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Abstract

In zero-shot multilingual extractive text sum-
marization, a model is typically trained on
English summarization dataset and then ap-
plied on summarization datasets of other lan-
guages. Given English gold summaries and
documents, sentence-level labels for extrac-
tive summarization are usually generated us-
ing heuristics. However, these monolingual
labels created on English datasets may not be
optimal on datasets of other languages, for that
there is the syntactic or semantic discrepancy
between different languages. In this way, it
is possible to translate the English dataset to
other languages and obtain different sets of la-
bels again using heuristics. To fully leverage
the information of these different sets of labels,
we propose NLSSum (Neural Label Search for
Summarization), which jointly learns hierar-
chical weights for these different sets of la-
bels together with our summarization model.
We conduct multilingual zero-shot summariza-
tion experiments on MLSUM and WikiLingua
datasets, and we achieve state-of-the-art results
using both human and automatic evaluations
across these two datasets.

1 Introduction

The zero-shot multilingual tasks, which aim to
transfer models learned on a high-resource lan-
guage (e.g., English) to a relatively low-resource
language (e.g., Turkish) without further training,
are challenging (Ruder et al., 2019). Recently,
large pre-trained multilingual transformers such
as M-BERT (Devlin et al., 2019), XLM (Lample
and Conneau, 2019), and XLM-R (Conneau et al.,
2020) have shown remarkable performance on zero-
shot multilingual natural language understanding
tasks. During pre-training, these transformer mod-
els project representations of different languages

∗Work done during the first author’s internship at Mi-
crosoft Research Asia.

†Corresponding authors

Sentence (English, Label 1): He was never charged in that Caribbean
Nation.
Reference Summary (English): He was arrested twice, but never
charged in Natalee Holloway’s disappearance.
Translated Sentence (German, Label 0): Er wurde jedoch nie in dieser
karibischen Nation angeklagt.
Translated Reference Summary (German): Beim Verschwinden von
Natalee Holloway wurde er zweimal verhaftet, aber nie angeklagt.

Table 1: Monolingual Bias for Different Languages.

into the same vector space, which makes the trans-
fer learning across different languages easier dur-
ing fine-tuning (Gong et al., 2021). In zero-shot
extractive summarization, we train an extractive
model (based on a pre-trained multilingual trans-
former) on English summarization dataset, which
selects important sentences in English documents.
Then, we apply this trained model to documents of
a different language (i.e., extracting sentences of
documents in another language). In this paper, we
aim to enhance the zero-shot capabilities of multi-
lingual sentence-level extractive summarization.

In text summarization, most datasets only
contain human-written abstractive summaries as
ground truth. We need to transform these datasets
into extractive ones. Thus, a greedy heuristic algo-
rithm (Nallapati et al., 2017) is employed to add
one sentence at a time to the candidate extracted
summary set, by maximizing the ROUGE (Lin,
2004) between candidate summary set and the gold
summary. This process stops when none of the
remaining sentences in the document can increase
the ROUGE anymore. These selected sentences are
labelled as one and all the other sentences labeled
as zero. While the labels obtained from this greedy
algorithm are monolingual-oriented and may not be
suitable for multilingual transfer. For the example
in Table 1, the English sentence is quite likely to
be selected as a summary sentence, since it greatly
overlaps with the English reference (high ROUGE).
While when the document and the summary are
translated into German, the ROUGE between the
sentence and the summary is significantly lower
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(fewer n-gram overlap). Then, another sentence
will be selected as substitution. The greedy algo-
rithm yields different labels on the English data and
the translated data and these labels may comple-
ment for each other. We define this discrepancy as
monolingual label bias, and it is the key to further
improve the performance of zero-shot multilingual
summarization.

To address the above problem, we design a
method to create multiple sets of labels with
different machine translation methods accord-
ing to the English summarization dataset, and
we employ NLSSum (Neural Label Search for
Summarization) to search suitable weights for
these labels in different sets. Specically, in
NLSSum, we try to search the hierarchical weights
(sentence-level and set-level) for these labels with
two neural weight predictors and these label
weights are used to train our summarization model.
During training, the two neural weight predictors
are jointly trained with the summarization model.
NLSSum is used only during training and during
inference, we simply apply the trained summariza-
tion model to documents in another language.

Experimental results demonstrate the effective-
ness of NLSSum, which significantly outperforms
original XLMR by 2.25 ROUGE-L score on ML-
SUM (Scialom et al., 2020). The human evaluation
also shows that our model is better compared to
other models. To sum up, our contributions in this
work are as follows:

• To the best of our knowledge, it is the first
work that studies the monolingual label bias
problem in zero-shot multilingual extractive
summarization.

• We introduce the multilingual label genera-
tion algorithm (Section 3.5) to improve the
performance of multilingual zero-shot models.
Meanwhile, we propose the NLSSum architec-
ture (Section 3.6) to search suitable weights
for different label sets.

• Extensive experiments are conducted with de-
tailed analysis, and the results across differ-
ent datasets demonstrate the superior perfor-
mance on multilingual datasets. In MLSUM,
the zero-shot performance on Russian is even
close to its supervised counterpart.
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Figure 1: Overview of NLSSum. The input English
document is argumented by 50% word replacement and
the output is supervised by multilingual labels.

2 Related Work

There has been a surge of research on multilin-
gual pretrained models, such as multilingual BERT
(Devlin et al., 2019), XLM (Lample and Conneau,
2019) and XLM-RoBERTa (Conneau et al., 2020).
For multilingual summarization, the summarize-
then-translate and translate-then-summarize are
widely used approaches in prior studies Lim et al.
(2004). There is another effective multi-lingual
data augmentation, a method that replaces a seg-
ment of the input text with its translation in another
language (Singh et al., 2019). On the other hand,
large-scale multilingual summarization datasets
have been introduced (Scialom et al., 2020; Ladhak
et al., 2020), which enable new research directions
for the multilingual summarization. Nikolov and
Hahnloser (2020) applies an alignment approach
to collect large-scale parallel resources for low-
resource domains and languages. In this paper, we
aim to advance the multilingual zero-shot trans-
ferability, by training extractive summarization on
English and inferring on other languages.

3 Methodology

3.1 Problem Definition
Let D = (s1, s2, ..., sN ) denotes a document with
N sentences, where si = (wi1, w

i
2, ..., w

i
|si|) is a

sentence in D with |si| words. S is the human-
written summary. Extractive summarization can
be considered as a sequence labeling task that as-
signs a label yi ∈ {0, 1} to each sentence si, where
yi = 1 indicates the i-th sentence should be in-
cluded in the extracted summary. The gold labels
of sentences in D are obtained from (D, S) by the
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Figure 2: Four Sets of Multilingual Label. ‘EN’ is the
symbol of English and ‘FR’ is for the foreign language.

greedy heuristic algorithm (Nallapati et al., 2017),
which adds one sentence at a time to the extracted
summary, skipping some sentences to maximize the
ROUGE score of S and the extracted sentences. In
multi-lingual zero-shot setting, the summarization
model is trained on English dataset and is finally
applied on documents of other languages.

3.2 Neural Extractive Summarizer

Our sentence encoder builds upon the recently pro-
posed XLMR (Conneau et al., 2020) architecture,
which is based on the deep bidirectional Trans-
former (Vaswani et al., 2017) and has achieved
state-of-the-art performance in many multilingual
zero-shot understanding tasks. Our extractive
model is composed of a sentence-level Transformer
TS (initialized with XLMR) and a document-level
Transformer TD (a two-layer Transformer).

For each sentence si in the input document D,
TS is applied to obtain a contextual representation
for each word wij :

[u1
1,u

1
2, ...,u

N
|sN |] = TS([w

1
1, w

1
2, ..., w

N
|sN |]) (1)

Similar to Liu and Lapata (2019), the represen-
tation of a sentence si is acquired by taking the
representation of the first token in the sentence ui1.
The document-level Transformer TD (a two-layer
inter-sentence Transformer), which is stacked to
TS , takes si as input and yields a contextual rep-
resentation vi for each sentence. We intend this
process to further captures the sentence-level fea-
tures for extractive summarization:

[v1,v2, ...,vN ] = TD([u1
1,u

2
1, ...,u

N
1 ]) (2)

For sentence si, the final output prediction of the
extractive model ŷi (i.e., the probability of being

selected as summary) is obtained through a linear
and a sigmoid classifier layer:

ŷi = σ(Wovi + bo) (3)

where Wo and bo are the weight matrix and bias
term. Next we introduce how we obtain the neural
labels for model training.

3.3 Overview of Neural Label Search
The training and inference of our NLSSum model
includes five steps as follows.

(I) Multilingual Data Augmentation: This step
aims to enhance the multilingual transfer ca-
pability of our extractive model and alleviate
the discrepancy between training (on English)
and inference (on unseen languages).

(II) Multilingual Label Generation: The extrac-
tive model is supervised by multilingual label,
which consists of four sets of labels, according
to different strategies.

(III) Neural Label Search: In this step, we design
the hierarchical sentence-level and set-level
weights for labels of different strategies. The
final weights are calculated with a weighted
average and assigned to corresponding sen-
tences.

(IV) Fine-Tuning: We fine-tune our extractive
model the augmented English document (gen-
erated in Step I) with supervision from the
weighted multilingual labels (generated in
Step III), as shown in Figure 1.

(V) Zero-Shot: We apply the model fine-tuned on
English data (Step IV) to extract sentences on
documents of the target language.

3.4 Multilingual Data Augmentation
In the training process, only the raw English docu-
ments and its paired summary labels are available.
We use the following two methods for multilingual
data argumentation of English documents, which
we intend the model to align its English representa-
tions with representations in other languages.

Word Replacement (WR) Similar to Qin et al.
(2020), we enhance multilingual transferability by
constructing Word Replacement data in multiple
languages dynamically. Let FR denote a foreign
language. Specifically, a set of words are randomly
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chosen in raw English documents and replaced with
words in FR using the bilingual dictionary MUSE
(Conneau et al., 2018). This approach can in some
degree align the replaced word representations in
FR with their English counterpart by mixing with
the English context.

Machine Translation (MT) The above augmen-
tation method is applied dynamically during train-
ing, and Machine Translation yet is another offline
strategy to augment data. First, we translate doc-
uments and their paired summaries from English
into the target language FR using the MarianMT
system1 (Junczys-Dowmunt et al., 2018). Then, the
labels are generated on the translated data with the
same greedy algorithm as on English data. Finally,
the extractive model is fine-tuned on the translated
documents with the supervision of new labels, and
inferred on the original FR document.

Unfortunately, the performance of machine trans-
lation is instable with the noise or error propagation
(Wan et al., 2010). Therefore, we choose the word
replacement method here to enhance the input doc-
ument and the argumented document is served as
the input of our extractive model. Note that we do
use both the word replacement and machine trans-
lation methods to generate multilingual labels (see
the next section).

3.5 Multilingual Labels

Given an English article D and its summary S , we
can obtain its extractive labels using the greedy
algorithm introduced in Section 3.1.

Label Set Ua Let Ua = GetPosLabel(D,S)
denote the indices of sentences with positive labels,
where GetPosLabel(D,S) returns the indices of
positive labeled sentences in the original English
documentD using the greedy algorithm. The labels
created on English data (D,S) may not be optimal
in multilingual settings (inference on a different
language). As shown in Figure 2, we therefore
create yet another three label sets using the WR
and MT methods introduced earlier to simulate the
multilingual scenario during inference time.

Label Set Ub To create labels based foreign lan-
guage (FR) data, we translate both the English doc-
ument D and its summary S to FR using the MT
method in Section 3.4, resulting DMT and SMT

(also see Figure 2). Again by using the greedy al-

1https://github.com/marian-nmt/marian

gorithm, we obtain the indices of sentences with
positive labels Ub = GetPosLabel(DMT ,SMT ).

Label Set Uc Label set Uc is also based on FR
data. To make label set Uc different from Ub, we
translate D to DMT using the MT method, while
we translate S to SWR using the WR method
(we do 100% word replacement) with the EN-
FR dictionary. The resulting label set Uc =
GetPosLabel(DMT ,SWR).

Label Set Ud Label set Ud is based on English
data. The idea is to create a paraphrased English
summary S ′ using the back translation technology.
We first translate S to SMT using MT method and
translate SMT back to English S ′ using the WR
method (100% word replacement). We use differ-
ent translation method for forward and backward
translations to maximize the different between S
and S ′. Finally, Ud = GetPosLabel(D,S ′).

Note that there are also many other possible
strategies for creating multilingual labels and we
only use these four strategies above as examples
to study the potential of multilingual labels. In-
tuitively, the contributions of these four label sets
for multilingual transferability are different, and
the MT and WR translation methods may intro-
duce translation errors, which result noisy labels.
Therefore, we introduce the Neural Label Search
in the next section to find suitable weights for these
multilingual labels.

3.6 Neural Label Search

In this section, we assign a weight for each sentence
in a document and the weight will be used as the
supervision to train our extractive model. Note
that the weight is a multiplication of a sentence
level weight and a label set level weight. Let Tα
denote the sentence level weight predictor and Tβ
the set level weight predictor. The implementation
of Tα(·) = σ(g(T ′α(·))) is a two-layer transformer
model T ′α(·) followed by a linear layer g(·) and a
sigmoid function. The implementation of Tβ is the
same as Tα, but with different parameters.

The predictor Tα transforms sentence represen-
tations (see Equation (1) for obtaining uij) to prob-
abilities αi ∈ [0, 1] as follows:

[α̂1, α̂2, ..., α̂N ] = Tα([u1
1,u

2
1, ...,u

N
1 ])

αi =

{
α̂i, if i ∈ U
0, otherwise

(4)
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where U = Ua ∪ Ub ∪ Uc ∪ Ud. Note that we only
predict weights for sentences with non-zero labels,
since we believe that these sentences, which are
the minority, are more informative than zero-label
sentences.

The computation of Tβ is similar, but we first do
a mean pooling over sentences in each label set.

[βa, βb, βc, βd] = Tβ([

∑
i∈Ua

ui1

na
,

∑
i∈Ub

ui1

nb
,

∑
i∈Uc

ui1

nc
,

∑
i∈Ud

ui1

nd
])

where na, nb, nc, nd are sizes of the four label sets.
The final weight li for sentence si is 0 when i /∈

U (i does not belong to any label set). Otherwise,
the computation of li is as follows.

li = αi ∗
∑

j∈{a,b,c,d} β
i
j

mi
(5)

where if i ∈ Uj , βij is βj , else βij is 0 and mi is the
number of label sets containing i. Note that one
sentence may belong to multiple label sets, so we
normalize its βij weights in Equation (5).

Weight Normalization In this paper, we only
calculate the multilingual weights for multilingual
labels, in which the corresponding sentences are
all selected as summary sentences by different
document-summary pairs, as shown in the Figure
2. The label weights li are used to train our sum-
marization model, whose output ŷi is through a
sigmoid function (Equation 3). ŷi > 0.5 means
sentence si could be selected as in summary. There-
fore, when i ∈ U , we rescale li to [0.5, 1.0]:

li =
li − lmin

2 ∗ (lmax − lmin)
+ 0.5 (6)

where lmax and lmin are the maximum and mini-
mum value of li, when i ∈ U .

3.7 Training and Zero-shot Inference

In this section, we present how we train our extrac-
tive model as well as the two weight predictors Tα
and Tβ . Note that we train the components above
jointly. We train the extractive model using both
the English labels ya (created using the greedy al-
gorithm) as well as the label weights generated in
Section 3.6. To train Tα, we use binary labels yα,
where in one document, yαi = 1 when i ∈ U , oth-
erwise yαi = 0. To train Tβ , we again use binary
labels yβ , but these labels are on set level rather

Datasets # Docs (Train / Val / Test)

CNN/DM, English 287,227 / 13,368 / 11,490
MLSUM, German 220,887 / 11,394 / 10,701
MLSUM, Spanish 266,367 / 10,358 / 13,920
MLSUM, French 392,876 / 16,059 / 15,828
MLSUM, Russian 25,556 / 750 / 757
MLSUM, Turkish 249,277 / 11,565 / 12,775

WikiLingua, English 99,020 / 13,823 / 28,614
WikiLingua, German 40,839 / 5,833 / 11,669
WikiLingua, Spanish 79,212 / 11,316 / 22,632
WikiLingua, French 44,556 / 6,364 / 12,731

Table 2: Data Statistics: CNN/Daily Mail, MLSUM and
WikiLingua.

than sentence level. Defining positive examples
for Tβ is straight-forward and we set yβq = 1 when
q ∈ {Ua, Ub, Uc, Ud} (each label set corresponds
to one positive example). For negative examples
in one particular document, we randomly sample
three sentence indices from sentences with zero
labels as one negative example. We finally make
the numbers of positive and negative examples for
Tβ close to 1:1.

The final loss is a sum of the four losses above:

L =CE(ŷ, ya) + CE(ŷ, l)+

CE(α, yα) + CE(β, yβ)
(7)

where CE is the cross entropy loss; l is the
weighted multilingual label (Section 3.6); ya, yα,
and yβ are the binary labels for the supervision of
ŷ, α, and β. Specifically, α = [α1, α2, . . . , αN ]
and β = [βa, βb, βc, βd] (just as Equation 4 and 5).

During the zero-shot inference, we simply apply
the model trained on the English dataset using the
objectives above to other languages.

4 Experiments

4.1 Datasets
MLSUM & CNN/DM MLSUM is the first large-
scale multilingual summarization dataset (Scialom
et al., 2020), which is obtained from online newspa-
pers and contains 1.5M+ document/summary pairs
in five different languages, namely, French(Fr),
German(De), Spanish(Es), Russian(Ru), and Turk-
ish(Tr). The English dataset is the popular
CNN/Daily mail (CNN/DM) dataset (Hermann
et al., 2015). Our model is trained on CNN/DM.

WikiLingua A large-scale, cross-lingual dataset
for abstractive summarization (Ladhak et al., 2020).
The dataset includes 770K article and summary
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Models
MLSUM

De Es Fr Ru Tr avg

Oracle? 52.30 35.78 37.69 29.80 45.78 40.27
Lead-2? 33.09 13.70 19.69 5.94 28.90 20.26

Supervised
Pointer-Generator 35.08 17.67 23.58 5.71 32.59 22.99
mBERTSum-Gen 42.01 20.44 25.09 9.48 32.94 25.99
XLMRSum? 41.28 21.99 24.12 10.44 33.29 26.22
MARGE (Train One) 42.60 22.31 25.91 10.85 36.09 27.55
MARGE (Train All) 42.77 22.72 25.79 11.03 35.90 27.64

Zero-Shot
MARGE 30.01 17.81 19.39 8.67 29.39 21.05
mBERTSum? 17.36 17.27 19.64 8.37 19.30 16.39
XLMRSum? 32.05 19.49 22.20 8.70 27.64 22.02
XLMRSum-MT? w/ Ua 29.34 21.14 23.82 8.68 24.23 21.44
XLMRSum-MT? w/ Ub 29.70 21.18 23.62 9.37 24.27 21.63
XLMRSum-WR? 32.37 21.03 23.67 9.34 30.10 23.30
NLSSum-Sep? 34.21 21.24 23.92 10.09 31.68 24.23
NLSSum? 34.95 21.20 23.59 10.13 31.49 24.27

Table 3: ROUGE-L on MLSUM dataset. ? means ex-
tractive models, and others are abstractive models.

pairs in 18 languages from WikiHow2. Our train-
ing setting is identical to that of MLSUM, our ex-
tractive model is trained on the English data and
inferred on other three languages (French, German,
Spanish). MLSUM and WikiLingua are described
in detail in Table 2.

4.2 Evaluation

Similar to Liu and Lapata (2019), we also select the
top three sentences as the summary, with Trigram
Blocking to reduce redundancy. Following Scialom
et al. (2020), we report the F1 ROUGE-L score of
NLSSum with a full Python implemented ROUGE
metric3, which calculates the overlap lexical units
between extracted sentences and ground-truth. Fol-
lowing Lin (2004), to assess the significance of the
results, we applied bootstrap resampling technique
(Davison and Hinkley, 1997) to estimate 95% con-
fidence intervals for every correlation computation.

4.3 Implementation

Our implementation is based on Pytorch (Paszke
et al., 2019) and transformers. The pre-trained
model employed in NLSSum is XLMR-Large.
We train NLSSum on one Tesla V100 GPU for
100,000 steps (2 days) with a batch size of 4 and
gradient accumulation every two steps. Adam with
β1 = 0.9, β2 = 0.999 is used as optimizer. The
learning rate is linearly increased from 0 to 1e− 4
in the first 2,500 steps (warming-up) and linearly
decreased thereafter. For the source document data
augmentation, we use a 0.5 word replacement rate

2https://www.wikihow.com
3https://github.com/pltrdy/rouge

Models
WikiLingua

De Es Fr avg

Oracle 30.81 36.52 34.64 33.99
Lead-3 16.32 19.78 18.40 18.17

mBERTSum 18.83 22.49 20.91 20.74
XLMRSum 22.10 26.73 25.06 24.63
XLMRSum-MT 21.92 26.41 24.75 24.36
XLMRSum-WR 22.20 26.78 25.10 24.69
NLSSum 22.45 26.98 25.34 24.92

Table 4: Zero-Shot ROUGE-L Results of WikiLingua

with a bilingual dictionary (Conneau et al., 2018).

4.4 Models in Comparison

Oracle sentences are extracted by the greedy
algorithm introduced in Section 3.1. Lead-K
is a simple baseline to choose the first k sen-
tences in a document as its summary. We use
k = 2 on MLSUM and k = 3 on WikiLin-
gua, which lead to the best results. Pointer-
Generator augments the standard Seq2Seq model
with copy and coverage mechanisms (See et al.,
2017). mBERTSum-Gen is based on the multi-
lingual version BERT (mBERT; Devlin et al. 2019)
and it is extended to do generation with a unified
masking method in UniLM (Dong et al., 2019).
MARGE is a pre-trained seq2seq model learned
with an unsupervised multilingual paraphrasing ob-
jective (Lewis et al., 2020). mBERTSum, XLMR-
Sum, XLMRSum-MT and XLMRSum-WR are
all extractive models described in Section 3.2 and
their sentence encoders are either initialized from
mBERT or XLMR-Large. They are all trained on
the Enlgish dataset. XLMRSum-MT is trained on
the English training data argumented with machine
translation. While XLMRSum-WR is trained on
the English training data argumented with bilingual
dictionary word replacement.

5 Result & Analysis

ROUGE Results on MLSUM Table 3 shows
results on MLSUM. The first block presents the
Oracle upper bound and the Lead-2 baseline, while
the second block includes the supervised sum-
marization results. Results of Pointer-Generator,
mBERTSum-Gen are reported in Scialom et al.
(2020), while results of MARGE are reported in
Lewis et al. (2020). The results of MARGE train-
ing on all languages jointly (Train All) are slightly
better than its counterpart when training on each
language separately (Train One). While we see a
different trend with other models. Comparing ex-
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Models 1st 2nd 3rd 4th MeanR

mBERTSum 0.07 0.25 0.31 0.37 2.98
XLMRSum 0.16 0.28 0.27 0.29 2.69
NLSSum 0.28 0.32 0.2 0.2 2.32
Oracle 0.49 0.15 0.22 0.14 2.01

Table 5: Human Evaluation on MLSUM, German

tractive models against abstractive models in the
supervised setting, the abstractive paradigm is still
the better choice.

We present the zero-shot results in the third
block. All models are trained on the Enlgish sum-
marization dataset and infered on dataset of other
languages. With a decent multi-lingual pre-trained
model, the extractive XLMRSum performs better
than the abstractive MARGE, which demonstrates
the superiority of extractive approaches in zero-
shot summarization. When applying machine trans-
lation based (XLMRSum-MT) and multi-lingual
word replacement based (XLMRSum-WR) data
argumentation method to XLMR (see Section
3.4), we obtain further improvements. With MT
based argumentation method (XLMRSum-MT),
we could re-generate extractive labels using the
translated doucments and summaries (the Ub set-
ting). We do observe that the re-generated labels
could slightly improve the results, but the result-
ing XLMRSum-MT is still worse than XLMRSum
and XLMRSum-WR. With the neural label search
method, NLSSum-Sep outperforms all models in
comparison. For faster feedback, we train a sepa-
rate model for each language in XLMRSum-MT
and XLMRSum-WR and NLSSum-Sep (models
for different languages can be trained in parallel),
which is to do data argumentation only to one target
language. In our final model NLSSum, we train one
model for all languages (we do data argumentation
from English to all target languages) and we ob-
serve that the results of NLSSum-Sep and NLSSum
are similar. Compared with the original XLMR-
Sum, NLSSum achieves 2.27 improvements on the
average R-L score, which is a remarkable margin
in summarization. It indicates that our multilingual
neural label search method significantly improves
the multilingual zero-shot transferability. The dif-
ferences between NLSSum and other models in
comparison except NLSSum-Sep are significant (p
< 0.05). Specifically, the performance XLMRSum-
MT is worse than that of XLMRSum. For more
in-depth analysis, we note that: 1) As the input of a
model, the translation-based documents are prone
to the error propagation, therefore, we should avoid

Models
MLSUM

De Es Fr Ru Tr avg

XLMRSum 30.35 20.67 22.85 9.39 31.55 22.81
NLSSum w/o Tβ 33.13 21.21 23.09 9.72 32.68 23.97
NLSSum 33.51 21.74 24.10 9.91 32.58 24.37

Train with Different Label Sets
XLMRSum-WR w/ Ua 32.09 21.04 23.33 9.69 32.04 23.58
XLMRSum-WR w/ Ub 30.39 20.71 23.17 9.83 31.37 23.05
XLMRSum-WR w/ Uc 29.66 20.64 22.96 9.32 31.63 22.76
XLMRSum-WR w/ Ud 30.22 20.16 22.90 9.61 31.90 21.78

Train with All Label Sets and with Fixed Weights
XLMRSum-WR, w=0.6 32.12 21.05 23.30 9.31 32.51 23.65
XLMRSum-WR, w=0.7 32.46 20.73 23.67 9.77 32.72 23.82
XLMRSum-WR, w=0.8 32.86 20.98 23.42 9.64 32.93 23.91
XLMRSum-WR, w=0.9 32.41 20.48 23.27 9.57 32.63 23.65

Train with Different Replacement Rates
NLSSum w/ 0.45 33.09 21.75 24.13 9.84 32.42 24.25
NLSSum w/ 0.50 33.43 21.78 24.17 9.99 32.31 24.34
NLSSum w/ 0.55 33.51 21.74 24.10 9.91 32.58 24.37
NLSSum w/ 0.60 33.50 21.81 23.98 9.86 32.32 24.29

Table 6: Ablation Study, Zero-Shot ROUGE-L Results
on Validation Dataset of MLSUM

to encode these noise documents. 2) Fortunately,
our multilingual label only applies the translation
method when converting document/summary pair
into labels, instead of encoding.

ROUGE Results on WikiLingua To further
evaluate the performance of NLSSum, we design
additional zero-shot experiments for all our extrac-
tive models on WikiLingua. These models are
trained on English and inferred on other three lan-
guages. The results are in Table 4. We observe
that our NLSSum still performs better than all the
other extractive models. Meanwhile, compared
with the results on MLSUM, the improvement on
WikiLingua is not remarkable. Probably because
the documents and summaries in WikiLingua are
a series of how-to steps, which are more platitudi-
nous than news summarization.

5.1 Ablation Studies

To investigate the influence of each components in
NLSSum, we conduct experiments on the valida-
tion set of MLSUM and the results are in Table 6.
In neural label search, we have two weight predic-
tors, the sentence level predictors Tα and the label
set level predictor Tβ (Section 3.6). We can see
from the first block of Table 6 that without Tβ , the
result of NLSSum drops. NLSSum leverages four
label sets (Ua, Ub, Uc and Ud) to train Tα and Tβ .
In the second block, we study the effect of each
label set separately (note that XLMRSum-WR is
the backbone of NLSSum and we therefore build
label set baselines upon it). Ua works best over-
all. However, Ub is better on Russian compared to
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b
c

d
0.7 0.8

0.7
0.7 32.46 32.51
0.8 32.33 32.49

0.8
0.7 32.94 33.03
0.8 32.62 32.86

Table 7: ROUGE-L Results for Different Weights

Ua, which indicates these different label sets can
compensate for each other. Not surprisingly, using
one label set performs worse than NLSSum. In
the third block, we use all the label sets, but we
use fixed weights instead of using weight predicted
from neural label search4. We can see using multi-
ple label sets can improve variants with only one
label set, but there is still a gap to NLSSum, which
learns these weights for each sentence automati-
cally. It is also possible to use different weights
for different label sets. To make the number of
experiments tractable, we conduct experiments on
German only and search weight around our opti-
mal value (i.e., 0.8). Results are in Table 7. There
is slight gain by using different weights, but the
result is still worse than NLSSum. In the last block,
we train NLSSum with different word replacement
rates. We observe that 55% is the best choice for
the bilingual dictionary word replacement and the
word replacement rate is not sensitive. In practice,
we set the rate to 50% directly instead of tuning
it, in order to make the our experiments in true
zero-shot settings (Perez et al., 2021).

5.2 Human Evaluation

The human evaluation is important for summariza-
tion tasks, since the ROUGE can only determine
the textual representation overlapping. In this sub-
section, we design the ranking experiment (Cheng
and Lapata, 2016) with system outputs of different
systems on the German test set of MLSUM. First,
we randomly select 20 samples from the test set
of German. Then, we extract summary sentences
from the original document with four mBERTSum,
XLMRSum, NLSSum, and Oracle. Third, we trans-
late the document and summaries into English by
Machine Translation. Finally, the human partic-
ipants are presented with one translated English
document and a list of corresponding translated
summaries produced by different approaches. Each

4Fixed weight means a fixed weight for label sets Ub, Uc
and Ud, instead of the label search in Section 3.6. Weight of
original English labels Ua is set to 1.0, since the second block
shows the quality of Ua is the highest.
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Figure 3: Density of Summary Sentences in CNN/DM

example is reviewed by five different participants
separately. Participants are requested to rank these
summaries by taking the importance and redun-
dancy into account. To measure the quality of MT
System, we first translate the English document
into German and then back-translate it into English.
We observed that there are almost no changes in
meanings between the original English documents
and the back-translated English documents. We
therefore conclude the German to English transla-
tion quality is acceptable. As shown in Table 5,
NLSSum is ranked 1st 28% of the time and con-
sidered best in the extractive models except for
Oracle.

5.3 Monolingual Label Bias
In Figure 3, we calculate the positions of oracle sen-
tence and plot the kernel density5. Specically, we
translate the test set of CNN/DM from English into
Turkish and Russian, and re-calculate the oracle la-
bels for each language. Then, we collect all of the
oracle sentences and keep its relative positions. It
is obvious that: 1) The oracle sentences of English
are mainly located in the head of document, and
the Russian takes the second place, and then the
Turkish. That is why the Turkish achieves more im-
provement than Russian, by comparing the results
of NLSSum and XLMRSum in the in Part III of
Table 3. 2) Multilingual labels pay more attention
to the latter sentences, which is more suitable in
multilingual summarization.

6 Conclusion

We first study the monolingual label bias, that when
translate the (document, summary) from English

5https://en.wikipedia.org/wiki/Kernel_density_estimation

568



into other language, the re-converted labels will
change along with the transformation of textual
representation. Then we propose NLSSum to im-
prove the performance of multilingual zero-shot
extractive summarization, by introducing multilin-
gual labels. Finally, the summarization model is
trained on English with the weighted multilingual
labels and achieves great improvement on other
languages.
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