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Abstract

CLIP has shown a remarkable zero-shot capa-
bility on a wide range of vision tasks. Pre-
viously, CLIP is only regarded as a power-
ful visual encoder. However, after being pre-
trained by language supervision from a large
amount of image-caption pairs, CLIP itself
should also have acquired some few-shot abil-
ities for vision-language tasks. In this work,
we empirically show that CLIP can be a strong
vision-language few-shot learner by leverag-
ing the power of language. We first evaluate
CLIP’s zero-shot performance on a typical vi-
sual question answering task and demonstrate
a zero-shot cross-modality transfer capability
of CLIP on the visual entailment task. Then
we propose a parameter-efficient fine-tuning
strategy to boost the few-shot performance on
the vqa task. We achieve competitive zero/few-
shot results on the visual question answering
and visual entailment tasks without introduc-
ing any additional pre-training procedure.

1 Introduction

Vision-language understanding (VLU) tasks, such
as visual question answering (Antol et al., 2015)
and visual entailment (Xie et al., 2019), test a sys-
tem’s ability to comprehensively understand the se-
mantics of both visual world and natural language.
To capture the alignment between vision and lan-
guage, various efforts have been made to build
the vision-language pre-trained models (Lu et al.,
2019; Chen et al., 2020; Su et al., 2020; Zhang
et al., 2021; Wang et al., 2021). Despite their supe-
rior performances, these methods have extensively
utilized human-annotated training data that are ex-
pensive or require expert knowledge, such as object
detection datasets (Lin et al., 2014; Kuznetsova
et al., 2020) and aligned image-text pairs (Deng
et al., 2009; Sharma et al., 2018). Collecting such
datasets requires heavy work on data gathering and
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Figure 1: Examples of the two vision-language under-
standing tasks. For VQA, language prompts are used.
For visual entailment, caption and hypothesis, i.e., text-
text pairs, are used in training, while image and hypoth-
esis, i.e., image-text pairs, are used at inference.

human annotation, and thus their scales are only
in the realm of tens of millions, which are much
smaller than the Internet text corpora for NLP pre-
training (Devlin et al., 2019; Brown et al., 2020).

Recently, CLIP (Radford et al., 2021) has been
proposed to learn visual concepts with natural lan-
guage supervision, where its 400 million image-
text pairs are crawled from the Internet. CLIP
consists of a visual encoder and a text encoder,
and it learns visual representations by aligning im-
ages and texts through contrastive loss. In this way,
CLIP achieves strong zero-shot performances on vi-
sion benchmarks such as ImageNet. Besides, Shen
et al. (2022) prove that CLIP could be leveraged
as a strong visual encoder to benefit downstream
vision-language tasks. However, there are two
major differences between CLIP and previous vi-
sual encoders: 1) it is trained on much larger yet
noisy web data, and 2) it has a shallow interac-
tion between vision and language. The first feature
promises the generalization ability of CLIP, and the
second one equips alignment ability across modali-
ties. Could the strong zero-shot ability of CLIP be
transferred to vision-language understanding tasks?
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To answer the above question, in this work, we
empirically study how to transfer CLIP’s zero-shot
ability into VLU tasks and further turn CLIP into
a few-shot learner. We carried out experiments
on two VLU tasks: 1) visual question answering,
where the model needs to give an answer according
to the details of an image and a natural sentence
question, and 2) visual entailment, where the model
needs to determine the entailment relation between
an image and a natural sentence. Figure 1 demon-
strates the basic forms of the two studied tasks.

For the zero-shot visual question answering task,
the key to a successful zero-shot capability transfer
is to mitigate the gap between the pre-training task
of CLIP and the task form of question answering.
Inspired by the recent advancements of few-shot
learning in NLP (Schick and Schütze, 2021b; Gao
et al., 2021), we address this issue by introducing a
two-step prompt generation strategy, including au-
tomatic conversions from question to statement to
get masked templates, and a span-infilling with gen-
erative pre-trained T5 model (Raffel et al., 2020)
to get candidate answers.

We explore a zero-shot cross-modality (language
and vision) transfer capability through the visual
entailment task. Specifically, we replace the image
with its captions during training and only update
a small classification layer. Then at inference, as
usual, we still use image-text pairs for testing. This
allows us to investigate how well the language and
vision representations are aligned in CLIP models.

We further leverage few-shot learning to im-
prove CLIP’s visual question answering perfor-
mance based on the zero-shot transferring methods.
We find that optimizing only bias and normaliza-
tion (BiNor) parameters would make better use of
limited examples and yield better results than the
latest few-shot model Frozen (Tsimpoukelli et al.,
2021). Experiments confirm that CLIP models can
be good vision-language few-shot learners.

Our contributions are summarized as follows:

• To the best of our knowledge, this is the first
work that studies how to transfer CLIP’s zero-
shot capabilities into VLU tasks and confirms
CLIP models can be good few-shot learners.

• A zero-shot cross-modality transfer capability
in CLIP is demonstrated.

• A parameter-efficient fine-tuning strategy, Bi-
Nor, is proposed to boost CLIP’s few-shot
visual question answering performance.

Figure 2: CLIP consists of a visual encoder V, a text
encoder T, and a dot product between their outputs. It
is trained to align images and texts with a contrastive
loss. The dot product is used as an alignment score.

2 Preliminaries

2.1 CLIP

CLIP, short for Contrastive Language-Image Pre-
training (Radford et al., 2021), learns visual repre-
sentations from natural language supervision. Fig-
ure 2 shows its key components and the way it
works. It consists of a visual encoder V, e.g.
ResNet (He et al., 2016) and ViT (Dosovitskiy
et al., 2020), and a text encoder T, e.g. trans-
former (Vaswani et al., 2017), where they encode
images and texts independently. Followed up is a
dot-product between the two encoders’ outputs, i.e.
T(text) · V(image), which is used as an alignment
score between the input image and text. It is pre-
trained to distinguish aligned image-text pairs from
randomly combined ones by a contrastive loss. In-
stead of training on vision benchmarks, CLIP lever-
ages abundant language supervisions from 400 mil-
lion web-crawled image-text pairs and can conduct
a variety of image classification tasks without spe-
cific optimizing. However, directly applying CLIP
as a vision-language understanding model is still
difficult (Kim et al., 2021; Shen et al., 2022).

2.2 Vision-Language Understanding Tasks

Visual question answering. The task of VQA
requires the model to answer questions about the
details of input images. Following previous work,
we experiment on the VQAv2 (Goyal et al., 2017)
dataset and formulate the task as a classification
problem over 3,129 pre-defined most frequent an-
swers. The images in VQAv2 come from Microsoft
COCO (Lin et al., 2014), and there are 65 types
of questions in the dataset, such as how many and
what color is. For answers, there are three types,
including yes/no, number, and other.
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Figure 3: The overall framework of the proposed TAP-C method for zero-shot VQA. TAP-C first generates a
masked template from the question by demonstrating examples to T5 and then filters out impossible answers
according to the language model. Infilling the masked template with selected answers results in prompts, which
could be paired with images to calculate image-text alignment scores by the CLIP. The dashed line denotes the
process of prompts generation (§ 3.1), and the solid line denotes prompting CLIP to conduct zero-shot VQA (§ 3.2).

Visual entailment. Similar to the natural lan-
guage inference (NLI), the task of visual entail-
ment predicts the entailment relations, including
entailment, neutral, and contradiction, between a
premise and a hypothesis. Under the VL setting,
the premise in visual entailment is based on the
details of an image rather than textual descriptions
in NLI. The SNLI-VE dataset (Xie et al., 2019)
is adapted from SNLI (Bowman et al., 2015) and
replaces SNLI’s premises with the images in the
Flickr30k dataset (Young et al., 2014). Consid-
ering the above characteristics, here we leverage
the SNLI-VE dataset to verify the zero-shot cross-
modality (language and vision) transfer capabilities
of the CLIP models. This zero-shot setting investi-
gates how well the vision and language representa-
tions are aligned in CLIP models.

3 Zero-shot VQA

3.1 A Two-Step Prompt Generation Method

Previous works (Kim et al., 2021; Shen et al., 2022)
have found that directly applying CLIP models
for zero-shot VL tasks are infeasible. For exam-
ple, nearly random-chance level zero-shot perfor-
mances are observed on the VQAv2 dataset by di-
rectly applying a “question: [question text] answer:
[answer text]” prompt template (Shen et al., 2022).
After rethinking the essence of prompt engineering
in CLIP, we can find that the key to a successful
zero-shot capability transfer for the VQA task is to
mitigate the gap between natural language descrip-
tion and the form of question answering.

Motivated by the above observations, we pro-
pose a two-step automatic prompt generation
method to enable the zero-shot VQA capabilities
in CLIP models, with the assistant of a pre-trained
generative T5 model (Raffel et al., 2020). The key
ideas of the two-step prompt generation method is
illustrated in Figure 3: the first step is to convert
the question into a masked template T , and the
second step is to filter out impossible answers by
language model and get a candidate answer set VF .
The infilled template connects both the question
and answers in a natural description way and thus
could be an ideal form of prompt for the VQA task.

Step I: Automatic Template Generation
This step is designed to convert the question into
a template, which is a statement with a mask to-
ken. To tackle the conversion challenge, we explore
two ways, including an in-context demonstration
method and a dependency parsing based method.

Demonstration to T5. The idea of this conver-
sion method is relatively simple: by demonstrating
question-to-template (with [mask] token) examples
to the language model, the model could implicitly
capture the conversion pattern. We define a few
examples for each question type and convert the
questions according to their types. Figure 3 shows
a conversion example. More cases could be found
at appendix D. Specifically, we use T5 (Raffel et al.,
2020), a large pre-trained text-to-text Transformer,
for the question to template conversion. T5 is pre-
trained to infill the missing spans (replaced by T5
special tokens, e.g. <extra_id_0>) of a sentence.
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We present a concatenation of examples, question,
and the <extra_id_0> token to T5 for conditional
generation to restore it, and the generated span is
our masked template, named as Tdemo.

Dependency parsing. Although the T5 conver-
sion method works well in most situations, it still
faces some out-of-coverage problems. To compen-
sate for this shortcoming, we turn to a traditional
dependency parsing based way. This method con-
verts a question to a statement by its part-of-speech
tagging and parsing results, where the wh-word,
root word, auxiliary, or copula, as well as preposi-
tions and particles that are dependents of the wh-
word or the root, are identified, and transformations
are performed according to grammar rules. We use
the Stanza (Qi et al., 2020) to POS tag and parse
the question and leave the answer as a mask to-
ken. Then the rules1 in Demszky et al. (2018) are
leveraged to perform the conversion. We name the
template obtained in this way as Tparsing.

Step II: Answer Filtering
As common sense, “the specie of a flower” can
never be a vase. Therefore, leveraging pre-trained
language models, which have well learned such
concepts during pre-training, to filter out less likely
answers would have a positive influence on the final
question answering performance. Given a masked
template T , a language model L, and the answer
vocabulary V , we get the filtered answers VF as:

Top-k
v∈V

{logPL ([mask] = v|T )} , (1)

where the [mask] is the answer span in template T ,
and PL is the output distribution of the language
model. Here we also apply the T5 to infill answers
because it makes no assumption about the length
and position of the span. Once we get the tem-
plate T and the filtered answers VF , we replace
the [mask] token in template T with every selected
answer in VF to get the prompts P .

3.2 TAP-C Method for VQA

The proposed method follows a Template-Answer-
Prompt then CLIP discrimination pipeline, and thus
we name it as TAP-C. To make better use of tem-
plate Tparsing and Tdemo, we use an ensemble of both
templates by simply setting a threshold for the T5’s
generation confidence. We prefer to use Tdemo but

1https://github.com/kelvinguu/qanli

Figure 4: Zero-shot cross-modality transfer on visual
entailment task. The red line denotes the text-only train-
ing process, and the blue line denotes the image-text,
i.e., cross-modality, evaluation process. The MLP is
shared between training and evaluation, while both en-
coders in CLIP models are not updated.

use Tparsing if the generation confidence is low. Fi-
nally, given an image i and the generated prompts
P , the TAP-C method can get a zero-shot VQA
prediction by:

max
v∈VF , pv∈P

{V (i) · T (pv)} , (2)

where V and T are the visual and text encoders
in CLIP models. The pv is a prompt generated
by the TAP-C method, where the masked template
is infilled with answer v from the filtered answer
vocabulary VF .

4 Zero-shot Cross-modality Transfer

Recent pre-trained multilingual language mod-
els (Wu and Dredze, 2019; Liu et al., 2020; Xue
et al., 2021) have been shown to be successful in
transferring representations across different lan-
guages. For example, they can be only fine-tuned
on a source language and evaluated on various tar-
get languages without specific training, yet still
achieving good performance. On the other hand,
the CLIP models achieve strong zero-shot perfor-
mances on both image-to-text and text-to-image
retrieval tasks (Radford et al., 2021) only through
a dot product between vision and language repre-
sentations, which gives us an intuition that the two
modalities are well aligned in the CLIP models.
Is there a cross-modality capability between lan-
guage and vision in the CLIP models, just like the
multilingual ones across languages?

To answer the above question, we utilize the vi-
sual entailment task (§ 2.2) to explore the zero-shot
cross-modality performance. Figure 4 briefs the
key idea. Specifically, we train an MLP classifier
over the fused representations of premise and hy-
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pothesis, and the fusion function is:

fuse (v1, v2) = [v1, v2, v1 + v2, v1 − v2, v1 · v2] ,

where v1 and v2 are two input vectors. During
training, text-only premise and hypothesis are used
as the input of CLIP text encoder:

MLP {fuse (T(pret), T(hypt))} , (3)

where T is the CLIP text encoder and is not up-
dated during training. And pret and hypt are the
text premise and hypothesis. Then at inference,
the premise is in image and is fed into the CLIP
visual encoder. The trained MLP is leveraged for
prediction:

max {MLP {fuse (V(prei), T(hypt))}} , (4)

where the prei is the image premise and V is the
CLIP visual encoder.

5 Few-shot Learning for VQA

In this section, We aim to investigate whether the
CLIP models could benefit from few-shot learning,
where we work on the visual question answering
task to study it.

5.1 Setup of Few-shot VQA
Here we briefly define the terminology used in our
few-shot visual question answering settings:

• Number of ways. Originally, it is defined as
the distinct classes in a task. However, rather
than defining a 3,129-way task according to
the answer vocabulary, we define the number
of ways as question type times answer type
(§ 2.2), i.e., 65×3=195 ways, to ensure the
model’s generalization ability where it can
answer a type of questions.

• Number of shots. The number of distinct
examples in each way. Here a shot is an image
along with the question and the answer.

• Support set and query set. Before train-
ing, we will sample a 195-way K-shot subset
from the VQAv2 training set, and thus there
are 195×K distinct examples available during
few-shot learning. In each training epoch, we
select C ways out of 195 ways for parameter
optimizing and divide k shots in each way into
support set and query set with a fixed propor-
tion. The support set is used for model train-
ing, and the query set is used for performance
evaluation (similar to a typical dev set).

5.2 Parameter-efficient Fine-tuning
Under the few-shot setting, our goal is to make
the CLIP models learn from N-way K-shot exam-
ples and improve the zero-shot VQA performance.
Specifically, we identify only a very small set of
parameters in CLIP models (about 0.3 million out
of over 100 million, details in appendix B.3), in-
cluding the bias term and normalization term, to be
optimized. For either the BatchNorm in ResNet or
the LayerNorm in Transformer, the normalization
could be uniformly denoted as:

y =
x− E(x)√
Var(x) + ε

· γ + β, (5)

where x and y are the mini-batched input and out-
put, and the γ and β are learned parameters. And
for all the linear layers and projection layers in
CLIP models, they could be denoted as:

o = w · h+ bias, (6)

where h and o are the input and output vectors. We
define the learnable parameter set as:

Plearn = {bias, γ, β}. (7)

We optimize the Bias and Normalization (BiNor)
parameters on the few-shot examples with a stan-
dard cross-entropy loss over the dot products from
each image-prompt pair (Eq.2).

Besides, when there are a few examples avail-
able, we could also leverage an in-context demon-
stration manner to improve the performance of the
answer filtering process in TAP-C (§ 3.1) by:

Top-k
v∈V

{logPL ([mask] = v | [D, T ])} , (8)

where the D denotes the demonstrations. D is sim-
ilar to template T but has been infilled with the
answers, and it is sampled from the same type of
question in the available few-shot examples. The re-
sulting filtered vocabulary is noted as Vdemo. We re-
port the few-shot training procedure in appendix C.

6 Experiments

6.1 Experimental Settings
Datasets. For visual question answering and vi-
sual entailment, we carry out experiments on the
VQAv2 (Goyal et al., 2017) and the SNLI-VE (Xie
et al., 2019) datasets, respectively. We report the
statistics of the two datasets in appendix A. For
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the VQA task’s evaluation, we follow the Frozen
model (Tsimpoukelli et al., 2021) to calculate the
vqa scores on the VQAv2 validation set. For vi-
sual entailment, we calculate the accuracy on both
validation and test sets through the sklearn toolkit.

CLIP models. According to the types of visual
encoders, e.g. ResNet or ViT, CLIP models have
different variants, resulting in a significant differ-
ence in the number of learnable bias and normaliza-
tion parameters. We report the number of learnable
parameters of CLIP variants in appendix B.3. We
select two best performing (and publicly available)
variants from two kinds of visual encoders, includ-
ing the CLIP Res50x16 and the CLIP ViT-B/16,
to empirically study their zero-shot and few-shot
vision-language understanding performances by ap-
plying our transferring methods (§§ 3–5).

6.2 Results of Zero-shot VQA
As previous VL models heavily rely on object de-
tection sub-modules, it is not feasible to directly ap-
ply them under the zero-shot setting. Here we setup
zero-shot VL baselines from two latest works:

• Frozen. Frozen (Tsimpoukelli et al., 2021)
prompts a seven-billion-parameter 32-layer
language model with image representations.
It is trained on aligned image-caption data and
is also the first model that shows promising
zero-shot and few-shot VQA performances.

• Question irrelevant prompt. Shen et al.
(2022) explored directly prompting the CLIP
models for the VQA task. They used a “ques-
tion: [question text] answer: [answer text]”
template, together with the prompt engineer-
ing of image classification, to prepare prompts.
The resulting prompts are irrelevant to ques-
tions, and thus we note this method as QIP.

We report the zero-shot VQA results in Table 1.
The experimental results verify our hypothesis
(§ 3.1) that the prompts of CLIP should be used
to describe the labels rather than the tasks. As we
can see, the question irrelevant prompting methods
simply present the task description and answers to
the CLIP models and only get barely better than
random guess results. In contrast, by converting
questions into templates and filtering answers with
pre-trained language models, our TAP-C method
enables CLIP models a strong zero-shot capability
on the VQA task, even compared with the seven-
billion-parameter Frozen zero-shot model.

Zero-shot Methods Yes/No Number Other All

Frozen (Tsimpoukelli et al., 2021) - - - 29.50

QIP (Shen et al., 2022)
w/ CLIPRes101 53.01 6.67 0.96 21.26
w/ CLIPRes50x16 56.16 9.76 1.39 23.07
w/ CLIPViT-B/16 53.89 7.67 0.70 21.40

TAP-C (Ours)
w/ CLIPRes50x16 71.65 18.74 18.22 38.36
w/ CLIPViT-B/16 71.38 20.95 18.55 38.72

Table 1: Zero-shot results on the VQAv2 validation set.

Training Text + Text Image + Text

Evaluation Image + Text Image Masked Text + Text

Majority 33.37 / 33.37 33.37 / 33.37 33.37 / 33.37
CLIPViT-B/16 64.11 / 64.66 35.05 / 35.69 65.97 / 66.23
CLIPRes101 64.29 / 64.86 36.27 / 35.34 65.67 / 66.28
CLIPRes50x16 67.24 / 66.63 36.36 / 36.05 67.64 / 68.18

Table 2: Zero-shot cross-modality transfer results on
the SNLI-VE valid and test set (valid acc / test acc).

6.3 Zero-shot Cross-modality Transfer

We report the zero-shot cross-modality transfer re-
sults in Table 2. We first investigate the language to
vision transfer capability. As introduced in § 4, we
train a classifier on the text-only SNLI-VE dataset
where the image is replaced by its caption. At in-
ference, the trained classifier is evaluated by taking
the image and text as inputs. As shown in the first
group of results, after solely trained on text-text
(caption as the premise) entailment data, different
CLIP variants could successfully gain a similar dis-
criminative ability under the image-text setting. To
ensure that the above results are indeed transferring
from language to vision, we made a double check
by masking out the images at inference time, and
the results are reported at Image Masked. As we
can see, the results are similar to a random guess
of three relations, indicating the images are of im-
portance in the cross-modality evaluation.

Now that we have observed the language to vi-
sion transferring capability in CLIP models, we
further investigate whether there is also a vision to
language transfer capability. We conduct a similar
experiment but train the classifier on the original
SNLI-VE dataset, i.e., image premise and text hy-
pothesis. At inference, we evaluate the classifier
with the text-only valid and test data. The results
are reported in Table 2, which confirms the vision
to language capability. Since text data are usually
much cheaper than visual data, the first kind of
transferring tends to be more promising in practice.
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Fully Supervised Results on Test-Dev Y/Nfull NUMfull OTHERfull ALLfull

Mcan (Yu et al., 2019) 86.82 53.26 60.72 70.63
CLIP-ViLp (Shen et al., 2022) - - - 76.48

Few-shot Results on Validation Set Y/NK=1 NUMK=1 OTHERK=1 ALLK=1 Y/NK=4 NUMK=4 OTHERK=4 ALLK=4

Frozenblind (Tsimpoukelli et al., 2021) - - - 33.50 - - - 33.30
Frozen (Tsimpoukelli et al., 2021) - - - 35.70 - - - 38.20
TAP-CViT-B/16 (Ours) 71.03 29.72 25.73 43.27 71.53 31.40 28.36 44.98

w/o Vdemo 71.03 29.74 19.01 39.96 71.53 31.45 21.78 41.74
TAP-CRes50x16 (Ours) 71.77 26.75 25.88 43.24 71.86 27.86 30.86 45.87

w/o Vdemo 71.77 26.73 19.97 40.32 71.86 27.92 22.43 41.72

Y/NK=16 NUMK=16 OTHERK=16 ALLK=16 Y/NK=32 NUMK=32 OTHERK=32 ALLK=32

TAP-CViT-B/16 (Ours) 73.05 31.46 32.13 47.42 73.60 32.55 35.02 49.19
w/o Vdemo 73.05 31.44 25.08 43.94 73.60 32.52 26.95 45.21

TAP-CRes50x16 (Ours) 72.98 29.96 35.58 48.89 73.51 31.56 37.35 50.18
w/o Vdemo 72.98 29.87 26.53 44.42 73.51 31.70 28.26 45.71

Table 3: Few-shot VQA results under different k values, along with two fully supervised models’ performance as
references. The Vdemo enhances answer filtering by few-shot demonstration to T5, details in Eq.8. Our few-shot
method not only outperform Frozen, but also achieves stable improvements under different k values.

Zero-shot Methods Yes/No Number Other All

TAP-CViT-B/16 71.38 20.95 18.55 38.72
w/o Tdemo 71.36 20.86 17.96† 38.41†

w/o Tparsing 70.82† 19.86† 18.40 38.29†

Table 4: Ablation results of template generation meth-
ods. Tdemo and Tparsing denote the T5 demonstration tem-
plate and dependency parsing template. “†” means sta-
tistically significant difference (2-tailed t-test, p<0.01).

6.4 Results of Few-shot VQA

We report the few-shot VQA results in Table 3.
We take the Frozen model and the image blacked
out Frozenblind as baselines. Under different k, our
methods could always learn from limited training
examples and improve over the zero-shot results,
which confirms that CLIP models could be VL few-
shot learners. With the increase of the number of
shots, significant performance gains are observed
in other category, which concurs with our intuition:
as we sample examples from each question type,
most answers in other category are not revealed
to the model. As a result, the model could always
learn to improve. Similarly, presenting examples
to the T5 could also improve the answer filtering
process, leading to significant performance gains
over the other category. In contrast, the score of
number category improves significantly when the
model just begins to see some training examples
while slowing down as k continues to increase.

6.5 Analyses and Discussion

The effects of template generation methods.
Our TAP-C method uses an ensemble of depen-

Methods K=0 K=4 K=32

TAP-CViT-B/16 38.72 44.98 49.19
w/o a.filt. 32.57 (16%) 35.07 (22%) 40.21 (18%)
w/o t.gen. + a.filt. 21.40 (45%) 22.59 (50%) 23.76 (52%)

TAP-CRes50x16 38.36 45.87 50.18
w/o a.filt. 32.43 (16%) 34.56 (25%) 40.97 (18%)
w/o t.gen. + a.filt. 23.07 (40%) 23.98 (48%) 24.86 (51%)

Table 5: Ablation results of TAP-C. In brackets is the
percentage of VQA performance degradation. When
both steps are all removed, the few-shot learning is per-
formed on CLIP with question irrelevant prompts.

dency parsing template Tparsing and T5 demonstra-
tion template Tdemo. Here we investigate whether it
is necessary to use such an ensemble. We report the
ablation results of two templates in Table 4. The
results show that the two templates have different
effects over different questions, and the ensemble
could make the best use of their advantages.

The effects of two steps in TAP-C. The TAP-C
method generates prompts through template gen-
eration (t.gen.) and answer filtering (a.filt.). Here
we quantify how much each step contributes to the
final zero/few-shot VQA performances. We report
the ablation results in Table 5. When we remove
the answer filtering step (w/o a.filt.), both the zero-
shot and few-shot performances generally fall by
about 20%, but the models still retain some few-
shot learning capabilities. We further remove the
template generation step and only use question ir-
relevant templates: all results are nearly cut in half,
indicating the importance of considering questions
in both zero-shot and few-shot scenarios.
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Few-shot Mehtods
K=1 K=4 K=16 K=32

Full-FT BitFit BiNor Full-FT BitFit BiNor Full-FT BitFit BiNor Full-FT BitFit BiNor

TAP-CViT-B/16 37.78∗ 42.96 43.27 38.30∗ 44.77 44.98 39.99 46.80 47.42 40.35 47.78 49.19
TAP-CRes101 36.63∗ 42.21 42.98 37.92∗ 43.02 44.72 39.42 44.83 47.43 39.58 45.59 48.86
TAP-CRes50x16 35.96∗ 43.38 43.24 38.03∗ 44.30 45.87 39.84 46.57 48.89 40.42 47.74 50.18

Table 6: The performance comparisons of different fine-tuning strategies on the few-shot VQA task. Results
marked with “∗” are lower than the zero-shot performance. Full-FT is short for full fine-tuning. Besides BiNor’s
good performance, it improves ResNet CLIPs more significantly due to the number of normalization parameters.

Comparisons of fine-tuning methods. We only
update the bias and normalization parameters dur-
ing few-shot learning (§ 5.2). To investigate
whether our BiNor fine-tuning strategy works well,
we compare BiNor with two fine-tuning methods:
1) Full-FT (Full fine-tuning), which updates all pa-
rameters in the model. 2) BitFit (Ben Zaken et al.,
2021), which only updates the bias-terms in all
model layers. We report the comparison results in
Table 6. Both BiNor and BitFit significantly outper-
form the full fine-tuning way: millions of parame-
ters are very easy to overfit to a few training exam-
ples. When k is small, the performance differences
between BiNor and BitFit are very small. When k
becomes larger, BiNor begins to outperform BitFit
with a noticeable margin. Our BiNor fine-tuning
strategy is similar to the BitFit but differs in that it
also updates the normalization parameters, which
would grant the ResNet CLIP models better flexi-
bility to adapt to new examples due to their larger
number of batch normalization parameters. For
the specific number of different parameters in each
CLIP variant, please refer to the appendix B.3.

Limitations of TAP-C. The proposed TAP-C
method explores CLIP models’ potential to con-
duct zero/few-shot VQA tasks. However, we also
found several limitations that hinder further im-
proving the few-shot performance, which could be
rooted in the CLIP models. First, CLIP models
struggle with counting the number of fine-grained
objects in an image, especially counting from a
small area of the image. This shortcoming can
hardly be improved by any kind of language knowl-
edge. Besides, the CLIP models perform poorly
in distinguishing subtle semantic differences. For
example, when asked “what is the man in the back-
ground doing?”, all the experimented CLIP models
give predictions of the man “in the foreground”.
Under such cases, even if the TAP-C method per-
fectly converts the question into a prompt, the final
results would still be wrong. Nevertheless, We

believe this issue could be well addressed by en-
hancing CLIP models with a stronger text encoder,
and we will make explorations in future work.

7 Related Work

Vision-language few-shot learning. Leverag-
ing aligned caption data, vision-language models
pre-trained by an image-text discriminative loss
have recently enabled strong zero-shot generaliza-
tion on image classification and cross-modality re-
trieval tasks (Jia et al., 2021; Radford et al., 2021).
Different from the discriminative manner, Tsim-
poukelli et al. (2021) prompt a large frozen lan-
guage model with vision prefix in a generative way,
which is the first vision-language few-shot model.

Language model prompting. This work is also
inspired by the line of research in language model
prompting (Liu et al., 2021). Initialized by the GPT
series (Radford et al., 2018, 2019; Brown et al.,
2020), prompting has become a popular manner to
mining knowledge from pre-trained language mod-
els (Petroni et al., 2019) in a zero-shot or few-shot
way (Shin et al., 2020; Gao et al., 2021; Qin and
Eisner, 2021). Besides mining knowledge from the
language model, PET work (Schick and Schütze,
2021a,b) presents a semi-supervised prompting
method for improving few-shot language under-
standing performance.

8 Conclusions

In this work, we empirically studied how to transfer
CLIP models into vision-language understanding
tasks. We first explored the CLIP models’ zero-shot
VQA capability by leveraging language prompts
and further proposed a parameter-efficient fine-
tuning method to boost the few-shot performance.
We also demonstrate a zero-shot cross-modality
transfer capability of CLIP models on the visual en-
tailment task. Experiments and analyses on VQAv2
and SNLI-VE confirm that the CLIP models can
be good VL few-shot learners.
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Appendix

A Datasets Statistics

Datasets # Train # Valid # Test # Vocab

VQAv2 443,757 214,354 - 19,17482,783 40,504 -

SNLI-VE 529,527 17,858 17,901 32,19129,783 1,000 1,000

Table 7: Basic statistics of the two datasets. The upper
is the number of examples, and the lower is the number
of distinct images. And # Vocab is the vocabulary size.

B Details of Implementation

B.1 Zero-shot Model Briefs
In our experiments, we leverage two kinds of pre-
trained models: the CLIP variants and the T5. We
brief these models as follows.

For the CLIP models, the text encoder is always
a transformer, but its hidden size varies according
to the size of visual encoders. And there are two ar-
chitectures of visual encoders, including the vision
transformer (ViT) and ResNet.

• CLIP ViT-B/16: both the text and visual en-
coders are 12-layer, 512-hidden transformers.

• CLIP RN101: the text encoder is a 12-
layer transformer, and the visual encoder is
ResNet101, both with a hidden size of 512.

• CLIP RN50x16: the text encoder is a 12-
layer transformer, and the visual encoder is
ResNet50x16, both with a hidden size of 768.

All CLIP models we used are from the official
CLIP repository2. For the language model T5, we
use a publicly available T5large checkpoint from
the Huggingface repository3. The T5large has 24
hidden layers, 16 self-attention heads, 1024 hidden
size, and a total of 770M parameters. It is trained
on Colossal Clean Crawled Corpus (C4). Note that
the T5 model had not been trained or finetuned
under both few-shot and zero-shot settings.

B.2 Hyperparameters
We report the hyperparameter settings of few-shot
CLIP training in Table 8. We apply the same set
of hyperparameters to fine-tune both ResNet CLIP
and ViT CLIP.

2https://github.com/openai/CLIP
3https://huggingface.co/models

Hyperparameters Value

Training epochs 30
Batch size 8
Initial temperature 0.07
Maximum temperature 100.0
Adam ε 1e-8
Adam β (0.9, 0.999)
Learning rate 2e-5
Gradient clipping 2.0
Weight decay 0.001
Number of filtered answers 200

Table 8: Hyperparameters used for CLIP models in
few-shot learning.

Hyperparameters Value

Layers 3
Layer Dimension 1024-128-3
Training epochs 20
Adam ε 1e-8
Adam β (0.9, 0.999)
Gradient clipping 2.0
Learning rate {1e-6, 3e-6, 5e-6}
Batch size {32, 64, 128}
Dropout {0, 0.1, 0.4}

Table 9: Hyperparameters of the MLP classifier in zero-
shot language to vision transfer.

The hyperparameters used for the MLP classifier
in the visual entailment task are reported in Table 9.
We performed grid searches on the combination
of the learning rate, batch size, and dropout. The
CLIP variants reached the best performances under
different parameter combinations.

Template Generation
Hyperparameters Value

Number of beams 20
Number of returned sequences 10
Max returned span length 30

Answer Filtering
Hyperparameters Values

Batch size 128
Number of beams 200
Number of returned sequences 200
Max returned span length 6
Max number of demonstration 16

Table 10: Hyperparameters used for T5 in template gen-
eration and answer filtering.

Table 10 shows the hyperparameter configura-
tions for T5’s conditional generation, which is
leveraged to generate the masked template and fil-
ter answers.
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CLIP # Bias # Normalize # BiNor # All

CLIPRN101 127,488 123,392 189,184 100M
CLIPRN50x16 209,088 132,160 319,488 229M
CLIPViT-B/16 171,008 65,536 203,776 149M

Table 11: Statistics of different type of parameters in
CLIP models.

B.3 The Number of Learnable Parameters

Table 11 shows the number of different type of
learnable parameter in CLIP models. The counting
of Bias and Normalization share the β in Eq.7. The
numbers of BiNor parameters are about 0.2M to
0.3M, accounting for less than 0.3% of all parame-
ters.

C Few-shot Training Procedure

Algorithm 1 CLIP models few-shot training.
Input: V: visual encoder, ResNet or ViT; T: text encoder,

Transformer; I: few-shot images; P : few-shot prompts;
A: few-shot answers; τ : learned temperature parameter;
N : max iterations; Adam: optimizer;

Output: Few-shot CLIP model.
1: initial epoch = 0, freeze parameters in V and T except

bias and normalization;
2: repeat
3: Sample C-way K-shot E from (I ,P ,A);
4: Split E into support set and query set;
5: for all minibatch (i,p,a) in support set do
6: If = V(i), Tf = T(p);
7: Ie = norm(If ), Te = norm(Tf );
8: logits = τ * dot(Ie, Te);
9: labels = map(a, p);

10: loss = cross_entropy(logits, labels);
11: Adam.step();
12: end for;
13: epoch = epoch+ 1;
14: Evaluate on query set;
15: until (epoch ≥ N ).

D Examples of Template Generation

In this section, we showcase several template gen-
eration examples to illustrate how the proposed
method works. Since we have introduced how
to convert a question into a masked template by
demonstrating examples to the T5 (§ 3.1), here
we directly present several examples in Table 12.
These examples are sampled from five different
question types and also cover the three answer
types. As shown in Table 12, a single demo in
the demonstration consists of a question and an an-
swer with the [mask] token. Notice that the [mask]
token is only a placeholder rather than a real mask
in the pre-trained language models. Different from

the <extra_id_0> in T5 that represents a corrupted
span, the [mask] is used to inform the T5 where
the answer words should be placed. After seeing
several examples in the demonstration, the pow-
erful T5large model could capture the conversion
pattern in each type of question and perfectly com-
plete most conversions without ignoring the subtle
grammars. Once the masked template is generated,
we could infill the [mask] place with answer words
and then carry out further processing. The pro-
cessing for the yes/no type is a little different: as
it is a binary task, we directly generate a positive
prompt and a negative prompt, rather than masked
templates, for the yes and no, respectively.
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Question Type what color is

Demonstration

What color is the floor of this area? The color of floor of this area is [mask].
What color is the pillow the cat is on? The color of the pillow the cat on is [mask].
What color is the child’s shorts? The color of the child’s shorts is [mask].
What color is the lettering on the business sign? The color of the lettering on the business sign is [mask].

Question What color is the fence behind the man?
Generated Template The color of the fence behind the man is [mask].

Question What color is the statue near the building?
Generated Template The color of the statue near the building is [mask].

Question Type why is the

Demonstration

Why is the ground surface near the train a different color? The ground surface near the train is in a different color because of [mask].
Why is the cat under an umbrella? The cat under an umbrella is because of [mask].
Why is the laptop sitting above a larger keyboard? The laptop is sitting above a larger keyboard because of [mask].
Why is the car being towed? The car is being towed because of [mask].

Question Why is the little boy having fun?
Generated Template The little boy is having fun because of [mask].

Question Why is the elephant’s trunk two color’s?
Generated Template The elephant’s trunk is two colors because of [mask].

Question Type which

Demonstration

Which utensil is on the table in the foreground? The [mask] utensil is on the table in the foreground.
Which way is the train going? The [mask] way is the train going.
Which hand holds the racket? The [mask] hand holds the racket.
Which foot is lifted in the air? The [mask] foot is lifted in the air.

Question Which hot dog has a larger variety of toppings?
Generated Template The [mask] hot dog has a larger variety of toppings.

Question Which operating system is being used on this computer?
Generated Template The [mask] operating system is being used on this computer.

Question Which side of the room is the television probably on?
Generated Template The [mask] side of the room is the television probably on.

Question Type how many

Demonstration

How many unopened rolls of paper are in the picture? There are [mask] unopened rolls of paper in the picture.
How many engines does the closest airplane have? The closest airplane has [mask] engines.
How many different types of doors are visible? There are [mask] different types of doors visible.
How many people are wearing plaid shirts? There are [mask] people wearing plaid shirts.

Question How many people are participating in the eating contest?
Generated Template There are [mask] people participating in the eating contest.

Question How many cabinets have been installed?
Generated Template There are [mask] cabinets installed.

Question How many people in this picture are wearing glasses?
Generated Template There are [mask] people wearing glasses.

Question Type does this

Demonstration

Positive:
Does this food look burnt? This food looks burnt.
Does this appear to be a noisy environment? This appears to be a noisy environment.

Negative:
Does this boat have an engine? This boat has no engine.
Does this type of fruit change color? This type of fruit does not change color.
Does this animal produce dairy products? This animal does not produce dairy products.
Does this pizza look hot? This pizza does not look hot.

Question Does this look like a happy occasion?

Generated Prompts Yes→ This looks like a happy occasion
No→ This does not look like a happy occasion

Question Does this man have both of his skis on?

Generated Prompts Yes→ This man has both of his skis on
No→ This man does not have both of his skis on

Question Does this transportation run on gasoline?

Generated Prompts Yes→ This transportation runs on gasoline
No→ This transportation does not run on gasoline

Table 12: Examples of generating masked templates. The demonstrations are defined for each type of ques-
tion and are demonstrated to the T5. For the binary yes/no type, we directly generate positive prompt
for yes and negative prompt for no. Full question types are available at https://github.com/GT-Vision-
Lab/VQA/tree/master/QuestionTypes. 6100


