-contiguous
means the subsets of child nodes which are heads
of phrases that are adjacent to one another or to
the target node in the string. We include only the
immediate children in the subtree (excluding their
descendants). We also replace words with their
category label in CFQ: in addition to traditional
parts of speech like verb and adjective, the cate-
gory labels include nominal categories role (which
occurs in possessive constructions like “mother” in
“Alice’s mother”), entity for proper nouns, and noun
for common nouns.

For the analyses in this and the following section,
we extract every syntactic construction for every
dependency parse in our corpus, and compare their
complexity. We define complexity to be the number
of arcs in the subtree, discounting the dummy ROOT

arc. Two of the subtrees for sentence “Did M1’s
female actor edit and produce M0?” are shown in
Figure 3 (these subtrees have a complexity of two).
Table 2 shows the number of unique constructions
in each test and train set.

5.2 Analysis of MCD Splits
One possible source of the differences between
MCD splits may be that they differ in their distribu-

Total Sentences Unique Constructions
Train Test Train Test

MCD1 76,595 11,968 2,093 2,048
MCD2 76,595 11,967 2,006 1,884
MCD3 76,595 11,968 2,300 1,823

Random 76,596 11,967 4,082 3,251

Table 2: Number of sentences and unique constructions
for each test and train set in our experiments (see § 5.1
for an explanation of constructions).

tions of subtrees at differing complexities. In this
section, we present two analyses showing that this
is not the case.

In our first analysis, we analyzed the distance
between test and train distribution for each split.
To do this we calculated the Jensen-Shannon (JS)
distance between the test and train histograms of
syntactic constructions at differing complexities.6

2 4 6 8 10 12
Complexity of Construction (Number of Arcs in Subtree)

0.0
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Jensen-Shannon Distance of Syntactic
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MCD1
MCD2
MCD3

Figure 4: Divergence between test and train of the
MCD and random splits. Roughly, divergence in-
creases with subtree complexity, although much more
rapidly for MCD splits than random. Additionally,
there is little difference between the different MCD
splits.

The JS distances for constructions of each com-
plexity are plotted in Figure 4. As can be seen in
the figure, the distances between test and train are
similar for all MCD splits at all subtree complex-
ities. Even the MCD1 distances pattern with the
other MCD splits, despite the parser performance
on MCD1 being more similar to the random split.

6The JS distance for histograms p and q is defined as√
D( p‖m ) + D( q‖m )

2
(1)

where m is the pointwise mean of p and q, and D is the
Kullback-Leibler divergence.
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Thus, differences between the test and train distri-
butions at different complexities cannot explain the
MCD splits’ differential performance.
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Figure 5: The proportion of syntactic constructions in
test which are untrained, for all splits and all subtree
complexities. Subtree complexity is measured in num-
ber of arcs.

In our second analysis, we examined whether the
MCD splits differ in the proportion of untrained
subtrees at different complexities. The proportions
are plotted in Figure 5. The MCD splits pattern
together, with far more untrained constructions at
each complexity than the random split.

We thus conclude it is unlikely that gross dis-
tributional properties of the MCD splits explain
the differences in parser performance. In the next
section, we show that parser mistakes for all splits
seem to be driven by a very small number of hard-
to-parse subtrees. Thus, performance differences
between splits likely depend on idiosyncratic inter-
actions between the specific data splits and models.

6 Syntactic Analyses of Dependency
Parser Outputs

6.1 Identifying Difficult Subtrees
To identify syntactic constructions that are predic-
tive of dependency parsing error, we fit a logistic
model predicting Stanza’s performance on each
test question from the question’s syntactic construc-
tions. Because we trained five randomly-initialized
versions of Stanza, the model was fit with five in-
stances of each question. To encourage sparse sub-
tree feature weights, we used L1 regularization.
We used 90% of the test set to train the logistic
model, and the remaining 10% to test it and select
a regularization coefficient of .01.

To analyze the subtrees most predictive of pars-
ing failure, we extracted from the model all sub-

trees with a coefficient less than or equal to −1.
Finally, to quantify the effect these trees have on
test performance, we removed all the sentences
containing the trees for each split, and calculated
Stanza’s accuracy on the remaining test sentences.

6.2 Subtrees Predictive of Parsing Error

Table 3 shows the number of subtrees found to
be predictive of parsing error, together with the
accuracy when those trees are removed from test.
Removing five subtrees from MCD2’s test set im-
proves the accuracy to 92.46% (an increase of
21.05%), and removing seven trees from MCD3’s
test set improves the accuracy to 93.09% (an in-
crease of 36.33%). We thus conclude that the per-
formance degradation of Stanza on higher com-
pound divergence splits is driven by a relatively
small number of syntactic constructions.

Table 4 shows the subtrees most predictive of a
dependency parsing error, with their test and train
frequency. To quantify the effect of each subtree
on the test accuracy, we also report the Test set ∆:
WSCLAS(T ′)−WSCLAS(T ) where T is the orig-
inal test set and T ′ is all test sentences which do not
include the construction. A positive ∆ means that
removing the subtree from the test set improved
performance, while a negative ∆ indicates that re-
moving the subtree from the test set degraded per-
formance.

Subtrees that are predictive of error for a particu-
lar split are often missing from train, together with
others that share a similar syntactic structure. For
instance, there are a set of trees that form questions
with common nouns as subject and predicate, and
a copula verb “was” appearing to the left of the
subject (e.g. “Was an art director of Palm County
a person?”).7 The fourth, fifth and sixth subtrees
in Table 4 are subtrees which form these questions;
all three are missing from train for both MCD2
and MCD3, and all are predictive of parser error
for these splits. In contrast, the MCD1 training set
includes one of the subtrees (fourth in Table 4)
and leaves the other two untrained; none are pre-
dictive of parser error (with ∆ of 0.0, -0.06 and
0.02, the performance on these trees is close to av-
erage for MCD1). The model performs better on
the untrained trees in MCD1, perhaps because of
the similar trees in train; with no evidence of this

7Note that CFQ has two part-of-speech categories which
are common nouns: a role, like the word “mother” in the
phrase “Henry’s mother”, and a category labeled noun, like
“person” in the phrase “a person”.
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Split Num Trees Sentences in WSCLAS, StDv CLAS, StDv LAS, StDv Num Sentences
removed reduced test removed

mcd1 3 11,139 98.41 ±0.71 99.75 ±0.15 99.84±0.1 828
mcd2 5 8,440 92.46 ±3.82 98.59±0.47 98.89±0.37 3527
mcd3 7 5,692 93.09±2.77 98.79±0.50 98.91±0.36 6275
rand 0 11,967 99.89±0.01 99.98 ±0.00 99.99 ±0.00 0

Table 3: Re-calculated accuracy on the test sets, when removing all sentences whose subtrees are most predictive
of Stanza’s failure.

Tree MCD1 MCD2 MCD3
Train # Test # ∆% Train # Test # ∆% Train # Test # ∆%

Predictive for MCD1

and entity verb

CC

NSUBJ

root

2342 192 0.26 2099 144 -0.15 1546 118 0.01

of entity entity entity entity

CASE CONJ

CONJ

CONJ

root

0 484 1.29 0 405 -0.15 0 382 1.78

adjective noun ’s

AMOD CASE

root

2319 137 0.23 3033 3 -0.0 3255 50 -0.1

Predictive for MCD2 and MCD3

was role role

COP

NSUBJ

root

367 792 -0.0 0 940 5.73 0 1437 6.98

was noun role

COP

NSUBJ

root

0 530 -0.06 0 535 2.25 0 593 0.54

role a noun

NSUBJ

DETroot

0 541 0.02 0 547 2.38 0 604 2.01

was noun verb

AUX

NSUBJ

root

872 60 -0.02 0 512 2.94 0 547 2.61

was role verb

AUX

NSUBJ
root

1484 231 -0.03 0 993 2.53 0 1093 3.06

Predictive for MCD3

verb verb entity ?

PUNCT

OBJ

CONJ

root

877 1513 0.1 451 1435 -2.53 355 1407 1.47

of entity entity entity

CASE

CONJ

CONJ
root

0 1153 1.33 509 905 -0.97 0 931 3.95

Table 4: Syntactic constructions most predictive of dependency parsing failure for each split. “Predictive” means
the subtree is associated with a coefficient ≤ −1 by the logistic model. # stands for the number of occurrences.
∆% is defined as the change in mean WSCLAS after all instances of the construction have been removed from test.
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kind of structure in MCD2 and MCD3, the model
struggles.8

Another group of subtrees with similar syntactic
structure is the second and last subtrees in Table 4.
These coordinate three and four entities in an “of”-
type prepositional phrase, which occurs in phrases
like “the mother of Alice, Bob, Carl and Dave”.
Both trees are absent from MCD1 train, and both
have a large effect on performance for MCD1 (∆
of 1.29 and 1.33). In MCD2, only the tree with
four coordinated entities is absent from train, and it
is not difficult for the model (∆ of -0.15, indicating
that removing it from test reduces performance);
the model is likely able to parse four coordinated
entities based on the training examples with three
coordinated entities.

7 Related work

A growing body of work uses CFQ to investigate
better models for compositional generalization in
semantic parsing (Herzig and Berant, 2021; Guo
et al., 2020; Furrer et al., 2020). Tsarkov et al.
(2020) also recently released an expanded version
of CFQ called *-CFQ, which remains challenging
for transformers even when they are trained on
much more data. Our methodology can be easily be
applied to *-CFQ at the cost of a straight-forward
extension of the grammar.

Other datasets focused on compositional gener-
alization include SCAN (Lake and Baroni, 2018),
a dataset of English commands and navigation se-
quences; gSCAN (Ruis et al., 2020), a successor to
SCAN with grounded navigation sequences; and
COGS (Kim and Linzen, 2020), where English
sentences are paired with semantic representations
based on lambda calculus and the UDepLambda
framework (Reddy et al., 2017). In contrast to
CFQ, these datasets challenge models by targeting
specific, linguistically-motivated generalizations.
For example, COGS includes tests of novel verb
argument structures (like training on a verb in ac-
tive voice and testing in passive voice), and novel
grammatical roles for primitives (like training with
a noun in object position and testing in subject po-
sition); similarly, SCAN includes splits which test

8Not shown in Table 4 is the tree with a left-edge copula
and simple nouns in both predicate and subject position. This
structure was also absent from train in the MCD2 and MCD3
splits, but present in MCD1 train. It was not found to be
strongly predictive of errors by the logistic model, likely be-
cause it was infrequent in test (occurring 188 times in MCD2
and 208 in MCD3).

novel combinations of specific predicates (train-
ing a predicate “jump” or “turn left” in isolation,
and testing it composed with additional predicates
from train). Finally, the CLOSURE benchmark for
visual question answering tests systematic gener-
alization of familiar words by constructing novel
referring expressions; for example, “a cube that is
the same size as the brown cube” (Bahdanau et al.,
2020).

8 Conclusion

In this paper, we presented a dependency pars-
ing version of the Compositional Freebase Queries
(CFQ) dataset. We showed that a state-of-the-art
dependency parser’s performance degrades with
increased compound divergence, but varies on dif-
ferent splits of the same compound divergence. Fi-
nally, we showed the majority of the parser failures
on each split can be characterized by a small (seven
or fewer) number of specific syntactic structures.

To our knowledge, this is the first explicit test of
compositional generalization in dependency pars-
ing. We hope that the gold-standard dependency
parses that we have developed will be a useful re-
source in future work on compositional generaliza-
tion. Existing work on syntactic (and in particu-
lar dependency) parsing can provide researchers
in compositional generalization with ideas and in-
spiration which can then be empirically validated
using our corpus.

Finally, our work represents a step forward in
understanding the syntactic structures which drive
lower performance on MCD test sets. Predicting
parser performance from the syntactic construc-
tions contained in the question provides a new
method for understanding the syntactic structures
that can cause parser failure; in future work, simi-
lar methods can also be used to better understand
failures of semantic parsers on the CFQ dataset.

Ethical Considerations

This article contributes to compositional general-
ization research, a foundational concern for neural
natural natural language processing models. Break-
throughs in this research might eventually lead to
smaller, and more efficient models, as well as bet-
ter performance on low-resource languages. The
ethical and societal consequences of these improve-
ments will depend on downstream applications.

The resource released in this work is a new set of
annotations for CFQ, an existing dataset. The origi-
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nal CFQ dataset was artificially generated, so there
was no process of data collection and therefore no
ethics review process. The dataset was annotated
by the author, so there was no ethics review of the
annotation process or demographic information of
this population to report.
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A Correlation of Semantic Parsing and
Dependency Parsing Errors

Because syntactic parsing is a necessary sub-task
for semantic parsing, we also explored the pos-
sibility that dependency parsing errors might be
predictive of semantic parsing errors. We extracted
the predictions from Keysers et al. (2020)’s trans-
former model (which is based on Vaswani et al.
(2017)’s model), and compared them to those of
Stanza on the same test set. For each test sentence,
we calculated the number of times the parsers cor-
rectly parsed the sentence (out of five experiments
each).
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Figure 6: Percentage of the test set which is cor-
rectly parsed by five semantic parsing experiments and
five dependency parsing experiments, for MCD1 and
MCD3.

The results for MCD1 and MCD3 are shown
in Figure 6: for example, the top-right hand cor-
ner of the MCD1 matrix means that 23.99% of
the test set was correctly parsed in all semantic
and dependency parsing experiments, while the top
right-hand corner in the MCD3 matrix indicates
that only 7.68% of the sentences were correctly
parsed by both models in all experiments. The se-
mantic parser fails for all five experiments on the
majority of sentences. We do note some trends in
error patterns between the models: for example,
no sentences are correctly parsed by all semantic
parsers without also being correctly parsed by the
dependency parser at least a few times. However,
overall it does not appear that dependency parsing
performance is strongly related to semantic parsing
performance.

B Proportion of Few-shot Constructions
in MCD Splits

We examined whether the MCD splits differ in the
proportion of test syntactic constructions which are
few-shot, meaning they appear in train fewer than
four times. This analyses is similar to the ones
described in § 5.2.

The proportions are plotted in Figure 7. The
MCD splits pattern together, with far more few-
shot constructions at each complexity than the ran-
dom split.
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Figure 7: The proportion of syntactic constructions in
test which appear in train fewer than four times, for
all subtree complexities. Complexity is measured in
number of arcs.

C CFG

Below are the rules in our Context Free Grammar.
Using these rules we parsed CFQ into constituency
trees, and then mapped to dependency trees as de-
scribed in § 3.

S −→ NPQ VP Qmark
S −→ NPQ was Nominal Qmark
S −→ NPQ did NPV Qmark
S −→ was Nominal Vobl Qmark
S −→ NPQ Vobl Qmark
S −→ was Nominal Adj Qmark
S −→ was Nominal Nominal Qmark
S −→ did Nominal VP Qmark

NPV −→ Nominal V
NPV −→ Nominal VPrep

VP −→ V Nominal
VP −→ was Vobl
VPrep −→ was VPrep
VPrep −→ V by
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Vobl −→ VPrep Nominal
NPQ −→WhW Nominal
NPQ −→WhW role caseO

commonNoun −→ commonNoun RC

RC −→ Vobl
RC −→ R VP
RC −→ R NPV
RC −→ whose role VP

VP −→ VP andVP
VP −→ VPx andVP
VPx −→ VP punctVP
VPx −→ VPx punctVP
andVP −→ conj VP
andVP −→ punct conj VP
punctVP −→ punct VP

Vobl −→ Vobl andVobl
Vobl −→ Voblx andVobl
Voblx −→ Vobl punctVobl
Voblx −→ Voblx punctVobl
andVobl −→ conj Vobl
andVobl −→ punct conj Vobl
punctVobl −→ punct Vobl

VPrep −→ VPrep andVPrep
VPrep −→ VPrepX andVPrep
VPrepX −→ VPrep punctVPrep
VPrepX −→ VPrepX punctVPrep
andVPrep −→ conj VPrep
andVPrep −→ punct conj VPrep
punctVPrep −→ punct VPrep

V −→ V andV
V −→ Vx andV
Vx −→ V punctV
Vx −→ Vx punctV
andV −→ conj V
andV −→ punct conj V
punctV −→ punct V

Vx −→ Vx punctVPrep
Vx −→ V punctVPrep
V −→ Vx andVPrep
V −→ V andVPrep
VPrep −→ VPrep andV
VPrep −→ VPrepX andV
VPrepX −→ VPrep punctV
VPrepX −→ VPrepX punctV

NPV −→ NPV andNPV
NPV −→ NPVx andNPV
NPVx −→ NPV punctNPV
NPVx −→ NPVx punctNPV
andNPV −→ conj NPV
andNPV −→ punct conj NPV
punctNPV −→ punct NPV

V −→ F V

Nominal −→ Name
Nominal −→ DP
Nominal −→ commonNoun

DP −→ caseS role
caseS −→ DP pS
caseS −→ Name pS
DP −→ det role caseO
caseO −→ of DP
caseO −→ of Name

DP −→ det commonNoun

Name −→ Name andName
Name −→ Namex andName
Namex −→ Name punctName
Namex −→ Namex punctName
andName −→ conj Name
andName −→ punct conj Name
punctName −→ punct Name

commonNoun −→ commonNoun andCom-
monNoun
commonNoun −→ commonNounx andCommon-
Noun
commonNounx −→ commonNoun punctCommon-
Noun
commonNounx −→ commonNounx punctCom-
monNoun
andCommonNoun −→ conj commonNoun
andCommonNoun −→ punct conj commonNoun
punctCommonNoun −→ punct commonNoun

role −→ role androle
role −→ rolex androle
rolex −→ role punctrole
rolex −→ rolex punctrole
androle −→ conj role
androle −→ punct conj role
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punctrole −→ punct role

commonNoun −→ F commonNoun
role −→ F role
role −→ Cnt of nat
commonNoun −→ P commonNoun

commonNoun −→ Adj commonNoun
role −→ Adj role

punct −→ ,
Cnt −→ country
nat −→ nationality
P −→ production
F −→ film | art | executive | costume
V −→ VP_SIMPLE | direct | produce ...
Name −→ entity | Alice | Bob ...
commonNoun −→ NP_SIMPLE | character |
person ...
role −→ ROLE_SIMPLE | character | person ...
NPQ −→ who | what
WhW −→What | Which | what | which
did −→ did | Did
conj −→ and
pS −→ ‘s
of −→ of
det −→ a | an
by −→ by
Adj −→ ADJECTIVE_SIMPLE | female | Ameri-
can ...
was −→ was | were
R −→ that
whose −→ whose
Qmark −→ ?
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