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Abstract

Text-based games provide an interactive way to
study natural language processing. While deep
reinforcement learning has shown effectiveness
in developing the game playing agent, the low
sample efficiency and the large action space re-
main to be the two major challenges that hinder
the DRL from being applied in the real world.
In this paper, we address the challenges by in-
troducing world-perceiving modules, which au-
tomatically decompose tasks and prune actions
by answering questions about the environment.
We then propose a two-phase training frame-
work to decouple language learning from re-
inforcement learning, which further improves
the sample efficiency. The experimental results
show that the proposed method significantly im-
proves the performance and sample efficiency.
Besides, it shows robustness against compound
error and limited pre-training data.

1 Introduction

Text-based games are simulated environments
where the player observes textual descriptions, and
acts using text commands (Hausknecht et al., 2020;
Urbanek et al., 2019). These games provide a safe
and interactive way to study natural language under-
standing, commonsense reasoning, and dialogue
systems. Besides language processing techniques,
Reinforcement Learning has become a quintessen-
tial methodology for solving text-based games.
Some RL-based game agents have been developed
recently and proven to be effective in handling chal-
lenges such as language representation learning and
partial observability (Narasimhan et al., 2015; Fang
et al., 2017; Ammanabrolu and Riedl, 2019).

Despite the effectiveness, there are two major
challenges for RL-based agents, preventing them
from being deployed in real world applications:
the low sample efficiency, and the large action
space (Dulac-Arnold et al., 2021). The low sample
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efficiency is a crucial limitation of RL which refers
to the fact that it typically requires a huge amount
of data to train an agent to achieve human-level per-
formance (Tsividis et al., 2017). This is because hu-
man beings are usually armed with prior knowledge
so that they don’t have to learn from scratch (Dubey
et al., 2018). In a language-informed RL system,
in contrast, the agent is required to conduct both
language learning and decision making regimes,
where the former can be considered as prior knowl-
edge and is much slower than the later (Hill et al.,
2021). The sample efficiency could be improved
through pre-training methods, which decouple the
language learning from decision making (Su et al.,
2017). The selection of pre-training methods thus
plays an important role: if the pre-trained modules
perform poorly on unseen data during RL training,
the incurred compound error will severely affect
the decision making process. Another challenge
is the large discrete action space: the agent may
waste both time and training data if attempting ir-
relevant or inferior actions (Dulac-Arnold et al.,
2015; Zahavy et al., 2018).

In this paper, we aim to address these two chal-
lenges for reinforcement learning in solving text-
based games. Since it is inefficient to train an agent
to solve complicated tasks (games) from scratch,
we consider decomposing a task into a sequence
of subtasks as inspired by (Andreas et al., 2017).
We design an RL agent that is capable of auto-
matic task decomposition and subtask-conditioned
action pruning, which brings two branches of ben-
efits. First, the subtasks are easier to solve, as the
involved temporal dependencies are usually short-
term. Second, by acquiring the skills to solve sub-
tasks, the agent will be able to learn to solve a new
task more quickly by reusing the learnt skills (Bar-
reto et al., 2020). The challenge of large action
space can also be alleviated, if we can filter out the
actions that are irrelevant to the current subtask.

Inspired by the observation that human be-
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Figure 1: (a) An example of the observation, which can be textual, KG-based, or hybrid. (b) The decision making
process. Through question answering, the agent is guided to first decompose the task as subtasks, then reduce the
action space conditioned on the subtask.

ings can understand the environment conditions
through question answering (Das et al., 2020;
Ammanabrolu et al., 2020), we design world-
perceiving modules to realize the aforementioned
functionalities (i.e., task decomposition and action
pruning) and name our method as Question-guided
World-perceiving Agent (QWA)*. Fig. 1 (b) shows
an example of our decision making process. Be-
ing guided by some questions, the agent first de-
composes the task to obtain a set of available sub-
tasks, and selects one from them. Next, conditioned
on the selected subtask, the agent conducts action
pruning to obtain a refined set of actions. In or-
der to decouple language learning from decision
making, which further improves the sample effi-
ciency, we propose to acquire the world-perceiving
modules through supervised pre-training. We de-
sign a two-phase framework to train our agent. In
the first phase, a dataset is built for the training
of the world-perceiving modules. In the second
phase, we deploy the agent in games with the pre-
trained modules frozen, and train the agent through
reinforcement learning.

We conduct experiments on a series of cook-
ing games. We divide the games as simple games
and complex games, and construct the pre-training
dataset from simple games only. The experimental
results show that QWA achieves high sample effi-
ciency in solving complex games. We also show
that our method enjoys robustness against com-
pound error and limited pre-training data.

Our contributions are summarized as follows:
Firstly, we develop an RL agent featured with
question-guided task decomposition and action
space reduction. Secondly, we design a two-phase

*Code is available at: https://github.com/
YunqiuXu/QWA

framework to efficiently train the agent with limited
data. Thirdly, we empirically validate our method’s
effectiveness and robustness in complex games.

2 Related work

2.1 RL agents for text-based games

The RL agents for text-based games can be divided
as text-based agents and KG-based agents based on
the form of observations. Compared with the text-
based agents (Narasimhan et al., 2015; Yuan et al.,
2018; Adolphs and Hofmann, 2020; Jain et al.,
2020; Yin and May, 2019; Xu et al., 2020a; Guo
et al., 2020), which take the raw textual observa-
tions as input to build state representations, the KG-
based agents construct the knowledge graph and
leverage it as the additional input (Ammanabrolu
and Riedl, 2019; Xu et al., 2020b). By providing
structural and historical information, the knowl-
edge graph helps the agent to handle partial ob-
servability, reduce action space, and improve gen-
eralizability across games. Based on how actions
are selected, the RL agents can also be divided
as parser-based agents, choice-based agents, and
template-based agents. The parser-based agents
generate actions word by word, leading to a huge
combinatorial action space (Kohita et al., 2021).
The choice-based agents circumvent this challenge
by assuming the access to a set of admissible ac-
tions at each game state (He et al., 2016). The
template-based agents achieve a trade-off between
the huge action space and the assumption of admis-
sible action set by introducing the template-based
action space, where the agent selects first a tem-
plate, and then a verb-object pair either individu-
ally (Hausknecht et al., 2020) or conditioned on the
selected template (Ammanabrolu and Hausknecht,
2020). In this work, we aim to improve the sam-
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ple efficiency and reduce the action space through
pre-training. Being agnostic about the form of ob-
servations and the action selecting methods, our
work complements the existing RL agents.

2.2 Hierarchical RL
Our work is closely related to task decomposi-
tion (Oh et al., 2017; Shiarlis et al., 2018; Sohn
et al., 2018) and hierarchical reinforcement learn-
ing (Dayan and Hinton, 1992; Kulkarni et al., 2016;
Vezhnevets et al., 2017). Similar to our efforts,
Jiang et al. (2019) and Xu et al. (2021) designed
a meta-policy for task decomposition and subtask
selection, and a sub-policy for goal-conditioned
decision making. Typically, these works either as-
sume the access to a set of available subtasks, or
decompose a task through pre-defined rules, while
we aim to achieve automatic task decomposition
through pre-training, and remove the requirement
for expert knowledge during reinforcement learn-
ing. Besides, existing work assumes that unlimited
interaction data can be obtained to train the whole
model through RL. In contrast, we consider the
more practical situation where the interaction data
is limited, and focus on improving the RL agent’s
data efficiency. Regarding the sub-policy, we do
not assume the access to the termination states of
the subtasks. We also do not require additional
handcrafted operations in reward shaping (Bah-
danau et al., 2019).

2.3 Pre-training methods for RL
There have been a wide range of work studying
pre-training methods or incorporating pre-trained
modules to facilitate reinforcement learning (Ey-
senbach et al., 2018; Hansen et al., 2019; Sharma
et al., 2019; Gehring et al., 2021; Liu et al., 2021;
Schwarzer et al., 2021). One major branch among
them is Imitation Learning (IL), where the agent is
trained to imitate human demonstrations before be-
ing deployed in RL (Hester et al., 2018; Zhu et al.,
2018; Reddy et al., 2019). Although we also col-
lect human labeled data for pre-training, we lever-
age the data to help the agent to perceive the envi-
ronment instead of learning the solving strategies.
Therefore, we do not require the demonstrations to
be perfect to solve the game. Besides, our method
prevails when pre-trained on simple tasks rather
than complicated ones, making it more feasible for
human to interact and annotate (Arumugam et al.,
2017; Mirchandani et al., 2021). Further discus-
sions to compare our method with IL are provided

in subsequent sections.
In the domain of text-based games, some prior

works have involved pre-training tasks such as
state representation learning (Ammanabrolu et al.,
2021; Singh et al., 2021), knowledge graph con-
structing (Murugesan et al., 2021) and action prun-
ing (Hausknecht et al., 2019; Tao et al., 2018; Yao
et al., 2020). For example, Ammanabrolu et al.
(2020) designed a module to extract triplets from
the textual observation by answering questions, and
use these triplets to update the knowledge graph.
As far as we know, we are the first to incorpo-
rate pre-training based task decompositon in this
domain. Besides, instead of directly pruning the
actions based on the observation, we introduce
subtask-conditioned action pruning to further re-
duce the action space.

3 Background

POMDP Text-based games can be formulated as
a Partially Observable Markov Decision Processes
(POMDPs) (Côté et al., 2018). A POMDP can
be described by a tuple G = ⟨S,A, P, r,Ω, O, γ⟩,
with S representing the state set, A the action set,
P (s′|s, a) : S ×A× S 7→ R+ the state transition
probabilities, r(s, a) : S × A 7→ R the reward
function, Ω the observation set, O the conditional
observation probabilities, and γ ∈ (0, 1] the dis-
count factor. At each time step, the agent receives
an observation ot ∈ Ω based on the probability
O(ot|st, at−1), and select an action at ∈ A. The
environment will transit into a new state based on
the probability T (st+1|st, at), and return a scalar
reward rt+1. The goal of the agent is to select
the action to maximize the expected cumulative
discounted rewards: Rt = E[

∑∞
t=0 γ

krt].

Observation form In text-based games, the ob-
servation can be in the form of text, knowledge
graph, or hybrid. Fig. 1 (a) shows an example
of the textual observation and the corresponding
KG-based observation. We do not make assump-
tions about the observation form and our method is
compatible with any of those forms.

Problem setting We aim to design an RL-based
agent that is able to conduct automatic task decom-
position and action pruning in solving text-based
games. We consider games sharing similar themes
and tasks, but varying in their complexities (Ad-
hikari et al., 2020; Chen et al., 2021). Taking the
cooking games (Côté et al., 2018) as an example,
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Figure 2: Subtasks for solving (a) 3 simple games and
(b) 1 complex game.

the task is always “make the meal”. To accomplish
this task, the agent has to explore different rooms to
collect all ingredients, prepare them in right ways,
and make the meal. A game’s complexity depends
on the number of rooms, ingredients, and the re-
quired preparation steps. We define a subtask as a
milestone towards completing the task (e.g., “get
apple” if “apple” is included in the recipe), and a
subtask requires a sequence of actions to accom-
plish (e.g., the agent has to explore the house to
find the apple). A game is considered simple, if it
consists of only a few subtasks, and complex if it
consists of more subtasks. Fig. 2 gives examples
of simple games and complex games. While being
closer to real world applications, complex games
are hard to solve by RL agents because: 1) it’s ex-
pensive to collect sufficient human labeled data for
pre-training; 2) it’s unrealistic to train an RL agent
from scratch. We therefore focus on agent’s sam-
ple efficiency and performance on complex games.
Our objective is to leverage the labeled data col-
lected from simple games to speed up RL training
in complex games, thus obtaining an agent capable
of complex games. For more details and statistics
of the simple / complex games used in our work,
please refer to Sec. 5.1.

4 Methodology

4.1 Framework overview

Fig. 3 shows the overview of our QWA agent. We
consider two world-perceiving modules: a task se-
lector and an action validator. Given the observa-
tion ot and the task candidate set T , we use the
task selector to first obtain a subset of currently
available subtasks Tt ⊆ T , then select a subtask
Tt ∈ Tt. Given Tt and the action candidate set A,

we use the action validator to get an action subset
At ⊆ A, which contains only those relevant to the
subtask Tt. Finally, given ot and Tt, we use an
action selector to score each action a ∈ At, and the
action with the highest score will be selected as at.

The training of the world-perceiving modules
can be regarded as the language learning regime,
while the training of the action selector can be re-
garded as the decision making regime. We consider
a two-phase training strategy to decouple these
two regimes to further improve the sample effi-
ciency (Hill et al., 2021). In the pre-training phase,
we collect human interaction data from the simple
games, and design QA datasets to train the world-
perceiving modules through supervised learning.
In the reinforcement learning phase, we freeze the
pre-trained modules, and train the action selector
in the complex games through reinforcement learn-
ing.

4.2 Task selector

Depending on the experiment settings, T and A
can be either fixed vocabulary sets (parser-based),
or changing over time (choice-based). We regard
a subtask available if it is essential for solving the
“global” task, and there’s no prerequisite subtask.
For example, the subtask “get apple” in Fig. 1,
as the object “apple” is an ingredient which has
not been collected. Although another subtask “dice
apple” is also essential for making the meal, it is not
available since there exists a prerequisite subtask
(i.e., you should collect the apple before dicing it).
The aim of the task selector is to identify a subset
of available subtasks Tt ⊆ T , and then select one
subtask Tt ∈ Tt.

We formulate the mapping f(ot, T ) → Tt as
a multi-label learning problem (Zhang and Zhou,
2013). For simplicity, we assume that the sub-
task candidates are independent with each other.
Thus, the multi-label learning problem can be
decomposed as |T | binary classification prob-
lems. Inspired by the recent progress of question-
conditional probing (Das et al., 2020), language
grounding (Hill et al., 2021), and QA-based graph
construction (Ammanabrolu et al., 2020), we cast
these binary classification problems as yes-or-
no questions, making the task selector a world-
perceiving module. For example, the correspond-
ing question for the subtask candidate “get apple”
could be “Whether ‘get apple’ is an available sub-
task?”. This module can guide the agent to under-
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Figure 3: The overview of QWA. The blue modules will be trained in the pre-training phase, while the red module
will be trained in the RL phase.

stand the environment conditions through answer-
ing questions, but will not directly lead the agent
to a specific decision. We can obtain this module
through supervised pre-training, and decouple it
from reinforcement learning to yield better sample
efficiency. Fig. 1 (b) shows some sample QAs,
where a human answerer can be replaced by a pre-
trained task selector.

Some previous work also considered task decom-
position (Chen et al., 2021; Hu et al., 2019), but
the related module is obtained through imitating
human demonstrations, which is directly related to
decision making instead of world perceiving. Com-
pared with these work, our method has two folds of
benefits. First, there may exist multiple available
subtasks at a timestep. Imitating human demonstra-
tions will specify only one of them, which may be
insufficient and lead to information loss. Second,
we do not require expert demonstrations which
guarantee to solve the game. Instead, we can ask
humans to annotate either imperfect demonstra-
tions, or even demonstrations from a random agent.
We will treat the IL-based method as a baseline and
conduct comparisons in the experiments.

Given the set of available subtasks Tt, arbitrary
strategies can be used to select a subtask Tt from
it. For example, we can employ a non-learnable
task scorer to obtain Tt by random sampling, since
each subtask T ∈ Tt is essential for accomplishing
the task. We can also train a task scorer via a meta-
policy for adaptive task selection (Xu et al., 2021).

4.3 Action validator

After obtaining the subtask Tt, we conduct action
pruning conditioned on it (or on both Tt and ot) to
reduce the action space, tackling the challenge of
large action space. Similar to the task selector, we
formulate action pruning as |A| binary classifica-

tion problems, and devise another world-perceiving
module: the action validator. The action validator
is designed to check the relevance of each action
candidate a ∈ A with respect to Tt by answering
questions like “Is the action candidate ‘take beef’
relevant to the subtask ‘fry chicken’?”, so as to
obtain a subset of actions At ⊆ A with irrelevant
actions filtered. Fig. 3 shows the module architec-
ture. Similar to the task selector, we pre-train this
module through question answering. Sample QAs
have been shown in Fig. 1 (b).

4.4 Action selector

After pre-training, we deploy the agent in the com-
plex games, and train the action selector through
RL. We freeze the pre-trained modules, as no hu-
man labeled data will be obtained in this phase. At
each time step, we use the task selector and the
action validator to produce Tt and At, respectively.
We keep using the same subtask T over time until
it is not included in Tt, as we do not want the agent
to switch subtasks too frequently. The agent can
simply treat Tt as the additional observation of ot.
If we do not limit the use of human knowledge
in this phase, we can also treat Tt as a goal with
either hand-crafted (Jiang et al., 2019) or learnt re-
ward function (Colas et al., 2020). Arbitrary meth-
ods can be used for optimizing (Ammanabrolu and
Hausknecht, 2020; Adhikari et al., 2020).

One issue we are concerned about is the com-
pound error − the prediction error from imperfect
pre-trained modules will adversely affect RL train-
ing (Talvitie, 2014; Racanière et al., 2017). For
example, the false predictions made by the binary
classifier in the task selector may lead to a wrong
Tt, which affects At and at in turn. To alleviate
the influence of the compound error, we assign
time-awareness to subtasks. A subtask is bounded
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Table 1: Game statistics. We use the simple games to provide human labeled data in the pre-training phase. We use
the medium & hard games in the reinforcement learning phase.

Name Traj.Length #Triplets #Rooms #Objs #Ings #Reqs #Acts #Subtasks #Avail.Subtasks
Simple 7.90 38.48 5.76 23.69 1.49 0.96 14.50 12.44 1.14

Medium 15.30 51.07 6.00 26.10 3.00 3.00 23.48 23.00 1.94
Hard 21.75 59.95 8.00 31.48 3.00 4.00 22.94 23.00 2.16

by a time limit [0, ξ]. If the current subtask T
is not finished within its time limit, we force the
agent to re-select a new subtask Tt ∈ Tt \ {T},
regardless whether T is still available. Besides
making the agent robust against errors, another
benefit by introducing time-awareness to subtasks
is that it improves the subtask selection diversity,
which helps the agent to avoid getting stuck in local
minima (Pong et al., 2020; Campero et al., 2020).

5 Experiments

5.1 Experiment settings

We conduct experiments on cooking games pro-
vided by the rl.0.2 game set† and the FTWP game
set‡, which share the vocabulary set. Based on
the number of subtasks, which is highly correlated
to the number of ingredients & preparing require-
ments, we design three game sets with varying
complexities: 3488 simple games, 280 medium
games and 420 hard games. Note that there is
no overlapping games between the simple set and
the medium / hard game sets. Table 1 shows the
game statistics. Besides “Traj.Length”, which de-
notes the average length of the expert demonstra-
tions per game§, other statistic metrics are aver-
aged per time step per game (e.g., “#Subtasks” and
“#Avail.Subtasks” denote the average number of
subtask candidates T , and the average number of
available subtasks Tt, respectively). We will col-
lect human interaction data from the simple games
for pre-training. We regard both medium & hard
games as complex, and will conduct reinforcement
learning on these two game sets without labeled
data.

5.2 Baselines

We consider the following four models, and com-
pare with more variants in ablation studies:

• GATA (Adhikari et al., 2020): a powerful

†https://aka.ms/twkg/rl.0.2.zip
‡https://aka.ms/ftwp/dataset.zip
§The demonstrations of the medium & hard games are

just for statistics, and will not be used for pre-training.

KG-based RL agent, which is the benchmark
model for cooking games.

• IL (Chen et al., 2021): a hierarchical agent
which also uses two training phases. In the
first phase, both the task selector and the ac-
tion selector are pre-trained through imitation
learning. Then in the second phase, the action
selector is fine-tuned through reinforcement
learning.

• IL w/o FT: a variant of the IL baseline, where
only the imitation pre-training phase is con-
ducted, and there’s no RL fine-tuning.

• QWA: the proposed model with world-
perceiving modules.

5.3 Implementation details
Model architecture All models are implemented
based on GATA’s released code¶. In particular,
we use the version GATA-GTF, which takes only
the KG-based observation, and denote it as GATA
for simplicity. The observation encoder is imple-
mented based on the Relational Graph Convolu-
tional Networks (R-GCNs) (Schlichtkrull et al.,
2018) by taking into account both nodes and edges.
Both the task encoder and the action encoder are
implemented based on a single transformer block
with single head (Vaswani et al., 2017) to encode
short texts. The binary classifier, the task scorer
and the action scorer are linear layers. The GATA
and IL models are equipped with similar modules.
Please refer to Appendix C for details.

Pre-training We train the task selector and the
action validator separately, as they use different
types of QAs. We ask human players to play
the simple games, and answer the yes-or-no ques-
tions based on the observations. The details of
the dataset construction (interaction data collec-
tion, question generation, answer annotation, etc.
) could be found at Appendix B. We train the task
selector with a batch size of 256, and the action

¶https://github.com/xingdi-eric-yuan/
GATA-public
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Table 2: The testing performance at 20% / 100% of the
reinforcement learning phase.

Model Medium Hard
20% 100% 20% 100%

QWA (ours) 0.66±0.02 0.71±0.04 0.53±0.04 0.53±0.02
GATA 0.31±0.02 0.57±0.18 0.25±0.02 0.48±0.01

IL 0.45±0.18 0.26±0.03 0.32±0.11 0.35±0.08
IL w/o FT 0.63±0.05 0.63±0.05 0.48±0.05 0.48±0.05

validator with a batch size of 64. The modules
are trained for 10-20 epochs using Focal loss and
Adam optimizer with a learning rate of 0.001.

Reinforcement learning We consider the
medium game set and hard game set as different
experiments. We split the medium game set
into 200 training games / 40 validation games
/ 40 testing games, and the hard game set into
300 / 60 / 60. We follow the default setting of
(Adhikari et al., 2020) to conduct reinforcement
learning. We set the step limit of an episode as
50 for training and 100 for validation / testing.
We set the subtask time limit ξ = 5. For each
episode, we sample a game from the training set
to interact with. We train the models for 100,000
episodes. The models are optimized via Double
DQN (epsilon decays from 1.0 to 0.1 in 20,000
episodes, Adam optimizer with a learning rate of
0.001) with Pritorized Experience Replay (replay
buffer size 500,000). For every 1,000 training
episodes, we validate the model and report the
testing performance.

5.4 Evaluation metrics

We measure the models through their RL testing
performance. We denote a game’s score as the
episodic sum of rewards without discount. As dif-
ferent games may have different maximum avail-
able scores, we report the normalized score, which
is defined as the collected score normalized by the
maximum score for a game.

6 Results and discussions

6.1 Main results

Fig. 4 shows the RL testing performance with re-
spect to the training episodes. Table 2 shows the
testing performance after 20,000 training episodes
(20%) / at the end of RL training (100%). Com-
pared with GATA, which needs to be “trained from
scratch”, the proposed QWA model achieves high
sample efficiency: it reaches convergence with
high performance before 20% of the training stage,

Figure 4: The RL testing performance w.r.t. training
episodes. The red dashed line denotes the IL agent
without fine-tuning.

saving 80% of the online interaction data in com-
plex games. The effectiveness of pre-training can
also be observed from the variant “IL w/o FT”:
even though it requires no further training on the
medium / hard games, it achieves comparable per-
formance to our model. However, the performance
of QWA can be further improved through RL, while
it does not work for the IL-based model, as we can
observe the performance of “IL” becomes unstable
and drops significantly during the RL fine-tuning.
A possible reason is that there exists large domain
gap between simple and medium (hard) games,
and our model is more robust against such domain
shifts. For example, our world-perceiving task se-
lector performs better than IL-based task selector in
handling more complex observations (according to
Table 1, the observations in medium / hard games
contain more triplets, rooms and objects), facili-
tating the training of the action selector. Besides
the domain gap in terms of the observation space,
there is also a gap between domains in terms of the
number of available subtasks − while there’s al-
ways one available subtask per time step in simple
games, the model will face more available subtasks
in the medium / hard games. Different from our
task selector, which is trained to check the availabil-
ity of every subtask candidate, the IL pre-trained
task selector can not adapt well in this situation, as
it is trained to find the unique subtask and ignore
the other subtask candidates despite whether they
are also available.

6.2 Performance on the simple games

We further investigate the generalization perfor-
mance of our model on simple games, considering
that simple games are not engaged in our RL train-
ing. To conduct the experiment, after RL training,
we deploy all models on a set of 140 held-out sim-
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Table 3: The RL testing performance on simple games.

Model Medium 100% Hard 100%
QWA (ours) 0.80±0.01 0.82±0.02

GATA 0.32±0.03 0.45±0.12
IL 0.44±0.02 0.29±0.03

IL w/o FT 0.76±0.06 0.76±0.06

ple games for RL interaction. Table 3 shows the
results, where “Medium 100%” (“Hard 100%”) de-
notes that the model is trained on medium (hard)
games for the whole RL phase. The generalizabil-
ity of GATA, which is trained purely with medium
and hard games, is significantly low and cannot per-
form well on simple games. In contrast, our model
performs very well and achieves over 80% of the
scores. The world-perceiving modules, which are
pre-trained with simple games, help to train a deci-
sion module that adapts well on unseen games. It
is not surprising that the variant “IL w/o FT” also
performs well on simple games, since they are only
pre-trained with simple games. However, as indi-
cated by the performance of “IL”, after fine-tuning
on medium/hard games (recalling Sec. 6.1), the ac-
tion scorer “forgets” the experience/skills dealing
with simple games and the model fails to gener-
alize on unseen simple games. In summary, the
best performance achieved by QWA demonstrates
that our model can generalize well on games with
different complexities.

6.3 Ablation study

We study the contribution of the subtask time-
awareness by comparing our full model with the
variant without this technique. Fig. 5 shows the
result. Although the models perform similarly in
the medium games, the full model shows better per-
formance in the hard games, where there may exist
more difficult subtasks (we regard a subtask more
difficult if it requires more actions to be completed).
Assigning each subtask a time limit prevents the
agent from pursuing a too difficult subtask, and im-
proves subtask diversity by encouraging the agent
to try different subtasks. Besides, it prevents the
agent from being stuck in a wrong subtask, making
the agent more robust to the compound error.

We then investigate the performance upper
bound of our method by comparing our model to
variants with oracle world-perceiving modules. Fig.
6 shows the results, where “+expTS” (“+expAV”)
denotes that the model uses an expert task selector
(action validator). There’s still space to improve the

Figure 5: The performance of our model and the variant
without time-awareness.

Figure 6: The performance of our model and the variants
with expert modules.

pre-trained modules. The variant “QWA +expTS
+expAV” solves all the medium games and achieves
nearly 80% of the scores in hard games, showing
the potential of introducing world-perceiving mod-
ules in facilitating RL. We also find that assigning
either the expert task selector or the expert action
validator helps to improve the performance. In light
of these findings, we will consider more powerful
pre-training methods as a future direction.

6.4 Pre-training on the partial dataset

Although we only collect labeled data from the sim-
ple games, it is still burdensome for human players
to go through the games and answer the questions.
We are thus interested in investigating how the per-
formance of our QWA (or world-perceiving mod-
ules) varies with respect to a reduced amount of
pre-training data. Fig. 7 shows the results, where
the pre-training dataset has been reduced to 75%,
50% and 25%, respectively. Our model still per-
forms well when the pre-training data is reduced
to 75% and 50%. When we only use 25% of the
pre-training data, the model exhibits instability dur-
ing the learning of hard games. Being pre-trained
on a largely-reduced dataset, the world-perceiving
modules might be more likely to make wrong pre-
dictions with the progress of RL training, leading
to the performance fluctuation. However, the fi-
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Figure 7: The performance of our model with varying
amounts of pre-training data.

nal performance of this variant is still comparable.
To summarize, our model is robust to limited pre-
training data and largely alleviates the burden of
human annotations.

7 Conclusion

In this paper, we addressed the challenges of
low sample efficiency and large action space for
deep reinforcement learning in solving text-based
games. We introduced the world-perceiving mod-
ules, which are capable of automatic task decompo-
sition and action pruning through answering ques-
tions about the environment. We proposed a two-
phase training framework, which decouples the
language learning from the reinforcement learn-
ing. Experimental results show that our method
achieves improved performance with high sample
efficiency. Besides, it shows robustness against
compound error and limited pre-training data. Re-
garding the future work, we would like to further
improve the pre-training performance by introduc-
ing contrastive learning objective (You et al., 2020)
and KG-based data augmentation (Zhao et al.,
2021).
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Appendix

The appendix is organized as follows: Sec. A details the environment. Sec. B illustrates the process for
constructing the pre-training datasets. Sec. C demonstrates the baselines’ architecture and training details.
Sec. D provides more experimental results.

A Game Environment

In the cooking game (Côté et al., 2018), the player is located in a house, which contains multiple rooms
and interactable objects (food, tools, etc.). Her / his task is to follow the recipe to prepare the meal.
Each game instance has a unique recipe, including different numbers of ingredients (food objects that
are necessary for preparing the meal) and their corresponding preparation requirements (e.g., “slice”,
“fry”). Besides the textual observation, the KG-based observation can also be directly obtained from the
environment. The game sets used in our work contains a task set T of 268 subtasks, and an action set
A of 1304 actions. Following GATA’s experiment setting (Adhikari et al., 2020), we simplify the game
environment by making the action set changeable over time, which can be provided by the TextWorld
platform. Note that although the action space is reduced, it still remains challenging as the agent may
encounter unseen action candidates (Chandak et al., 2019, 2020). We then use a similar way to obtain a
changeable task set, which is a combination of the verb set {chop, dice, slice, fry, make, get, grill, roast}
and the ingredient set, where the construction details are provided in Appendix B. Table 4 and Table 5
show the KG-based observations ot, corresponding subtask candidates T and action candidates A. Table 6
and Table 7 show more examples of subtasks and actions, respectively. The underlined subtask candidates
denote the available subtask set Tt. The underlined action candidates in Table 7 denote the refined action
set At after selecting the subtask “roast carrot”. We still denote the subtask candidate set (action candidate
set) as T (A) to distinguish it from the available subtask set Tt (refined action set At).
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Table 4: The observations ot, subtask candidates T and action candidates A of a simple game and a medium game.
The underlined subtask candidates denote the available subtask set Tt.

Game KG-based observation Subtask candidates Action candidates
Simple ["block of cheese", "cookbook", "part_of"], ["block of

cheese", "fried", "needs"], ["block of cheese", "player",
"in"], ["block of cheese", "raw", "is"], ["block of cheese",
"sliced", "needs"], ["block of cheese", "uncut", "is"],
["cookbook", "counter", "on"], ["counter", "kitchen",
"at"], ["fridge", "kitchen", "at"], ["fridge", "open", "is"],
["knife", "counter", "on"], ["oven", "kitchen", "at"],
["player", "kitchen", "at"], ["stove", "kitchen", "at"], ["ta-
ble", "kitchen", "at"]

"fry block of cheese",
"get knife", "chop block
of cheese", "dice block of
cheese", "get block of cheese",
"grill block of cheese", "make
meal", "roast block of cheese",
"slice block of cheese"

"close fridge", "cook block of
cheese with oven", "cook block
of cheese with stove", "drop
block of cheese", "eat block
of cheese", "insert block of
cheese into fridge", "prepare
meal", "put block of cheese
on counter", "put block of
cheese on stove", "put block of
cheese on table", "take cook-
book from counter", "take knife
from counter"

Medium ["bathroom", "corridor", "south_of"], ["bed", "bed-
room", "at"], ["bedroom", "livingroom", "north_of"],
["block of cheese", "cookbook", "part_of"], ["block of
cheese", "diced", "is"], ["block of cheese", "diced",
"needs"], ["block of cheese", "fridge", "in"], ["block
of cheese", "fried", "is"], ["block of cheese", "fried",
"needs"], ["carrot", "fridge", "in"], ["carrot", "raw",
"is"], ["carrot", "uncut", "is"], ["cookbook", "counter",
"on"], ["corridor", "bathroom", "north_of"], ["corri-
dor", "kitchen", "east_of"], ["corridor", "livingroom",
"south_of"], ["counter", "kitchen", "at"], ["flour", "cook-
book", "part_of"], ["flour", "shelf", "on"], ["fridge",
"closed", "is"], ["fridge", "kitchen", "at"], ["frosted-glass
door", "closed", "is"], ["frosted-glass door", "kitchen",
"west_of"], ["frosted-glass door", "pantry", "east_of"],
["kitchen", "corridor", "west_of"], ["knife", "counter",
"on"], ["livingroom", "bedroom", "south_of"], ["livin-
groom", "corridor", "north_of"], ["oven", "kitchen", "at"],
["parsley", "fridge", "in"], ["parsley", "uncut", "is"],
["player", "kitchen", "at"], ["pork chop", "chopped", "is"],
["pork chop", "chopped", "needs"], ["pork chop", "cook-
book", "part_of"], ["pork chop", "fridge", "in"], ["pork
chop", "fried", "is"], ["pork chop", "fried", "needs"], ["pur-
ple potato", "counter", "on"], ["purple potato", "uncut",
"is"], ["red apple", "counter", "on"], ["red apple", "raw",
"is"], ["red apple", "uncut", "is"], ["red onion", "fridge",
"in"], ["red onion", "raw", "is"], ["red onion", "uncut",
"is"], ["red potato", "counter", "on"], ["red potato", "un-
cut", "is"], ["shelf", "pantry", "at"], ["sofa", "livingroom",
"at"], ["stove", "kitchen", "at"], ["table", "kitchen", "at"],
["toilet", "bathroom", "at"], ["white onion", "fridge", "in"],
["white onion", "raw", "is"], ["white onion", "uncut", "is"]

"get block of cheese",
"get flour", "get pork chop",
"chop block of cheese", "chop
flour", "chop pork chop", "dice
block of cheese", "dice flour",
"dice pork chop", "fry block
of cheese", "fry flour", "fry
pork chop", "get knife", "grill
block of cheese", "grill flour",
"grill pork chop", "make meal",
"roast block of cheese", "roast
flour", "roast pork chop", "slice
block of cheese", "slice flour",
"slice pork chop"

"go east", "open fridge", "open
frosted-glass door", "take cook-
book from counter", "take knife
from counter", "take purple
potato from counter", "take red
apple from counter", "take red
potato from counter"
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Table 5: The observations ot, subtask candidates T and action candidates A of a hard game. The underlined subtask
candidates denote the available subtask set Tt. The underlined action candidates denote the refined action set At

after selecting the subtask “roast carrot”.

Game KG-based observation Subtask candidates Action candidates
Hard ["backyard", "garden", "west_of"], ["barn door", "back-

yard", "west_of"], ["barn door", "closed", "is"], ["barn
door", "shed", "east_of"], ["bathroom", "corridor",
"east_of"], ["bbq", "backyard", "at"], ["bed", "bed-
room", "at"], ["bedroom", "corridor", "north_of"], ["bed-
room", "livingroom", "south_of"], ["carrot", "cook-
book", "part_of"], ["carrot", "player", "in"], ["carrot",
"raw", "is"], ["carrot", "roasted", "needs"], ["carrot",
"sliced", "needs"],["carrot", "uncut", "is"], ["commercial
glass door", "closed", "is"], ["commercial glass door",
"street", "east_of"], ["commercial glass door", "super-
market", "west_of"], ["cookbook", "table", "on"], ["cor-
ridor", "bathroom", "west_of"], ["corridor", "bedroom",
"south_of"], ["counter", "kitchen", "at"], ["driveway",
"street", "north_of"], ["fridge", "closed", "is"], ["fridge",
"kitchen", "at"], ["front door", "closed", "is"], ["front
door", "driveway", "west_of"], ["front door", "livingroom",
"east_of"], ["frosted-glass door", "closed", "is"], ["frosted-
glass door", "kitchen", "south_of"], ["frosted-glass door",
"pantry", "north_of"], ["garden", "backyard", "east_of"],
["kitchen", "livingroom", "west_of"], ["knife", "counter",
"on"], ["livingroom", "bedroom", "north_of"], ["livin-
groom", "kitchen", "east_of"], ["oven", "kitchen", "at"],
["patio chair", "backyard", "at"], ["patio door", "backyard",
"north_of"], ["patio door", "corridor", "south_of"], ["pa-
tio door", "open", "is"], ["patio table", "backyard", "at"],
["player", "backyard", "at"], ["red apple", "counter", "on"],
["red apple", "raw", "is"], ["red apple", "uncut", "is"], ["red
hot pepper", "cookbook", "part_of"], ["red hot pepper",
"player", "in"], ["red hot pepper", "raw", "is"], ["red hot
pepper", "roasted", "needs"], ["red hot pepper", "sliced",
"needs"], ["red hot pepper", "uncut", "is"], ["red onion",
"garden", "at"], ["red onion", "raw", "is"], ["red onion",
"uncut", "is"], ["shelf", "pantry", "at"], ["showcase", "su-
permarket", "at"], ["sofa", "livingroom", "at"], ["stove",
"kitchen", "at"], ["street", "driveway", "south_of"], ["ta-
ble", "kitchen", "at"], ["toilet", "bathroom", "at"], ["tool-
box", "closed", "is"], ["toolbox", "shed", "at"], ["white
onion", "chopped", "needs"], ["white onion", "cookbook",
"part_of"], ["white onion", "grilled", "needs"], ["white
onion", "player", "in"], ["white onion", "raw", "is"],
["white onion", "uncut", "is"], ["workbench", "shed", "at"],
["yellow bell pepper", "garden", "at"], ["yellow bell pep-
per", "raw", "is"], ["yellow bell pepper", "uncut", "is"]

"roast carrot",
"roast red hot pepper",
"grill white onion", "get knife",
"chop carrot", "chop red hot
pepper", "chop white onion",
"dice carrot", "dice red hot
pepper", "dice white onion",
"fry carrot", "fry red hot
pepper", "fry white onion", "get
carrot", "get red hot pepper",
"get white onion", "grill carrot",
"grill red hot pepper", "make
meal", "roast white onion",
"slice carrot", "slice red hot
pepper", "slice white onion"

"go east", "go north",
"open barn door",
"open patio door", "close
patio door", "cook carrot with
bbq", "cook red hot pepper
with bbq", "cook white onion
with bbq", "drop carrot", "drop
red hot pepper", "drop white
onion", "eat carrot", "eat red
hot pepper", "eat white onion",
"put carrot on patio chair", "put
carrot on patio table", "put
red hot pepper on patio chair",
"put red hot pepper on patio
table", "put white onion on
patio chair", "put white onion
on patio table"
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Table 6: Examples of subtasks.

Subtask candidates
chop banana chop black pepper chop block of cheese
chop olive oil chop orange bell pepper chop parsley
chop vegetable oil chop water chop white onion
dice cilantro dice egg dice flour
dice red bell pepper dice red hot pepper dice red onion
dice yellow potato fry banana fry black pepper
fry milk fry olive oil fry orange bell pepper
fry tomato fry vegetable oil fry water
get chicken wing get cilantro get egg
get purple potato get red apple get red bell pepper
get yellow bell pepper get yellow onion get yellow potato
grill green hot pepper grill lettuce grill milk
grill salt grill sugar grill tomato
roast carrot roast chicken breast roast chicken leg
roast peanut oil roast pork chop roast purple potato
roast white tuna roast yellow apple roast yellow bell pepper
slice green apple slice green bell pepper slice green hot pepper
slice red potato slice red tuna slice salt

Table 7: Examples of actions.

Action candidates
chop banana with knife chop block of cheese with knife chop carrot with knife
cook block of cheese with oven cook block of cheese with stove cook carrot with bbq
cook orange bell pepper with oven cook orange bell pepper with stove cook parsley with bbq
cook water with stove cook white onion with bbq cook white onion with oven
drink water drop banana drop black pepper
eat carrot eat chicken breast eat chicken leg
insert block of cheese into toolbox insert carrot into fridge insert carrot into toolbox
insert red onion into fridge insert red onion into toolbox insert red potato into fridge
put banana on shelf put banana on showcase put banana on sofa
put chicken breast on showcase put chicken breast on sofa put chicken breast on stove
put egg on patio table put egg on shelf put egg on showcase
put green hot pepper on shelf put green hot pepper on showcase put green hot pepper on sofa
put olive oil on patio chair put olive oil on patio table put olive oil on shelf
put pork chop on sofa put pork chop on stove put pork chop on table
put red hot pepper on table put red hot pepper on toilet put red hot pepper on workbench
put salt on workbench put sugar on bed put sugar on counter
put white onion on shelf put white onion on showcase put white onion on sofa
put yellow onion on sofa put yellow onion on stove put yellow onion on table
take banana from patio chair take banana from patio table take banana from shelf
take carrot from showcase take carrot from sofa take carrot from stove
take chicken wing from toolbox take chicken wing from workbench take cilantro
take green apple from bed take green apple from counter take green apple from fridge
take lettuce from sofa take lettuce from stove take lettuce from table
take orange bell pepper from work-
bench

take parsley take parsley from bed

take purple potato from showcase take purple potato from sofa take purple potato from stove
take red hot pepper from toolbox take red hot pepper from workbench take red onion
take salt from counter take salt from fridge take salt from patio chair
take water from counter take water from fridge take water from patio chair
take yellow apple from sofa take yellow apple from stove take yellow apple from table
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B Pre-training Datasets

We build separate datasets for each pre-training task (task decomposition, action pruning, and imitation
learning). We first let the player to go through each simple game, then construct the datasets upon the
interaction data. For each time step, the game environment provides the player with the action set A
and the KG-based observation ot, which is represented as a set of triplets. We use a simple method to
build the subtask set T from ot: As shown in Fig. 8, we first obtain the ingredients by extracting the
nodes having the relation “part_of” with the node “cookbook”. Then we build T as the Cartesian product
of the ingredients and the verbs {chop, dice, slice, fry, get, grill, roast} plus two special subtasks “get
knife” and “make meal”. The player is required to select a subtask Tt ∈ T , and select an action at ∈ A.
After executing at, the environment will transit to next state st+1, and the player will receive ot+1 and
rt+1 to form a transition {ot, T , Tt,A, at, ot+1, rt+1}, where {ot, T , Tt,A, at} will be used for imitation
learning. Fig. 8 shows the construction process of the pre-training dataset for task decomposition. Each
subtask candidate T ∈ T will formulate a question “Is T available?”, whose answer is 1 (yes) if T is
an available subtask for ot, otherwise 0 (no). Fig. 9 shows the construction process of the pre-training
dataset for action pruning. The action selector is made invariant of ot, that we consider every subtask
candidate T ∈ T during pre-training, regardless of whether T is a currently-available subtask. Each
action candidate a ∈ A will be paired with T to formulate a question “Is a relevant to T ”, whose answer
is 1 if a is relevant to T , otherwise 0.

Figure 8: The construction process of the subtask set T , and the pre-training dataset for task decomposition.

Figure 9: The construction process of the pre-training dataset for action pruning.
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C Baseline details

C.1 GATA
Fig. 10 shows our backbone model GATA, which consists of an observation encoder, an action encoder
and an action scorer. The observation encoder is a graph encoder for encoding the KG-based observation
ot, and the action encoder is a text encoder to encode the action set A as a stack of action candidate
representations. The observation representation will be paired with each action candidate, and then fed
into the action scorer, which consists of linear layers.

We train the GATA through reinforcement learning, the experiment setting is same with Sec. 5.3.
Instead of initializing the word embedding, node embedding and edge embedding with fastText word
vectors (Mikolov et al., 2017), we found that the action prediction task (AP), which is also included in
GATA’s work (Adhikari et al., 2020), could provide better initialization. In light of this, we could like
to conduct such task, and apply the AP initialization to all encoders (observation encoder, task encoder,
action encoder). Fig. 11 shows the action predicting process. Given the transition data, the task is to
predict the action at ∈ A given the current observation ot, and the next observation ot+1 after executing
at. The transition data for AP task is collected from the FTWP game set and is provided by GATA’s
released code.

Figure 10: The architecture of GATA baseline.

Figure 11: The architecture of GATA for action prediction.

C.2 IL
Fig. 12 shows the IL baseline. We follow (Chen et al., 2021) to conduct a two-phase training process:
imitation pre-training and reinforcement fine-tuning. In the imitation pre-training phase, we use the
transition data to train both the task selector (f(ot, T ) → Tt) and the action selector (f(ot, Tt,A) → at)
through supervised learning. The modules are optimized via cross entropy loss and Adam optimizer
with learning rate 0.001. We train the modules with batch size 128 for up to 50 epochs. Then in the
reinforcement fine-tuning phase, we freeze the task selector and fine-tune the action selector through
reinforcement learning, where the experiment setting is same with QWA and GATA.
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Figure 12: The architecture of IL baseline.
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D More experimental results

In the pre-training phase, we conduct rough hyper-parameter tuning by varying batch sizes. Fig. 13 and
Fig. 14 show the pre-training performance of QWA’s task selector and action validator, respectively. Fig.
15 shows the pre-training performance of IL baseline.

Fig. 16 compares our GATA and the original GATA without the action prediction initialization. Fig. 17,
Fig. 18, Fig. 19 and Fig. 20 show the full results of Fig. 4, Fig. 5, Fig. 6 and Fig. 7, respectively.

Figure 13: The pre-training performance of QWA’s task selector. The results are averaged by 3 random seeds, we
omit the standard deviation as the performance is relatively stable.

Figure 14: The pre-training performance of QWA’s action validator.
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Figure 15: The pre-training performance of IL’s task selector and action selector.

Figure 16: The RL performance of our GATA baseline and the original GATA without AP initialization.

Figure 17: The RL performance of models with respect to training episodes (the full result of Fig. 4).

558



Figure 18: The RL performance of our model and the variant without time-awareness (the full result of Fig. 5).

Figure 19: The performance of our model and the variants with expert modules (the full result of Fig. 6).
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Figure 20: The performance of our model with varying amounts of pre-training data (the full result of Fig. 7).
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