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Abstract

Recently, finetuning a pretrained language
model to capture the similarity between sen-
tence embeddings has shown the state-of-the-
art performance on the semantic textual sim-
ilarity (STS) task. However, the absence of
an interpretation method for the sentence sim-
ilarity makes it difficult to explain the model
output. In this work, we explicitly describe
the sentence distance as the weighted sum of
contextualized token distances on the basis
of a transportation problem, and then present
the optimal transport-based distance measure,
named RCMD; it identifies and leverages
semantically-aligned token pairs. In the end,
we propose CLRCMD, a contrastive learn-
ing framework that optimizes RCMD of sen-
tence pairs, which enhances the quality of sen-
tence similarity and their interpretation. Exten-
sive experiments demonstrate that our learn-
ing framework outperforms other baselines on
both STS and interpretable-STS benchmarks,
indicating that it computes effective sentence
similarity and also provides interpretation con-
sistent with human judgement. The code and
checkpoint are publicly available at https:
//github.com/sh0416/clrcmd.

1 Introduction

Predicting the semantic similarity between two sen-
tences has been extensively studied in the litera-
ture (Gomaa et al., 2013; Agirre et al., 2015; Ma-
jumder et al., 2016; Cer et al., 2017). Several recent
studies successfully utilized a pretrained language
model such as BERT (Devlin et al., 2019) by fine-
tuning it to capture sentence similarity (Reimers
and Gurevych, 2019). To be specific, they define
a similarity score between sentence embeddings,
which are obtained by aggregating contextualized
token embeddings (e.g., avg pooling) or using a spe-
cial token (e.g., [CLS]), then optimize the score

∗This work was done during internship at Scatterlab.
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Figure 1: An illustrative example of a transportation
problem in contextualized embedding space. The ex-
isting distance measure between average-pooled sen-
tence embeddings (orange) cannot clearly capture the
distances of semantically-aligned token pairs (blue).

for natural language inference (NLI) or semantic
textual similarity (STS) tasks (Gao et al., 2021).

Along with the quality of sentence similarity, in-
terpreting the predicted sentence similarity is also
important for end-users to better understand the
results (Agirre et al., 2016; Gilpin et al., 2018;
Rogers et al., 2020). In general, finding out the
cross-sentence alignment and the importance of
each aligned part is useful for analyzing sentence
similarity (Sultan et al., 2015). For example, there
were several attempts to use explicit features (e.g.,
TF-IDF) for easily analyzing the interaction among
the shared terms (Salton and Buckley, 1988) or to
adopt sophisticated metrics (e.g., word mover’s dis-
tance) for explicitly describing it by the importance
and similarity of word pairs across two sentences
(Kusner et al., 2015). However, for recent ap-
proaches that leverage sentence embeddings from
a pretrained model, it has not been studied how the
cross-sentence interaction of each part contributes
to the final sentence similarity.

In this work, we propose an analytical method
based on optimal transport to analyze existing ap-
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proaches that leverage a pretrained model. We con-
sider a sentence similarity measure a solution to a
transportation problem, which aims to transport a
collection of contextualized tokens in a sentence
to the ones in another sentence. As byproducts of
the problem, we obtain a cost matrix and a trans-
portation matrix, which encode the similarities of
all token pairs across sentences and their contribu-
tions to the sentence similarity, respectively. Using
this analytical method, we point out that the exist-
ing approaches suffer from the rank-1 constraint in
the transportation matrix; this eventually keeps the
model from effectively capturing the similarities of
semantically-aligned token pairs into sentence sim-
ilarity. For example, considering transportation in
a contextualized embedding space (Figure 1), the
distance between averaged token embeddings (or-
ange arrows) cannot clearly represent the distance
of semantically-aligned token pairs (blue arrows).

To resolve the above limitation and enhance the
interpretability of a model, we present a novel dis-
tance measure and a contrastive learning frame-
work that optimizes the distance between sentences.
First, we apply optimal transport in a contextual-
ized embedding space and leverage the optimal
solution for a relaxed transportation problem as our
distance measure. This sentence distance is com-
posed of the distances of semantically-aligned to-
ken pairs; this makes the result easily interpretable.
Furthermore, we present a contrastive learning
framework that adopts the proposed distance to
finetune the model with token-level supervision.
It optimizes the model to learn the relevance of
semantically-aligned token pairs from that of sen-
tence pairs, which further enhances interpretability.

We extensively evaluate our approach and val-
idate the effectiveness of its sentence similarity
and interpretation. The comparison on 7 STS
benchmarks supports the superiority of sentence
similarity predicted by the model trained by our
framework. In particular, the evaluation on 2
interpretable-STS datasets demonstrates that the
proposed distance measure finds out semantically
relevant token pairs that are more consistent with
human judgement compared to other baseline meth-
ods. Our qualitative analysis shows that both the
token alignment and their similarity scores from
our model serve as useful resources for end-users
to better understand the sentence similarity.

2 Related work

2.1 Semantic textual similarity
Most recent studies tried to leverage a pretrained
language model with various model architectures
and training objectives for STS tasks, achieving
the state-of-the-art performance. In terms of model
architecture, Devlin et al. (2019) focus on exhaus-
tive cross-correlation between sentences by tak-
ing a concatenated text of two sentences as an
input, while Reimers and Gurevych (2019) im-
prove scalability based on a Siamese network and
Humeau et al. (2020) adopt a hybrid approach.
Along with the progress of model architectures,
many advanced objectives for STS tasks were pro-
posed as well. Specifically, Reimers and Gurevych
(2019) mainly use the classification objective for
an NLI dataset, and Wu et al. (2020) adopt con-
trastive learning to utilize self-supervision from a
large corpus. Yan et al. (2021); Gao et al. (2021)
incorporate a parallel corpus such as NLI datasets
into their contrastive learning framework.

Despite their effectiveness, the interpretability
of the above models for STS tasks was not fully
explored (Belinkov and Glass, 2019). One related
task is interpretable STS, which aims to predict
chunk alignment between two sentences (Agirre
et al., 2016). For this task, a variety of supervised
approaches were proposed based on neural net-
works (Konopík et al., 2016; Lopez-Gazpio et al.,
2016), linear programming (Tekumalla and Jat,
2016), and pretrained models (Maji et al., 2020).
However, these methods cannot predict the sim-
ilarity between sentences because they focus on
finding chunk alignment only. To the best of our
knowledge, no previous approaches based on a
pretrained model have taken into account both sen-
tence similarity and interpretation.

2.2 Optimal transport
Optimal transport (Monge, 1781) has been suc-
cessfully applied to many applications in natural
language processing (Li et al., 2020; Xu et al.,
2021), by the help of its ability to find a plausi-
ble correspondence between two objects (Lee et al.,
2021a,b). For example, Kusner et al. (2015) adopt
optimal transport to measure the distance between
two documents with pretrained word vectors. Zhao
et al. (2019) adopt optimal transport for evaluat-
ing text generation and Zhang et al. (2020) take
a greedy approach leveraging pretrained language
model. In addition, Swanson et al. (2020) discover
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the rationale in text-matching via optimal transport,
thereby improving model interpretability.

One well-known limitation of optimal trans-
port is that finding the optimal solution is com-
putationally intensive, and thus approximation
schemes for this problem have been extensively re-
searched (Grauman and Darrell, 2004; Shirdhonkar
and Jacobs, 2008). To get the solution efficiently,
Cuturi (2013) provides a regularizer inspired by a
probabilistic theory and then uses Sinkhorn’s algo-
rithm. Kusner et al. (2015) relax the problem to get
the quadratic-time solution by removing one of the
constraints, and Wu et al. (2018) introduce a kernel
method to approximate the optimal transport.

3 Method

We first analyze the similarity measure used by
existing models from the perspective of a trans-
portation problem. Considering the above analysis,
we present a novel distance measure and a con-
trastive sentence learning framework to enhance
the interpretability of a sentence similarity model.

3.1 Distance as a transportation problem

We briefly explain the transportation problem and
how to interpret the total transportation cost as a
distance measure. A transportation problem con-
sists of three components: states before and after
transportation, and a cost matrix. In general, the
two states are represented in high-dimensional sim-
plex, i.e., d1 ∈ Σd1 and d2 ∈ Σd2 , where each
dimension implies a specific location with a non-
negative quantity. The cost matrix M ∈ Rd1×d2

encodes the unit transportation cost from location
i to j into Mi,j . In this situation, we search the
transportation plan to transport from d1 to d2 with
the minimum cost. Using the above notations, the
optimization problem is written as follows:

minimize
T∈Rd1×d2

≥0

∑
i,j

Ti,jMi,j (1)

subject to T>~1 = d2, T~1 = d1,

where each entry of the transportation matrix Ti,j

indicates how much quantity is transferred from
location i to j. The optimal solution to this problem
is called optimal transport, which is also known as
earth mover’s distance (EMD):

dEMD
M :=

∑
i,j

T∗i,jMi,j . (2)

In Equation (2), the distance is computed by the
sum of element-wise multiplications of the optimal
transportation matrix T∗ and the cost matrix M.
In this sense, EMD considers the optimality of
distance when combining unit costs in M. That is,
the priority of each unit cost when being fused to
the distance is encoded in the transportation matrix,
which serves as a useful resource for analyzing the
distance.

3.1.1 Example: Average pooling
We express cosine similarity with average pooling
as a transportation problem and analyze its proper-
ties in terms of the transportation matrix. Note that
this similarity measure is widely adopted in most of
the previous studies (Reimers and Gurevych, 2019;
Wu et al., 2020; Gao et al., 2021). Formally, for
a sentence of length L, the sentence embedding is
generated by applying average pooling to L contex-
tualized token embeddings, i.e., s = 1

L

∑L
i=1 xi,

where xi is the i-th token embedding obtained from
a pretrained model. Using the sentence embed-
dings, the sentence similarity is defined by

sAVG = cos(s1, s2) =
s1>s2

‖s1‖‖s2‖
.

This average pooling-based sentence similarity can
be converted into the distance, dAVG = 1 − sAVG,
described by the token embeddings as follows:

dAVG = 1−
L1∑
i=1

L2∑
j=1

1

L1L2

‖x1
i ‖‖x2

j‖
‖s1‖ ‖s2‖

x1
i
>x2

j

‖x1
i ‖‖x2

j‖
.

From the perspective of Equation (1), this distance
is interpreted as a naive solution of a special trans-
portation problem, where the cost matrix and the
transportation matrix are

MAVG
i,j =

‖s1‖‖s2‖
‖x1

i ‖‖x2
j‖
− cos(x1

i ,x
2
j ),

TAVG
i,j =

1

L1L2

‖x1
i ‖‖x2

j‖
‖s1‖ ‖s2‖

. (3)

Each entry of the cost matrix includes negative
cosine similarities between token embeddings, and
the contribution of each token pair to the sentence
distance (i.e., the transportation matrix) is deter-
mined by the norms of the token embeddings. In
theory, the rank of the transportation matrix is con-
strained to be one, which prevents effective inte-
gration of the token distances into the sentence dis-
tance. In practice, it is impossible to involve only
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semantically-aligned token pairs across sentences
because all possible token pairs are considered by
the products of their norms. From this analysis,
we point out that the average pooling-based simi-
larity is not effective enough to capture the token
correspondence between sentences.

3.2 Relaxed optimal transport distance for
contextualized token embeddings

To resolve the ineffectiveness of the existing mea-
sure, we introduce a novel distance measure based
on optimal transport. We first define a transporta-
tion problem that considers semantic relevance
in a contextualized embedding space. Given the
token embeddings of two sentences from a pre-
trained language model, we construct a cost matrix
MCMD ∈ RL1×L2 that encodes token similarities
using cosine distance, and define the state vectors
for the two sentences as one vectors normalized by
their sentence lengths d1 := 1

L1
~1 and d2 := 1

L2
~1.

As discussed in Section 3.1, we consider the op-
timal solution to this problem as a distance mea-
sure named contextualized token mover’s distance
(CMD):

MCMD
i,j := 1− cos

(
x1
i ,x

2
j

)
,

dCMD
M :=

∑
i,j

T∗i,jM
CMD
i,j .

However, finding T∗ incurs huge computa-
tional complexity of O(L3 logL) where L =
max(L1, L2) (Villani, 2008). For this reason, we
relax the optimization problem by removing the
first constraint, T>~1 = d′, similar to Kusner et al.
(2015). The optimal solution for this relaxed trans-
portation problem is found in O(L2), keeping the
rank of the transportation matrix larger than one.
In the end, the optimal transportation matrix and
the corresponding distance named relaxed CMD
(RCMD) are derived as follows:

TRCMD1
i,j =

{
1
L1

if j = argminj′M
CMD
i,j′

0 otherwise,

dRCMD1
M :=

1

L1

∑
i

min
j

MCMD
i,j . (4)

Similarly, the elimination of the second constraint,
T~1 = d, results in TRCMD2 and dRCMD2

M , where
the solutions for the two relaxed problems use min
operation on the cost matrix in a row-wise and
a column-wise manner, respectively. Note that

TRCMD1 represents the token-level binary align-
ment from the first sentence to the second sentence
and accordingly the final distance is computed by
averaging all the distances of the aligned token
pairs. Also, it is obvious that TRCMD1 has a much
higher rank than TAVG, which implies that it can
express more complex token-level semantic rela-
tionship between two sentences.

We remark that our solution provides better inter-
pretability of semantic textual similarity compared
to the case of average pooling. For the sentence dis-
tance in Equation (3), TAVG assigns non-zero val-
ues to all token pairs that include irrelevant pairs;
this makes it difficult to interpret the result. On
the contrary, TRCMD1 in Equation (4) is designed
to explicitly involve the most relevant token pairs
across sentences for the sentence distance, which
allows us to interpret the result easily.

3.3 Contrastive sentence similarity learning
with semantically-aligned token pairs

We present a contrastive learning framework for
RCMD (CLRCMD) that incorporates RCMD into
the state-of-the-art contrastive learning framework.
To this end, we convert RCMD to the correspond-
ing similarity by sRCMD1

M = 1− dRCMD1
M :

sRCMD1
M (s1, s2) =

1

L1

L1∑
i=1

max
j

cos(x1
i ,x

2
j ).

sRCMD2
M is computed in the same manner as well,

and we average them to consider bidirectional se-
mantic alignment between two sentences; this pro-
vides diverse gradient signals during optimization.
The final similarity is described by

sRCMD
M (s1, s2) :=

1

2

(
sRCMD1
M (s1, s2) + sRCMD2

M (s1, s2)
)
.

Adopting this similarity measure, the contrastive
learning objective for the i-th sentence pair in a
training batch is defined as follows:

− log
exp(sRCMD

M (si, si+)/τ)∑B
j=1(exp(sRCMD

M (si, sj+)/τ) + exp(sRCMD
M (si, sj−)/τ))

,

where τ is the temperature parameter and B is the
batch size. Following (Gao et al., 2021), CLRCMD
uses the other sentences in the batch to generate
negative pairs.

We argue that CLRCMD enhances both the sen-
tence similarity and its interpretability in the follow-
ing aspects. First, CLRCMD alleviates the catas-
trophic forgetting of pretrained semantics during
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

BERTbase-avg 29.12 59.96 47.22 60.61 63.72 47.20 58.25 52.30
SBERTbase

† 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.86
SBERTbase-flow† 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60

SBERTbase-whitening† 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
SimCSEcls-BERTbase

† 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
SimCSEavg-BERTbase 75.88 83.28 80.26 86.06 81.33 84.91 79.94 81.67
CLRCMD-BERTbase 75.23 85.06 80.99 86.26 81.50 85.21 80.49 82.11

RoBERTabase-avg 32.50 55.78 45.00 60.61 61.68 55.31 61.66 53.22
SRoBERTabase

† 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
SRoBERTabase-whitening† 70.46 77.07 74.46 81.64 76.43 79.49 76.65 76.60
SimCSEcls-RoBERTabase

† 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
SimCSEavg-RoBERTabase 75.75 85.10 80.85 85.95 83.33 85.55 79.41 82.28
CLRCMD-RoBERTabase 75.68 85.76 80.92 86.58 83.48 85.89 81.01 82.76

Table 1: The results on 7 STS benchmarks. We measure Spearman correlation on all the examples (Gao et al.,
2021). † indicates the baseline results reported in their original papers.

the finetuning process. Its token-level supervision
is produced by leveraging the textual semantics en-
coded in a pretrained checkpoint, because token
pairs are semantically aligned according to their
similarities in the contextualized embedding space.
Namely, CLRCMD updates the parameters to im-
prove the quality of sentence similarity while less
breaking token-level semantics in the pretrained
checkpoint. Furthermore, CLRCMD directly dis-
tills the relevance of a sentence pair into the rele-
vance of semantically-aligned token pairs. In this
sense, our contextualized embedding space effec-
tively captures the token-level semantic relevance
from training sentence pairs, which provides better
interpretation for its sentence similarity.

4 Experiments

To analyze our approach in various viewpoints, we
design and conduct experiments that focus on the
following three research questions:

• RQ1 Does CLRCMD effectively measure
sentence similarities using a pretrained lan-
guage model?

• RQ2 Does CLRCMD provide the interpre-
tation of sentence similarity which is well
aligned with human judgements?

• RQ3 Does CLRCMD efficiently compute its
sentence similarity for training and inference?

4.1 Training details
We finetune a pretrained model using CLRCMD
in the following settings. Following previous

work (Gao et al., 2021), we use NLI datasets with
hard negatives: SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018). We use a pretrained
backbone attached with a single head, which is
the same with (Gao et al., 2021). As the initial
checkpoint of the pretrained models, we employ
bert-base-uncased and roberta-base
provided by huggingface (Devlin et al., 2019; Liu
et al., 2019). Adam optimizer is used with the ini-
tial learning rate 5e− 5 and linear decay schedule.
Fp16 training is enabled where the maximum batch
size is 128 on a single V100 GPU, and the softmax
temperature is set to τ = 0.05 (Gao et al., 2021).
The training is proceeded with 4 different random
seeds and the best model is chosen using the best
Spearman correlation on STSb validation set which
is evaluated every 250 steps during training.

4.2 Semantic textual similarity

We evaluate the similarity model finetuned by
CLRCMD for STS task to quantitatively measure
the quality of sentence similarity (RQ1).

Metric We measure Spearman correlation for
each of seven STS benchmarks and calculate their
average to compare the capability of representing
sentences in general (Conneau and Kiela, 2018).

Baselines We select the baselines that leverage
a pretrained model, and they turn out to outper-
form other traditional baselines. We only list the
baseline names for BERTbase below; the names for
RoBERTabase are obtained by replacing BERTbase
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with RoBERTabase.

• BERTbase-avg generates sentence embed-
dings by averaging the token embeddings
from BERTbase without finetuning. It indi-
cates zero-shot performance of a checkpoint.

• SBERTbase (Reimers and Gurevych, 2019)
is a pioneering work to finetune a pretrained
model for sentence embeddings. It trains a
Siamese network using NLI datasets.

• SimCSEcls-BERTbase (Gao et al., 2021)
adopts a contrastive learning framework
(Chen et al., 2020) using SNLI and MNLI
datasets. The contextualized embedding of
[CLS] is used as a sentence embedding.

• SimCSEavg-BERTbase (Gao et al., 2021) is
the same with SimCSEcls-BERTbase except
that it performs average pooling on token em-
beddings to obtain a sentence embedding.

Result Table 1 reports Spearman correlation for
each dataset and their average. For most of
the datasets, CLRCMD shows higher correlation
compared to the state-of-the-art baselines. In
particular, for STS14, STS15, SICK-R datasets,
CLRCMD-BERTbase achieves comparable perfor-
mance to SimCSEcls-RoBERTabase whose back-
bone language model is pretrained with 10 times
larger data compared to BERTbase. This implies
that finetuning with token-level supervision from
CLRCMD achieves the performance as good as
using an expensively pretrained checkpoint.

4.3 Interpretable semantic textual similarity

Next, we measure the performance of our approach
on interpretable STS (iSTS) tasks in order to val-
idate that CLRCMD embeds a sufficient level of
interpretability even without any supervision (i.e.,
labeled training data) about semantically-aligned
chunk pairs (RQ2).

Experimental setup We utilize the “images”
and “headlines” data sources included in Se-
mEval2016 Task 2: iSTS (Agirre et al., 2016).
We measure the agreement between human judge-
ment (gold semantic alignment across sentences)
and the contributions of all token pairs to sen-
tence similarity (element-wise multiplication of
(1 −M) and T). One challenge to use our simi-
larity model for this task is to convert token pair
contributions into chunk-level alignment. First,
we summarize token pair contributions into chunk

Model images headlines

BERTbase-avg 82.45 85.98
BERTbase-RCMD 83.00 88.25

SimCSEavg-BERTbase 82.98 85.80
CLRCMD-BERTbase 87.25 90.55

RoBERTabase-avg 61.68 52.01
RoBERTabase-RCMD 82.44 88.92

SimCSEavg-RoBERTabase 73.66 77.30
CLRCMD-RoBERTabase 84.93 88.45

Table 2: The results on SemEval2016 task 2: iSTS.

pair contributions by applying simple average pool-
ing based on the chunk mapping represented by
c(i) = {k|is_overlap(ci, tk)}, where ci is the i-th
chunk and tk is the k-th token in a sentence.1 Then,
to obtain the alignment based on the pairwise chunk
contributions, we design a criterion for selecting
confident chunk pairs (i, j) as follows:

Ci,j =
1

|c1(i)||c2(j)|

c1(i)∑
k

c2(j)∑
l

Tk,lMk,l,

a(i, j) = I[j = argmax
j′

Ci,j′ ] · I[i = argmax
i′

Ci′,j ].

Using the aligned chunk pairs obtained by each
method, we compute the alignment F1 score as
the evaluation metric, which indicates the agree-
ment between human judgement and chunk contri-
bution.2 We consider eight different configurations
to investigate the effectiveness of the following
components: 1) sentence similarity, 2) contrastive
learning, and 3) pretrained checkpoints.

Result Table 2 shows the clear tendency of iSTS
performance with respect to each of the above
components. First of all, the token pair contri-
bution from RCMD is more consistent with hu-
man judgement than that from average pooling.
RCMD improves alignment F1 scores even without
finetuning (BERTbase-RCMD and RoBERTabase-
RCMD), indicating that RCMD effectively discov-
ers the token-level relevance encoded inside a pre-
trained checkpoint. In addition, the alignment F1
score increases when we finetune a model using
CLRCMD. Notably, CLRCMD-BERTbase success-
fully improves the alignment F1 score whereas

1We use gold standard chunking information to focus on
alignment only, which is the second subtrack in iSTS.

2We employ alignment F1 score implemented in the evalu-
ation script provided by the task organizer.
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(a) Positive, CLRCMD (b) Neutral, CLRCMD (c) Negative, CLRCMD

(d) Positive, SimCSEavg (e) Neutral, SimCSEavg (f) Negative, SimCSEavg

Figure 2: Token pair contribution heatmaps. We use the model finetuned from BERTbase for this experiment.

SimCSEavg-BERTbase does not. This result shows
that finetuning a model using the similarity mea-
sure based on semantically-aligned token pairs (i.e.,
fine-grained supervision induced by RCMD) fur-
ther enhances the interpretability of a model.

4.4 Qualitative analysis

We qualitatively analyze the sentence similarity
from the perspective of the transportation problem
in order to demonstrate that a model trained by
CLRCMD provides clear and accurate explanation
(RQ2). To this end, we visualize the contribution
of token pairs obtained from CLRCMD-BERTbase
and that from SimCSEavg-BERTbase, and then clar-
ify how their sentence similarity is computed dif-
ferently from each other. Three sentence pairs are
randomly selected from STS13 dataset. Figure 2
illustrates the token pair contribution heatmap for
positive, neutral, and negative sentence pairs.

CLRCMD vs. SimCSEavg Overall, CLRCMD
aligns two sentences better than the baseline. To
be specific, CLRCMD effectively highlights the
contributions of semantically-relevant token pairs
and excludes the other contributions (Figure 2 up-
per). On the contrary, SimCSEavg fails to represent
meaningful token-level relevance for sentence sim-
ilarity (Figure 2 lower). The rank-1 constraint of

SimCSEavg prevents the model from getting any
plausible alignment between two sentences, while
it simply tunes the contributions of all possible
token pairs at once. We emphasize that the super-
fluous correlation in the heatmap not only inhibits
the capability to capture sentence similarity, but
also makes it difficult for humans to understand
how sentence similarity is computed.

Case study on positive, neutral, and negative
sentence pairs For the positive pair (Figure 2
left), CLRCMD clearly matches all semantically-
aligned token pairs including the linking words
({“,”, “and”}–{“and”}), synonyms ({“realize”,
“comprehend”}–{“comprehend”}), and omitted
contexts ({“the”}–{“the nature of”, “of”}). For the
neutral pair (Figure 2 middle), the two sentences
have the same lexical structure except for the date.
In this case, CLRCMD assigns low contributions
to the token pairs about day and month ({“25”,
“august”}–{“19”, “july”}), while keeping the con-
tributions high for all the other pairs of identical
tokens. Therefore, end-users can clearly figure out
which part is semantically different based on their
contributions as well as alignment. In case of the
negative pair (Figure 2 right), both the models are
not able to find any plausible alignment; CLRCMD
lowers contributions for most of the token pairs ex-
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Batch size 16 32 64 128

RCMDdense 7.5 22.2 OOM OOM
RCMDsparse 4.6 6.1 10.6 25.8

Table 3: GPU memory usage (GB) of CLRCMD with
various batch sizes. OOM: out-of-memory.

cept the token pair with identical contents (“after
riots”). That is, end-users also can interpret the
negative pair based on the heatmap where seman-
tic correspondence between two sentences does
not clearly exist but few overlapped tokens highly
contribute to the sentence similarity.

4.5 Resource evaluation

We measure GPU memory usage and inference
time of CLRCMD-BERTbase to demonstrate that
CLRCMD can be executed on a single GPU and
an inference of our model takes almost the same
cost to that of the baseline (RQ3).

4.5.1 GPU memory usage analysis

Implementation of RCMD We implement two
variants of RCMD, RCMDdense and RCMDsparse,
to investigate the effect of exploiting the sparseness
in RCMD. Both of them calculate sentence dis-
tance by the sum of element-wise multiplications
of the cost matrix and the transportation matrix. For
an input sentence pair, RCMDdense maintains the
full pairwise token distances (MCMD), whereas
RCMDsparse only keeps the token distances at
which the transportation matrix has nonzero val-
ues ({MCMD

i,j |TCMD
i,j 6= 0}). Note that the number

of nonzero entries in the transportation matrix of
RCMD is at most 2L, which is an order of magni-
tude smaller than the number of all entries, L2.

Result Table 3 reports the GPU memory usage
during the finetuning process. For batch-wise con-
trastive learning, GPU memory requirement be-
comesO(B2) in terms of the batch sizeB, because
all pairwise sentence similarities within a batch
need to be computed. In this situation, RCMDdense
using a dense matrix drastically increases GPU
memory usage by O(B2L2), and as a result, the
batch size cannot grow larger than 32. In contrast,
RCMDsparse successfully enlarges the batch size up
to 128 by exploiting sparseness in the transporta-
tion matrix of RCMD, which eventually reduces
the space complexity to O(B2L).

Figure 3: Elapsed time (ms) for the inference of 512
sentence pairs. The result of SimCSEavg and SimCSEcls
are overlapped.

4.5.2 Inference time analysis
Experimental setup We measure the time for
predicting the similarities of 512 sentence pairs on
a single V100 GPU while increasing the sequence
length from 8 to 128, which is the most influential
factor for inference time. We repeat this process 10
times and report the average values.

Result Figure 3 shows the average elapsed time
for inference. The model with RCMD takes almost
the same inference time as the model with the sim-
ple average pooling-based similarity. We highlight
that 98% of the sentences in STS13 dataset con-
sist of at most 48 tokens and particularly, the time
difference is negligible in case of predicting the
sentence pairs whose sentences have less than 48
tokens. This result shows that significant increment
of inference time does not occur within the range of
the sequence length owing to parallel GPU compu-
tations, even though RCMD has the quadratic time
complexity with respect to the sentence length.

5 Conclusion

In this work, we present CLRCMD, a learning
framework for an interpretable sentence similarity
model based on optimal transport. First, we view
each sentence similarity measure as a transporta-
tion problem, pointing out the unexpressiveness of
the existing pooling-based similarity. Integrating
the concept of optimal transport into a pretrained
language model, CLRCMD defines the distance
measure by using the semantically-aligned token
pairs between two sentences and furthermore, it
finetunes a model with this distance based on con-
trastive learning for better interpretability. We em-
pirically show that CLRCMD accurately predicts
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sentence similarity while providing interpretable to-
ken pair contributions consistent with human judge-
ments. With the belief that the ability to interpret
model behavior is critical for future AI models, we
focus on enhancing this virtue targeted on STS task
throughout this research.
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