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Abstract

Recent parameter-efficient language model
tuning (PELT) methods manage to match the
performance of fine-tuning with much fewer
trainable parameters and perform especially
well when training data is limited. However,
different PELT methods may perform rather
differently on the same task, making it non-
trivial to select the most appropriate method
for a specific task, especially considering the
fast-growing number of new PELT methods
and tasks. In light of model diversity and
the difficulty of model selection, we propose a
unified framework, UNIPELT, which incorpo-
rates different PELT methods as submodules
and learns to activate the ones that best suit
the current data or task setup via gating mech-
anism. On the GLUE benchmark, UNIPELT
consistently achieves 1~4% gains compared to
the best individual PELT method that it incor-
porates and outperforms fine-tuning under dif-
ferent setups. Moreover, UNIPELT generally
surpasses the upper bound that takes the best
performance of all its submodules used indi-
vidually on each task, indicating that a mixture
of multiple PELT methods may be inherently
more effective than single methods.1

1 Introduction

As pre-trained language models (PLMs) (Devlin
et al., 2019) grow larger and larger (Brown et al.,
2020), it becomes increasingly infeasible to per-
form conventional fine-tuning, where separate repli-
cas of the model parameters are modified per single
task. To solve the issue, there has recently been
a surge of studies on parameter-efficient language
model tuning (PELT), namely how to effectively
tune the PLMs with fewer trainable parameters.

Existing PELT research generally aims at achiev-
ing performance comparable to fine-tuning with

∗Work was done during internship at Meta AI.
1Our code can be found at https://github.com/

morningmoni/UniPELT.
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Figure 1: Illustration of UNIPELT, which subsumes
existing PELT methods as submodules and controls
them via gating mechanism G. Different (combinations
of) submodules can be activated for different samples.
The trainable parameters are shown in blue.

as few trainable parameters as possible, which has
seen significant progress – the task-specific train-
able parameters used in most recent approaches
(Lester et al., 2021; Guo et al., 2021) are almost
negligible compared to the total parameters of the
PLM (<1%). A more challenging yet less studied
problem is whether one can achieve better perfor-
mance than fine-tuning with fewer parameters. Re-
cent studies (He et al., 2021; Li and Liang, 2021;
Karimi Mahabadi et al., 2021b) find that some
PELT methods are more effective than fine-tuning
on certain tasks when training data is limited, possi-
bly due to the reduced risk of overfitting. However,
as found in our experiments (Table 1), different
PELT methods exhibit diverse characteristics and
perform rather differently on the same task, which
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makes it nontrivial to select the most appropriate
method for a specific task, especially considering
the fast-growing number of new PELT methods
and tasks (Ding and Hu, 2021).

In light of the diverse performance of PELT
methods and the cost of selecting the best method,
we propose a unified PELT framework, named
UNIPELT, which incorporates different PELT
methods as submodules and learns to dynamically
activate the (combination of) submodules that best
suit the current data or task setup. As a result,
model selection is no longer needed and consis-
tently better performance is achieved under dif-
ferent setups. The activation of each submodule
in UNIPELT is controlled by gating mechanism,
which learns to favor (assign more weight to) the
submodules that positively contribute to a given
task. In addition, since the number of parameters
introduced by each submodule is generally small,
combining multiple methods leads to negligible
losses in model efficiency.

We select four representative PELT methods for
our study – adapter (Houlsby et al., 2019), prefix-
tuning (Li and Liang, 2021), LoRA (Hu et al.,
2021), and BitFit (Ben Zaken et al., 2021), which
largely cover the major categories of PELT meth-
ods. We perform two sets of analysis that carefully
examines (i) the characteristics of individual PELT
methods and (ii) their effectiveness when coordi-
nated by UNIPELT under various setups.2

Extensive experiments on the GLUE bench-
mark (Wang et al., 2019), with 32 setups (8 tasks
×4 data sizes) and 1,000+ runs, not only reveal the
diverse behavior of PELT methods, but also show
that UNIPELT is more effective and robust than
using each method alone in various task and data se-
tups. Specifically, UNIPELT consistently improves
the best submodule that it incorporates by 1~4
points and even outperforms fine-tuning, achieving
the best average performance on the GLUE bench-
mark under different setups. Moreover, UNIPELT
generally surpasses the upper bound that takes the
best performance of all its submodules used individ-
ually on each task, which suggests that UNIPELT
maintains (near) optimal performance under differ-
ent setups. The fact that UNIPELT outperforms the
upper bound also implies that a mixture of PELT
methods involving different parts of the PLM ar-
chitecture may be inherently more effective than

2BitFit is not included in UNIPELT as it typically performs
the worst in our preliminary experiments.

individual methods.
Contributions. (1) We conduct a comprehensive
study of representative PELT methods and care-
fully examine their differences and commonalities
in terms of performance and characteristics. (2)
We propose a unified PELT framework that can
incorporate existing methods as submodules and
automatically learn to activate the appropriate sub-
modules for a given task. (3) Our proposed frame-
work achieves better average performance than fine-
tuning and the PELT methods that it incorporates
under various setups, often performing the best and
never the worst at per-task level, exhibiting supe-
rior effectiveness and robustness with negligible
losses in model efficiency.

2 Preliminaries

2.1 PELT Methods without Additional
Parameters

PLMs can be used as feature extractors where only
the top layers or prediction head are fine-tuned
without additional parameters (Lee et al., 2019).
However, such fine-tuning approaches generally
lead to degenerate model performance that is much
worse than fine-tuning all parameters (Lee et al.,
2019; Pfeiffer et al., 2021). A recent method BitFit
(Ben Zaken et al., 2021) only tunes the bias terms
of the PLM and is shown to achieve performance
comparable to fine-tuning on certain tasks when
training data is limited. Therefore, we select BitFit
as the representative of this category for analysis.

2.2 PELT Methods with Additional
Parameters

Alternatively, one may fix the entire PLM and intro-
duce a small number of new trainable parameters.
Notable examples in this category include adapter
(Houlsby et al., 2019) and its extensions (Pfeif-
fer et al., 2021; Karimi Mahabadi et al., 2021b),
prefix-tuning (Li and Liang, 2021) and its exten-
sions (Lester et al., 2021), and additive methods
(Guo et al., 2021; Hu et al., 2021).

Next, we will briefly describe these methods to
facilitate the introduction of our proposed frame-
work. An illustration is shown in Fig. 1 for better
understanding.
Adapter. Adapter (Houlsby et al., 2019) adds a
trainable bottleneck layer after the feedforward net-
work in each Transformer layer of the PLM. A bot-
tleneck layer consists of a down+up projection pair
that shrinks and recovers the size of token hidden
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states. Mathematically, if we denote the output of
the feedforward network after residual connection
and layer normalization as hFN with hidden size
Dhidden and bottleneck size Dmid, then the output
of a bottleneck layer hA is:

hA = W ᵀ
upφ(W

ᵀ
downhFN ), (1)

where Wdown ∈ RDhidden×Dmid , Wup ∈
RDmid×Dhidden , φ is a nonlinear activation function,
and the bias terms are omitted for brevity. The pa-
rameters in layer normalization and the final predic-
tion head sometimes are also fine-tuned depending
on the specific adapter variants.

Adapter has shown to be on par with fine-tuning
and sometimes exhibits better effectiveness in the
low-resource setting (He et al., 2021). Later stud-
ies extend adapter to multi-lingual (Pfeiffer et al.,
2020b) and multi-task (Karimi Mahabadi et al.,
2021b) settings, or further reduce its trainable pa-
rameters (Karimi Mahabadi et al., 2021a), which
can be easily incorporated into UNIPELT as a re-
placement of the vanilla adapter.
Prefix-tuning. Prefix-tuning (Li and Liang, 2021)
prepends a number of task-specific trainable vec-
tors to the input of multi-head attention in each
Transformer layer, which the original tokens can at-
tend to as if they were virtual tokens. Specifically,
we denote the original sequence length L0, the
number of trainable vectors (i.e., prefix length) L,
and the Transformer layer input hin ∈ RDhidden×L0 .
First, three linear projections WQ, WK , WV ∈
RDhidden×Dhidden transform hin into Query Q, Key
K, and Value V . Then, two prefix matrices PK

and PV ∈ RDhidden×L are prepended to K and V .
To stabilize optimization, the prefix matrix P is
reparameterized by a feedforward network:

P ′ = W ᵀ
upφ(W

ᵀ
downP ), (2)

where Wdown ∈ RDhidden×Dmid , Wup ∈
RDmid×2NlayerDhidden , and Nlayer denotes the number
of Transformer layers. The parameters of this
network can be discarded after training, and only
2Nlayer prefix matrices ∈ RDhidden×L are needed (2
matrices for each layer).

Prefix-tuning is originally evaluated on natural
language generation and we adapt it to understand-
ing tasks. A follow-up method named prompt-
tuning (Lester et al., 2021) further reduces task-
specific parameters by limiting the prefix to the
first layer but only performs competitively with

very large model sizes (billions of total parame-
ters), and is thus not considered in our study. Note
that prefix-tuning (or prompt-tuning) is different
from prompt-based fine-tuning methods (Schick
and Schütze, 2021; Gao et al., 2021) (see App. A
for specific differences).
Additive Methods. Additive PELT methods treat
the model parameters after fine-tuning as an ad-
dition of the pre-trained parameters θpre-trained and
task-specific differences δtask, where θpre-trained is
fixed and a new (sub)set of model parameters are
added on top: θtask = θpre-trained + δtask. There are
various ways to parameterize δtask, leading to dif-
ferent additive methods such as LoRA (Hu et al.,
2021), diff pruning (Guo et al., 2021), and side-
tuning (Zhang et al., 2020). We take LoRA as a
representative and incorporate it into UNIPELT.
Other methods are conceptually similar and can be
incorporated in the same fashion.

LoRA introduces trainable low-rank matrices
and combines them with the original matrices
in the multi-head attention. Specifically, two
matrices Wdown ∈ RDhidden×Dmid and Wup ∈
RDmid×Dhidden are added for the query and key pro-
jections along with the original matrix WQ and
WK ∈ RDhidden×Dhidden :

Q = (W ᵀ
Q + αW ᵀ

upW
ᵀ
down)hin, (3)

where α is a fixed scalar hyperparameter for scaling
the task-specific differences. The form of the train-
able matrices in LoRA is quite similar to those in
adapter or prefix-tuning, but there is no activation
function φ in between.

3 Unifying PELT Methods

3.1 Task Formulation

Given a large PLMMwith size |M| that cannot be
fine-tuned directly due to computational or storage
cost, suppose that we have a list of PELT methods
{mi}, the trainable parameters of which are negli-
gible (i.e.,

∑
i |mi| � |M|), our goal is to design a

unified PELT framework that incorporates {mi} as
submodules and learns to dynamically activate (up-
weight) different submodules when appropriate un-
der different scenarios, such that one could achieve
satisfactory results in terms of both model effective-
ness and robustness without the hassle of permuting
all the method×task×data combinations.
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3.2 Proposed Method

Motivation & Intuition. During the analysis of
individual PELT methods, we observe that differ-
ent PELT methods exhibit diverse characteristics
and perform rather differently on the same task.
For example, prefix-tuning generally performs well
on natural language inference tasks regardless of
the size of training data. Also, as can be seen in
Fig. 1 and Sec. 2, different PELT methods often in-
volve different parts of the PLM architecture (e.g.,
before multi-head attention for prefix-tuning and
after feedforward layer for adapter), making it fea-
sible to combine multiple PELT methods without
(directly) interfering with each other.

In light of the two observations above, we pro-
pose a unified PELT framework, UNIPELT, which
takes a hybrid approach by incorporating multi-
ple PELT methods as submodules. At a high level,
UNIPELT improves over single PELT methods due
to two factors. First, UNIPELT learns to activate
(upweight) the submodules that best suit the current
task or specific data sample and deactivate (down-
weight) the rest. Second, we find that UNIPELT
generally performs better than taking the best per-
formance of all its submodules used individually
on each task, suggesting that there could be some
compounding effects that lead to better model effec-
tiveness when multiple PELT methods (that modify
different parts of the PLM) are used.

Next, we will introduce how different PELT
methods can be incorporated into UNIPELT via
gating mechanism.
Gating Mechanism. To achieve fine-grained con-
trol of submodule (de)activation, we add a trainable
gate Gmi for each submodule mi ∈ {A, P, L} in
every Transformer layer (see Fig. 1). The letters A,
P, L stand for Adapter, Prefix-tuning, and LoRA,
respectively. Intuitively, if mi is useful for a given
data× task setup (or a particular instance), the gate
output for mi would be higher such that mi plays
a more important role. The actual interplay of sub-
modules, however, is more complicated given the
interdependency of the submodules and the com-
pounding effects of multiple layers.

Specifically, for adapter, there is a residual con-
nection between the feedforward network and the
adapter submodule that sums the adapter input (be-
fore normalization) hF and output hA as its final
output: h′A = hA + hF . We design a gating func-
tion GA ∈ (0, 1) that estimates the importance of
adapter by its direct input hFN using a feedforward

network with sigmoid activation and then scales its
output: h′A = GAhA+hF . The adapter submodule
is effectively bypassed if GA ≈ 0.

Similarly, for prefix-tuning, we design a gating
function GP ∈ (0, 1) that is applied to the prefix
vectors (PK and PV ) with the representation of the
original tokens (K and V ) intact. In this way, the
impact of the prefix would be diminished if the gate
output of the prefix-tuning submodule is low.3 The
gating function GP is estimated by the Transformer
layer input hin with another feedforward network.

As for LoRA, we note that there is already a
constant scaling factor α in its original design that
resembles the purpose of our gating mechanism.
We thus simply make the factor learnable per layer
by a third feedforward network that takes hin as
input instead of specifying a constant manually:
θtask = θpre-trained + GLδtask.

Despite the seeming simplicity of UNIPELT,
we note that it is nontrivial for a unified approach
to work well under different scenarios. Naively
combining different PELT methods as a hybrid ap-
proach could lead to mixed or worse performance
than using individual methods, as observed in both
our experiments and prior studies (Hu et al., 2021).

4 Experiments

We conduct extensive experiments with 8 tasks ×
4 data sizes × 7 methods × 5 runs per setup, along
with additional analysis for particular methods, re-
sulting in 1,000+ runs in total.

4.1 Experiment Setup

Task Setup. We conduct experiments on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019), which involves
four types of natural language understanding tasks
including linguistic acceptability (CoLA), senti-
ment analysis (SST-2), similarity and paraphrase
tasks (MRPC, STS-B, QQP), and natural language
inference (MNLI, QNLI, RTE). We exclude the
WNLI dataset following prior studies (Houlsby
et al., 2019; Devlin et al., 2019).
Data Setup. We mainly consider a low-resource
setting where training data is limited and the per-
formance of different methods varies much. We
sample a small subset of the training set for each
task with size K = {100, 500, 1000}. As it is in-
feasible to submit considerable runs to the GLUE

3Prefix-tuning cannot be fully eliminated as adapter or
LoRA due to the softmax operation in multi-head attention.
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Method SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP Avg.

[K = 100] Test Performance
Fine-tuning 79.614.25 81.810.35 16.564.34 55.881.64 69.255.94 74.076.51 42.563.43 60.416.42 60.021.84
BitFit 62.944.85 81.090.17 2.711.57 47.653.56 42.461.37 54.530.56 38.160.53 59.560.39 48.640.78
Adapter 80.482.94 81.400.19 2.024.04 52.780.27 72.250.49 77.321.54 38.813.64 60.884.00 58.240.99
Prefix-tuning 60.8712.47 81.220.00 0.000.00 55.962.00 71.912.69 57.690.02 40.582.49 15.680.12 47.991.77

→L = 50 79.521.21 81.220.00 5.198.62 49.242.08 66.332.45 7.1510.37 33.662.21 58.323.18 47.561.37
LoRA 81.560.94 81.660.81 13.3110.00 55.021.75 73.521.20 49.3521.87 39.604.98 0.090.02 49.262.19
UNIPELT (AP) 77.223.75 81.860.70 14.4210.24 55.522.16 72.260.89 79.141.97 42.591.20 63.411.44 60.801.53
UNIPELT (APL) 82.360.86 81.710.72 23.628.83 55.451.28 73.190.93 79.371.07 42.301.88 62.702.55 62.591.44
[K = 500] Test Performance
Fine-tuning 85.670.97 83.340.55 36.472.69 59.641.10 77.300.49 84.961.19 55.840.85 68.231.39 68.930.65
BitFit 83.440.63 82.160.37 3.322.59 61.882.75 69.159.91 76.300.36 40.823.30 65.293.66 60.301.91
Adapter 84.541.37 82.530.36 38.653.97 59.353.09 77.390.84 83.520.33 50.041.72 68.120.95 68.020.77
Prefix-tuning 83.650.69 82.961.63 38.162.25 63.182.70 78.501.12 79.751.49 58.061.04 54.3425.91 67.323.42
LoRA 84.981.10 82.530.70 39.862.71 63.032.57 79.460.66 65.0526.31 56.542.05 55.4627.74 65.864.18
UNIPELT (AP) 84.840.28 83.250.51 39.845.01 63.321.72 78.361.06 84.530.48 56.083.26 68.141.39 69.791.02
UNIPELT (APL) 84.911.41 83.560.59 39.812.55 64.122.45 79.280.63 85.260.70 54.073.74 68.870.41 69.980.42
[K = 1000] Test Performance
Fine-tuning 86.541.01 84.870.64 43.262.60 62.312.10 79.031.11 86.390.34 61.951.20 71.090.77 71.930.37
BitFit 83.990.39 83.950.81 22.4417.10 62.891.40 77.430.53 79.040.61 52.870.72 69.500.16 66.512.22
Adapter 85.600.63 84.490.60 42.331.98 61.811.57 79.680.23 85.520.29 57.862.44 70.320.71 70.950.55
Prefix-tuning 85.090.99 83.661.82 44.072.90 66.712.72 80.340.70 82.381.25 63.591.12 68.580.35 71.810.52
LoRA 86.261.22 86.040.99 45.501.11 65.632.11 81.000.98 81.561.97 61.321.65 70.890.81 72.280.69
UNIPELT (AP) 86.170.37 85.861.05 44.333.55 64.911.92 80.650.57 86.820.23 62.170.99 69.950.90 72.610.53
UNIPELT (APL) 87.060.81 86.651.10 45.441.97 65.491.92 81.220.51 87.100.21 62.490.94 70.990.95 73.310.52

Table 1: Results on the GLUE benchmark with K = {100, 500, 1000} training samples. The evaluation metrics
are Matthew’s Correlation for CoLA, F1 for MRPC and QQP, Spearman’s correlation for STS-B, and accuracy for
the rest. For MNLI, we evaluate on the matched dataset. We report average performance on five random seeds
with standard deviation as the subscript. Best and 2nd best methods under each setup are bold and underlined.

leaderboard (2 submissions/day), we take 1,000
samples on the training set as the development set
to select the best checkpoint and use the original
development set as the test set. To reduce variance,
we shuffle the data with 5 random seeds and re-
port the average performance. Additionally, we
consider a high-resource setting where the whole
training set is used and the best performance on the
GLUE development set is reported.
Compared Methods. We mainly compare
UNIPELT with fine-tuning and four representa-
tive PELT methods: adapter (Houlsby et al., 2019),
prefix-tuning (Li and Liang, 2021), BitFit (Ben Za-
ken et al., 2021), and LoRA (Hu et al., 2021).
For completeness, we consider two model vari-
ants UNIPELT (AP) and UNIPELT (APL), which
incorporate 2 and 3 PELT methods, respectively.
Implementation Details. We use BERTbase (De-
vlin et al., 2019) as the base model in the experi-
ments. Consistent results are observed in our pre-
liminary experiments with BARTlarge (Lewis et al.,
2020) (provided in App. C). We implement and
evaluate all the methods in the same codebase to
ensure a fair comparison. We largely follow the

default hyperparameters of different methods and
keep them the same on all the tasks for generaliz-
ability. We set the prefix length L = 10, adapter
bottleneck size Dmid = 48, LoRA rank Dmid = 8
if not specified otherwise.4 More implementation
and hyperparameter details can be found in App. B.

4.2 Analysis of Individual PELT Methods

In Table 1, we show the performance of different
methods on the GLUE benchmark with various
sizes of training data. The results on the devel-
opment sets are generally consistent with the test
sets and provided in App. D. Although the average
performance of different methods over 8 tasks is
sometimes similar, the differences between tasks
are quite significant under certain setups and can
be as large as 5~9 points on a specific task (e.g.,
STS-B and MNLI,K = 500) even when excluding
cases where some methods fail to learn effectively
(e.g., prefix-tuning on QQP, K = 100).

4While these hyperparameters may lead to differences in
trainable parameters, we keep them for analysis as they are
used by the official implementation. Also, we observe that
more trainable parameters do not guarantee better results.
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Next, we will analyze and examine each individ-
ual PELT method more closely.
Analysis of Adapter. The performance of adapter
is relatively stable – there is no significantly bet-
ter or worse result than fine-tuning consistent on
different tasks or sizes of training data. In gen-
eral, adapter is slightly worse than fine-tuning in
most cases. We do not observe that adapter consis-
tently outperforms fine-tuning in the low-resource
setting as in He et al. (2021), possibly because
they tune model hyperparameters on each task,
which could be computationally prohibitive when
there are considerable tasks. For example, they
choose the bottleneck size Dmid from {64, 128,
256}, while Dmid = 48 is fixed across tasks in our
experiments. Also, we only add one adapter in
each Transformer layer instead of two following
Pfeiffer et al. (2021). These two differences result
in 62.4%~90.5% fewer parameters than the adapter
used in He et al. (2021).

48 64 128 256
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Figure 2: Performance changes when the bottleneck
size of adapter is increased (on CoLA, K = 100).

To further study the effect of bottleneck size
Dmid in adapter, we increase Dmid and re-evaluate
adapter on a setup that it performs poorly (CoLA,
K = 100). As shown in Fig. 2, the performance
of adapter is increased gradually and becomes sig-
nificantly better only when Dmid = 256, which in-
volves 5.3× trainable parameters than the adapter
used originally (Dmid = 48), 4.3× than UNIPELT
(AP), and 3.4× than UNIPELT (APL), suggest-
ing that a larger bottleneck size could be beneficial
when adapter learns ineffectively.

On the other hand, there are certain tasks (e.g.,
STS-B) that adapter largely outperforms compet-
itive methods such as prefix-tuning and LoRA re-
gardless of the size of training data, suggesting that
one should favor adapter over other PELT methods
under certain scenarios as well.
Analysis of Prefix-tuning. Prefix-tuning performs

poorly with K = {100, 500} and becomes on par
with fine-tuning whenK reaches 1000. We also ob-
serve that prefix-tuning fails to learn effectively on
certain tasks when the training data is limited (e.g.,
K = 100 on SST-2 and K = 500 on QQP), lead-
ing to unsatisfactory performance and (or) large
variance across different runs. Similar phenomena
have been observed in a concurrent study (Gu et al.,
2021) on few-shot prompt-tuning.

To ensure that the poor performance of prefix-
tuning is not due to its fewer trainable parameters
(based on its default setting), we further increase
the prefix length to L = 50 such that its train-
able parameters are comparable to adapter, and re-
evaluate prefix-tuning on all 8 tasks with K = 100.
For the 4 tasks where prefix-tuning (L = 10) per-
forms poorly (SST2, CoLA, STS-B, and QQP),
while its performance is significantly improved on
3 tasks, it also performs significantly worse on the
other task (STS-B), which suggests that training
instability in the low-resource regime is still an
issue for prefix-tuning even with more trainable
parameters.5 Besides, prefix-tuning (L = 50) still
lags behind adapter or UNIPELT (AP) on 3 of the
4 tasks. Furthermore, the average performance of
prefix-tuning (L = 50) on 8 tasks is even slightly
worse than with L = 10, which indicates that in-
creasing prefix length may not be a panacea for
all the scenarios. A larger L also leads to signifi-
cant training/inference slowdown due to the costly
multi-head attention. More broadly, such results
suggest that using more trainable parameters does
not guarantee better performance.

On the bright side, prefix-tuning performs well
on certain tasks such as natural language inference
(RTE and MNLI) with various sizes of training
data, which suggests that one should also prefer
prefix-tuning in certain cases.
Analysis of BitFit & LoRA. Tuning only the bias
terms of the model does not lead to very satisfac-
tory results in our experiments – BitFit never per-
forms the best and generally performs the worst in
different data and task setups. Therefore, we do
not consider BitFit in the following experiments
and exclude BitFit as a submodule of UNIPELT.
As for LoRA, there are a few setups where LoRA
fails to learn effectively as well, such as STS-B
and QQP (K = {100, 500}), leading to high vari-
ance across runs. Apart from that, LoRA performs

5Tuning other hyperparameters like learning rate does not
appear to alleviate the issue either.
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Figure 3: Performance comparison of various scaling
factors for LoRA on 2×2 task and data setups.

quite competitively despite using fewer trainable
parameters than methods like adapter, especially
when K = 1000, achieving the best or 2nd best
performance on 4 of 8 tasks.

As LoRA has a scaling factor α that can be seen
as a static gating function under our formulation,
we further investigate its importance by evaluating
LoRA with different α. As shown in Fig. 3, LoRA
is quite sensitive to the scaling factor and there
seems to be no single optimal value that works
well across multiple task and data setups. Such
findings suggest that gating is critical and motivate
us to use more fine-grained and dynamic control
for UNIPELT. Besides, we observe that increasing
α consistently results in faster convergence, possi-
bly because the trainable parameters would receive
larger gradient updates with a larger α.

4.3 Analysis of UNIPELT

Next, we will turn to our proposed framework
UNIPELT, which incorporates multiple existing
PELT methods as submodules.
Low-Resource Performance. Overall, UNIPELT
(APL) and UNIPELT (AP) consistently achieve
the best and second best average performance on
both the development and test sets regardless of
the number of training samples. The gains are
generally 1~4% over the submodule that performs
the best (when used individually). Such results
demonstrate the advantages of our hybrid approach
regarding model effectiveness and generalizability.

At the per-task level, UNIPELT (APL) and
UNIPELT (AP) perform the best or second best on
7/6/7 of 8 tasks when trained with 100/500/1,000
samples, and never perform the worst in any setup.
When comparing the two variants, UNIPELT

(APL) outperforms UNIPELT (AP) on 4/6/8 of
8 tasks when trained with 100/500/1,000 samples.
Such results indicate that UNIPELT is quite ro-
bust and performs reliably under different scenar-
ios. The improvements of UNIPELT over its sub-
modules are generally larger when having fewer
training samples, suggesting that UNIPELT per-
forms especially well in the low-resource regime.
In particular, on the tasks where other PELT meth-
ods fail to learn effectively such as CoLA and QQP
(K = 100), UNIPELT manages to achieve perfor-
mance better than fine-tuning.
UNIPELT vs. Upper Bound. In Table 2, we
show the comparison of UNIPELT and the up-
per bound that takes the best performance of its
submodules on each task. We observe that both
UNIPELT (AP) and UNIPELT (APL) perform
similarly or even better than their upper bound,
which suggests that UNIPELT successfully learns
to leverage different submodules and maintains
(near) optimal performance under different setups.
The fact that UNIPELT can outperform the upper
bound also hints that a mixture of PELT methods
(involving different parts of the PLM) might be in-
herently more effective than single methods (with
a limited scope of the PLM architecture).

K max({A,P}) UNIPELT max({A,P, L}) UNIPELT

100 58.86 60.80 60.60 62.59
500 69.69 69.79 70.02 69.98
1000 72.58 72.61 73.19 73.31

Table 2: Comparison of average test performance be-
tween UNIPELT and the upper bound that takes the
best performance of its submodules on each task.

High-Resource Performance. In Table 3, we
list the performance of different methods when
all training samples are used. UNIPELT again
achieves the best overall performance. The gains
are not as significant as in the low-resource set-
ting, which is somewhat expected as existing PELT
methods typically perform on par with fine-tuning
given abundant training data and the potential of
improvement is not as high. That said, the perfor-
mance of UNIPELT is still the best or 2nd best on
all 8 tasks, and generally comparable to the best
submodule used individually on each task. Besides,
simply combining multiple PELT methods without
gating does not work well in the high-resource set-
ting – although UNIPELT-NoGate never performs
the worst in each task, its average performance is
unsatisfactory (-0.89 vs. UNIPELT).
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Method SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP Avg.

[K = all] Best Performance on GLUE Dev
Fine-tuning 91.63 90.94 62.08 66.43 89.95 89.76 83.23 87.35 82.67
Adapter 91.86 89.86 61.51 71.84 90.55 88.63 83.14 86.78 83.02
Prefix-tuning 90.94 91.29 55.37 76.90 90.39 87.19 81.15 83.30 82.07
LoRA 91.51 90.03 60.47 71.48 89.93 85.65 82.51 85.98 82.20
UNIPELT (AP) 91.86 90.28 61.15 71.84 90.77 88.86 83.41 86.74 83.12

-NoGate 91.74 90.18 58.63 71.12 90.30 88.76 81.58 85.53 82.23
UNIPELT (APL) 91.51 90.94 61.53 73.65 90.50 88.93 83.89 87.12 83.50

Table 3: Results on the GLUE benchmark when all training samples are used.

Method #Param. TimeT TimeI
Fine-tuning 110M (100%) 100% 100%
BitFit 103K (0.09%) 65% 102%
Prefix-tuning 184K (0.17%) 56% 114%
LoRA 295K (0.27%) 53% 105%
Adapter 895K (0.81%) 55% 107%
UNIPELT (AP) 1.1M (0.99%) 55% 118%
UNIPELT (APL) 1.4M (1.26%) 67% 127%

Table 4: Number of trainable parameters and
T raining/Inference time relative to fine-tuning.

4.4 Efficiency of PELT Methods

We benchmark the efficiency of PELT methods and
list in Table 4 their number of trainable parameters
and training/inference time relative to fine-tuning.
Parameter Efficiency. As the trainable parame-
ters in PELT methods are almost negligible, com-
bining multiple methods does not lead to significant
losses in parameter efficiency. UNIPELT still has
few trainable parameters compared to fine-tuning
(0.99%~1.26%). The parameters can be further re-
duced if one uses more parameter-efficient variants
(e.g., Karimi Mahabadi et al. (2021a)), which can
be easily swapped with the vanilla version used in
our current framework. Also, note that more train-
able parameters do not always lead to better per-
formance, as shown in our experiments and prior
studies (He et al., 2021; Pfeiffer et al., 2021).
Training and Inference Efficiency. Due to
parameter efficiency, all PELT methods train
30%~50% faster than fine-tuning and incorporating
multiple PELT methods into UNIPELT does not
suffer from slower training. On the other hand, the
inference time of PELT methods is generally longer
since they involve more FLOPs. UNIPELT has a
slightly larger inference overhead (4%~11% com-
pared to its slowest submodule), which we argue is
insignificant since larger models that may achieve
similar performance gains (e.g., BERTlarge) need

around 300% inference time (Wolf et al., 2020).

5 Related Work

Parameter-Efficient Tuning of PLMs. As it is
increasingly infeasible to train and store full copies
of large PLMs for various downstream tasks, how
to efficiently tune the PLMs with few trainable pa-
rameters becomes critical. Existing PELT methods
can be largely divided into two categories based on
whether new trainable parameters are introduced.
Specifically, one may either train a subset of the
model parameters such as the prediction head (Lee
et al., 2019) and bias terms (Ben Zaken et al., 2021),
or introduce task-specific parameters to different
parts of the PLM such as before multi-head at-
tention (Li and Liang, 2021) or after feedforward
layer (Houlsby et al., 2019). As the number of
PELT methods keeps increasing, the purpose of
UNIPELT is to better understand and leverage the
distinctions of various methods instead of propos-
ing yet another method.
Mixture-of-Experts. UNIPELT is also related to
approaches that involve a high-capacity network
and activate (upweight) different parts of the net-
work given different inputs. One notable example
is Mixture-of-Experts (MoE) (Jacobs et al., 1991;
Shazeer et al., 2017), which maintains a set of ex-
perts (neural networks) and one or more trainable
gates that select a combination of the experts spe-
cific to each input. Despite being conceptually
similar, UNIPELT is different from MoE: the sub-
modules in UNIPELT are not combined explicitly
by summation like MoE but in sequential order
and affect each other implicitly. Moreover, the
“experts” are diverse in UNIPELT while usually
homogeneous or identical in MoE methods.

6 Conclusion

In this paper, we present a comprehensive study of
representative parameter-efficient language model
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tuning (PELT) methods and propose a unified
framework, which incorporates different PELT
methods as submodules and learns to activate the
most appropriate submodules for a given task or
data setup. Our proposed framework consistently
outperforms conventional fine-tuning as well as the
submodules that it incorporates under different se-
tups, and generally surpasses the upper bound that
takes the best performance of each submodule used
individually on each task. Our findings suggest that
a mixture of multiple PELT methods that involve
different parts of the PLM may be favorable regard-
ing both model effectiveness and robustness. For
future work, we will try to better understand the
discrepancy of various PELT methods in different
scenarios. We also plan to investigate a multi-task
setting where multiple submodules can be activated
and cooperate at the task level.
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A Prefix-tuning vs. Prompt-based
Fine-tuning

We note that prefix-tuning (or prompt-tuning)
is different from prompt-based fine-tuning meth-
ods (Schick and Schütze, 2021; Gao et al., 2021)
in many ways: (1) Prompt-based fine-tuning is not
parameter-efficient as it updates all model param-
eters while prefix-tuning only updates the prefix
matrix P . (2) The prompts are only used in model
input for prompt-based fine-tuning but added to
every Transformer layer in prefix-tuning (stored as
different vectors). (3) Prompt-based fine-tuning
typically leverages carefully designed natural lan-
guage prompts while prefix-tuning uses continuous
prompts (virtual tokens).

B Implementation Details

Data Preparation. We shuffle the training set with
seed s, take the first K samples as the new training
set, and the next 1,000 samples as the development
set. We use s = {111, 222, 333, 444, 555} as the
data seeds and the same seed (s = 42) for model
training. We also conduct another set of prelim-
inary experiments by fixing the data and using 5
different random seeds for model training, the re-
sults of which are similar (Table 5).
Hyperparameters. We adopt AdapterHub (Pfeif-
fer et al., 2020a), a library based on HuggingFace
Transformers (Wolf et al., 2019), as our codebase.
We largely follow the recommended hyperparame-
ters used in different methods for a fair comparison.
We set the input length to 128 and the training
batch size to 16. We set the number of epochs to
50 and adopt early stopping with a patience of 10
non-increasing epochs. We set the learning rate of
fine-tuning and adapter to 2e-5 and 1e-4 according
to the findings in prior studies (Pfeiffer et al., 2020a;
He et al., 2021). For prefix-tuning and UNIPELT,
as they are not previously evaluated on NLU tasks,
we tune their learning rates from {1e-4, 2e-4, 5e-4}
on the development set and set to 2e-4 and 5e-4,
respectively. For BitFit and LoRA, we choose the
learning rates commonly used in their own experi-
ments (1e-4 and 5e-4, respectively). We set α = 2
and r = 8 in LoRA according to its official scripts.

C BART Results

In our preliminary experiments, we also evaluated
UNIPELT on BARTlarge (Lewis et al., 2020). We
show the results of fine-tuning, adapter, prefix-

Setup Fine-tuning Adapter Prefix-tuning UNIPELT (AP)

Model seed 78.392.92 77.120.50 73.162.89 78.660.24
Data seed 77.552.94 76.870.55 71.902.47 79.020.44

Table 5: Average performance with K = 1000 on the
GLUE benchmark with BARTlarge as the base model.
Results are averaged over 5 runs by changing the model
or data seeds.

tuning, and UNIPELT (AP) in Table 5. 1000 train-
ing examples are used and the average best perfor-
mance on the GLUE development set is reported
(excluding QQP). The results are largely consistent
with those on BERTbase. UNIPELT again achieves
the best performance with notably smaller variance.

D Detailed Performance

In Table 6, we list the detailed results on both devel-
opment and test sets of the GLUE benchmark. The
observations and findings are largely consistent on
the two evaluation splits.
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Method SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP Avg.

[K = 100] Dev Performance
Fine-tuning 81.240.98 81.460.78 16.942.38 58.081.63 69.665.03 60.646.97 43.183.13 61.636.30 59.101.87
BitFit 62.064.62 80.660.39 5.731.46 50.260.91 42.022.29 31.182.47 38.400.84 61.550.52 46.480.66
Adapter 80.600.85 81.110.78 2.194.38 53.161.99 72.580.66 66.003.66 40.302.82 62.323.20 57.280.60
Prefix-tuning 66.2412.03 80.510.31 0.000.00 56.601.25 71.942.58 42.811.93 42.261.89 15.140.95 46.941.43
LoRA 82.540.84 80.820.50 14.388.57 56.622.01 74.260.89 47.8714.05 41.384.59 0.000.00 49.731.29
UNIPELT (AP) 80.401.95 81.020.54 15.076.46 57.681.63 73.500.54 68.193.97 44.501.11 64.890.86 60.661.16
UNIPELT (APL) 83.080.54 81.080.53 23.525.71 57.961.49 74.000.46 68.293.01 43.101.13 63.412.93 61.800.77
[K = 100] Test Performance
Fine-tuning 79.614.25 81.810.35 16.564.34 55.881.64 69.255.94 74.076.51 42.563.43 60.416.42 60.021.84
BitFit 62.944.85 81.090.17 2.711.57 47.653.56 42.461.37 54.530.56 38.160.53 59.560.39 48.640.78
Adapter 80.482.94 81.400.19 2.024.04 52.780.27 72.250.49 77.321.54 38.813.64 60.884.00 58.240.99
Prefix-tuning 60.8712.47 81.220.00 0.000.00 55.962.00 71.912.69 57.690.02 40.582.49 15.680.12 47.991.77

→L = 50 79.521.21 81.220.00 5.198.62 49.242.08 66.332.45 7.1510.37 33.662.21 58.323.18 47.561.37
LoRA 81.560.94 81.660.81 13.3110.00 55.021.75 73.521.20 49.3521.87 39.604.98 0.090.02 49.262.19
UNIPELT (AP) 77.223.75 81.860.70 14.4210.24 55.522.16 72.260.89 79.141.97 42.591.20 63.411.44 60.801.53
UNIPELT (APL) 82.360.86 81.710.72 23.628.83 55.451.28 73.190.93 79.371.07 42.301.88 62.702.55 62.591.44
[K = 500] Dev Performance
Fine-tuning 86.661.40 82.560.88 37.473.06 62.881.79 77.581.64 77.342.03 58.501.53 69.401.32 69.050.38
BitFit 84.661.28 81.800.96 5.661.87 61.880.95 69.328.90 59.551.41 42.623.23 66.062.99 58.941.65
Adapter 85.741.03 82.740.87 38.224.14 63.521.98 78.201.64 76.151.18 51.302.65 69.231.30 68.140.66
Prefix-tuning 86.721.46 82.261.16 40.255.45 66.080.83 78.441.48 71.412.30 60.701.47 54.4725.86 67.543.45
LoRA 86.361.37 82.381.35 42.603.13 65.461.74 79.341.23 60.5816.76 58.702.17 56.3928.20 66.484.02
UNIPELT (AP) 86.261.90 82.771.09 42.483.38 65.081.65 78.861.45 77.831.29 59.463.71 68.952.14 70.210.78
UNIPELT (APL) 86.101.28 83.160.92 43.834.73 64.022.99 79.561.49 78.541.95 57.083.87 69.560.89 70.230.55
[K = 500] Test Performance
Fine-tuning 85.670.97 83.340.55 36.472.69 59.641.10 77.300.49 84.961.19 55.840.85 68.231.39 68.930.65
BitFit 83.440.63 82.160.37 3.322.59 61.882.75 69.159.91 76.300.36 40.823.30 65.293.66 60.301.91
Adapter 84.541.37 82.530.36 38.653.97 59.353.09 77.390.84 83.520.33 50.041.72 68.120.95 68.020.77
Prefix-tuning 83.650.69 82.961.63 38.162.25 63.182.70 78.501.12 79.751.49 58.061.04 54.3425.91 67.323.42
LoRA 84.981.10 82.530.70 39.862.71 63.032.57 79.460.66 65.0526.31 56.542.05 55.4627.74 65.864.18
UNIPELT (AP) 84.840.28 83.250.51 39.845.01 63.321.72 78.361.06 84.530.48 56.083.26 68.141.39 69.791.02
UNIPELT (APL) 84.911.41 83.560.59 39.812.55 64.122.45 79.280.63 85.260.70 54.073.74 68.870.41 69.980.42
[K = 1000] Dev Performance
Fine-tuning 87.700.89 84.730.61 42.612.62 64.902.01 78.862.00 81.311.39 63.741.59 71.991.59 71.980.59
BitFit 86.301.36 83.630.18 20.4516.56 64.241.55 76.760.84 66.650.87 53.221.73 68.952.32 65.022.12
Adapter 87.061.44 84.790.42 43.481.46 65.620.93 79.881.26 80.881.89 59.562.46 70.521.48 71.470.33
Prefix-tuning 87.861.23 83.481.15 44.042.74 68.080.81 79.601.61 75.472.92 65.480.48 68.940.93 71.620.54
LoRA 87.501.01 85.091.02 47.113.02 67.200.78 80.861.88 76.331.28 62.861.53 71.481.45 72.300.52
UNIPELT (AP) 87.321.73 85.520.63 45.483.52 66.600.99 80.701.59 82.961.47 65.562.09 70.581.44 73.090.46
UNIPELT (APL) 88.021.28 86.050.73 45.702.47 66.861.32 80.501.76 83.091.55 64.600.72 70.640.77 73.180.27
[K = 1000] Test Performance
Fine-tuning 86.541.01 84.870.64 43.262.60 62.312.10 79.031.11 86.390.34 61.951.20 71.090.77 71.930.37
BitFit 83.990.39 83.950.81 22.4417.10 62.891.40 77.430.53 79.040.61 52.870.72 69.500.16 66.512.22
Adapter 85.600.63 84.490.60 42.331.98 61.811.57 79.680.23 85.520.29 57.862.44 70.320.71 70.950.55
Prefix-tuning 85.090.99 83.661.82 44.072.90 66.712.72 80.340.70 82.381.25 63.591.12 68.580.35 71.810.52
LoRA 86.261.22 86.040.99 45.501.11 65.632.11 81.000.98 81.561.97 61.321.65 70.890.81 72.280.69
UNIPELT (AP) 86.170.37 85.861.05 44.333.55 64.911.92 80.650.57 86.820.23 62.170.99 69.950.90 72.610.53
UNIPELT (APL) 87.060.81 86.651.10 45.441.97 65.491.92 81.220.51 87.100.21 62.490.94 70.990.95 73.310.52

Table 6: Results on the GLUE benchmark with K = {100, 500, 1000} training samples. The evaluation metrics
are Matthew’s Correlation for CoLA, F1 for MRPC and QQP, Spearman’s correlation for STS-B, and accuracy for
the rest. For MNLI, we evaluate on the matched dataset. We report average performance on five random seeds
with standard deviation as the subscript. Best and 2nd best methods under each setup are bold and underlined.
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