
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 5923 - 5933

May 22-27, 2022 c©2022 Association for Computational Linguistics

Continual Pre-training of Language Models for Math Problem
Understanding with Syntax-Aware Memory Network

Zheng Gong1,4†, Kun Zhou2,4†, Wayne Xin Zhao1,4∗, Jing Sha3,5,
Shijin Wang5,6, Ji-Rong Wen1,4

1Gaoling School of Artificial Intelligence, Renmin University of China
2School of Information, Renmin University of China 3iFLYTEK Research, Hefei, Anhui, China

4Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China
5State Key Laboratory of Cognitive Intelligence, Hefei, Anhui, China

6AI Research(Central China), iFLYTEK, Wuhan, Hubei, China

Abstract

In this paper, we study how to continually pre-
train language models for improving the under-
standing of math problems. Specifically, we
focus on solving a fundamental challenge in
modeling math problems, i.e., how to fuse the
semantics of textual description and formulas,
which are highly different in essence. To ad-
dress this issue, we propose a new approach
called COMUS to continually pre-train lan-
guage models for math problem understanding
with syntax-aware memory network. In this
approach, we first construct the math syntax
graph to model the structural semantic informa-
tion, by combining the parsing trees of the text
and formulas, and then design the syntax-aware
memory networks to deeply fuse the features
from the graph and text. With the help of syntax
relations, we can model the interaction between
the token from the text and its semantic-related
nodes within the formulas, which is helpful
to capture fine-grained semantic correlations
between texts and formulas. Besides, we de-
vise three continual pre-training tasks to further
align and fuse the representations of the text
and math syntax graph. Experimental results
on four tasks in the math domain demonstrate
the effectiveness of our approach. Our code and
data are publicly available at the link: https:
//github.com/RUCAIBox/COMUS.

1 Introduction

Understanding math problems via automated meth-
ods is a desired machine capacity for artificial in-
telligence assisted learning. Such a capacity is the
key to the success of a variety of educational appli-
cations, including math problem retrieval (Reusch
et al., 2021), problem recommendation (Liu et al.,
2018), and problem solving (Huang et al., 2020).

To automatically understand math problems, it
is feasible to learn computational representations

†† Equal contribution. This work was done when the two
author were interns at iFLYTEK Research.

∗∗ Corresponding author, email: batmanfly@gmail.com

Math Problem: Given that sin x is equal to 0.6 and x is an

acute angle, find the value of sin 2𝑥 + tan !
"
.

Given

[MATH]

0.6

of

the

value

Root

find sin

sqrt

divide

tan

Math Syntax Graph

equal

sin
x ⋯

plus

times

rootadvcl

nsubj

comp

obj

ccomp

obl

nmod

case

det

2 2x x

Textual Description: Given that sin x is … find the value
of $\sqrt { \sin{ 2x }+\tan { \frac { x }{ 2 } } }$.

Operator Tree

⋯

Figure 1: Illustration of a math problem with its textual
description and math syntax graph.

from problem statement texts with pre-trained lan-
guage models (PLMs) (Shen et al., 2021; Peng
et al., 2021). Pre-trained on the large-scale gen-
eral corpus, PLMs (Devlin et al., 2019) can be
effectively transferred into new domains or tasks
by continual pre-training on task-specific datasets.
Different from traditional text comprehension tasks,
as shown in Figure 1, math problems usually in-
volve a complex mixture of mathematical symbols,
logic and formulas, which becomes a barrier to the
accurate understanding of math problems.

However, previous works (Reusch et al., 2021;
Shen et al., 2021) mostly oversimplify the issues
of math problem understanding. They directly con-
catenate the formulas with the textual description
as an entire sentence, and then perform continual
pre-training and encoding without special consid-
erations. Therefore, two major shortcomings are
likely to affect the understanding of math problems.
First, formulas (the most important elements of the
problem) contain complex mathematical logic, and
modeling them as plain text may incur the loss of
important information. Second, the textual descrip-
tion contains essential explanations or hints about
the symbols and logic within the formulas. Hence,
it is necessary to accurately capture fine-grained

5923

https://github.com/RUCAIBox/COMUS
https://github.com/RUCAIBox/COMUS

correlations between words from the description
text and symbols from math formulas.

To better model the computational logic of for-
mulas, operator trees are introduced to represent the
math formulas (Zanibbi and Blostein, 2012), which
are subsequently encoded by graph neural network
(GNN). Although these methods can improve the
comprehension capacity of math problems to some
extent, there still exists a semantic gap between
graph encoding and text encoding due to the hetero-
geneity of formulas and texts. With simple concate-
nation or self-attention mechanisms (Peng et al.,
2021), it is still hard to capture the fine-grained
associations among tokens and symbols, e.g., the
dependency relation between math symbols and
corresponding explanation tokens.

In order to better fuse the information from for-
mulas and texts, our solution is twofold. First, we
construct a syntax-aware memory network based
on a structure called math syntax graph (Figure 1),
which integrates operator trees from formulas and
syntax trees from texts. The key point lies in that
we store the node embeddings from the GNN and
dependency relation embeddings as entries of mem-
ory networks, and then design the corresponding
read and write mechanism, using token embed-
dings from the PLM as queries. Such a way can
effectively associate the representation spaces of
the text and formulas. Second, we devise specific
continual pre-training tasks to further enhance and
fuse the text and graph representations, including
the masked language model and dependency triplet
completion tasks to improve the understanding of
math symbols in the text and formulas logic in
the syntax graph, respectively, and the text-graph
contrastive learning task to align and unify the rep-
resentations of the text and graph.

To this end, we propose COMUS, to continually
pre-train language models for math problem
understanding with syntax-aware memory network.
In our approach, we first encode the textual de-
scription and math syntax graph via PLM and GAT,
respectively. Then, we add syntax-aware memory
networks between the last k layers of PLM and
GAT. In each of the last k layers, we first conduct
the multi-view read and write operation to fuse
the token and node representations, respectively,
and then adopt the next layer of PLM and GAT
to encode the fused representations. All parame-
ters of our model are initialized from PLMs and
will be continually pre-trained by our devised three

tasks, namely masked language model, dependency
triplet completion and text-graph contrastive learn-
ing. Experimental results on four tasks in the math
domain have demonstrated the effectiveness of our
approach, especially with limited training data.

Our contributions can be summarized as follows:
(1) We construct a novel syntax-aware memory

network to capture the fine-grained interactions
between the text and formulas.

(2) We design three continual pre-training tasks
to further align and fuse the representations of the
text and graph data.

(3) Experiments on four tasks in the math do-
main demonstrate the effectiveness of our model.

2 Preliminaries

In this section, we formulate the problem statement
and then introduce the math syntax graph.

Problem Statement. Generally, a math problem
consists of a textual description d and several for-
mulas {f1, f2, · · · , fm}. The textual description
provides necessary background information for the
math problem. It is formally denoted as a sequence
of tokens d = {t1, t2, · · · , tl}, where ti is either
a word token or a mathematical symbol (e.g., a
number or an operator). The formulas describe the
relationship among mathematical symbols, which
is the key to understand and solve the math problem.
Each formula consists of a sequence of mathemati-
cal symbols, denoted as fi = {s1, · · · , sn}.

Based on the above notations, this work focuses
on continually pre-training a PLM on unsupervised
math problem corpus for domain adaptation. After
that, the PLM can be fine-tuned on various tasks in
the math domain (e.g., knowledge point classifica-
tion), and improve the task performance.

Math Syntax Graph. In order to understand the
mathematical text and formulas, it needs to capture
the complex correlations within words, symbols
and operators. Inspired by previous works (Man-
souri et al., 2019; Peng et al., 2021), we construct
a syntax graph, where the textual description is
represented as a syntax dependency tree and the
formulas are represented as operator trees (OPT).

Specifically, given a math problem consisting
of a textual description d and several formulas
{f1, f2, · · · , fm}, we first utilize the open-source
toolkit TangentS1 to convert each formula into an

1https://github.com/BehroozMansouri/TangentCFT

5924

OPT, and Stanza2 to convert the textual description
into a syntax dependency tree. Then, we com-
bine the syntax dependency tree and the OPTs to
compose an entire graph, where a special token
“[MATH]” is applied to link them. We call such
a composite graph as the math syntax graph G of
the math problem. Let N and R denote the set
of nodes and relations on G, respectively. We can
extract dependency triplets from G, where a depen-
dency triplet (h, r, t) denotes that there exists an
edge with the relation r ∈ R to link the head node
h ∈ N to the tail node t ∈ N .

3 Methodology

As shown in Figure 2, our approach aims to effec-
tively encode the textual description and formulas,
and fuse these two kinds of information for under-
standing math problems. In what follows, we first
present the base models for encoding math prob-
lems, and then introduce the devised syntax-aware
memory network and continual pre-training tasks.

3.1 Base Models

Encoding Math Text. We use BERT (Devlin et al.,
2019) as the PLM to encode the math text, i.e., the
textual description d. Given d = {t1, t2, · · · , tL}
of a math problem, the PLM first projects these to-
kens into corresponding embeddings. Then, a stack
of Transformer layers will gradually encode the em-
beddings to generate the l-th layer representations
{h(l)

1 ,h
(l)
2 , · · · ,h(l)

L }. Since the textual description
d may contain specific math symbols that were not
seen during pre-training, we add them into the vo-
cabulary of the PLM and randomly initialize their
token embeddings. These new embeddings will be
learned during continual pre-training.

Encoding Math Syntax Graph. We incorporate a
graph attention network (GAT) (Veličković et al.,
2018) to encode the math syntax graph, which is
composed of an embedding layer and a stack of
graph attention layers. Given a math syntax graph
G with N nodes, the GAT first maps the nodes
into a set of embeddings {n1,n2, · · · ,nN}. Then
each graph attention layer aggregates the neighbors’
hidden states using multi-head attentions to update
the node representations as:

n
(l+1)
i =

K

∥
k=1

σ(
∑
j∈Ni

αk
ijW

(l)
k n

(l)
j). (1)

2https://stanfordnlp.github.io/stanza/

where n
(l+1)
i is the representation of the i-th node

in the l + 1 layer, ∥ denotes the concatenation op-
eration, σ denotes the sigmoid function, K is the
number of attention heads, Ni is the set of neigh-
bors of node i in the graph, W(l)

k is a learnable
matrix, and αk

ij is the attention value of the node i
to its neighbor j in attention head k.

3.2 Syntax-Aware Memory Network

To improve the semantic interaction and fusion
of the representations of math text and the syntax
graph, we add k syntax-aware memory networks
between the last k layers of PLM and GAT. In the
memory network, node embeddings (from the math
syntax graph) with dependency relations are con-
sidered as slot entries, and we design multi-view
read/write operations to allow token embeddings
(e.g., explanation tokens or hints) to attend to highly
related node embeddings (e.g., math symbols).

Memory Initialization. We construct the mem-
ory network based on the dependency triplets and
node representations of the math syntax graph.
Given the dependency triplets {(h, r, t)}, we treat
the head and relation (h, r) as the key and the
tail t as the value, to construct a syntax-aware
key-value memory. The representations of the
heads and tails are the corresponding node rep-
resentations from GAT, while the relation repre-
sentations are randomly initialized and will be
optimized by continual pre-training. Finally, we
concatenate the representations of heads and rela-
tions to compose the representation matrix of Keys
as K(l) = {[n(l)

h1
; r1], [n

(l)
h2
; r2], · · · , [n(l)

hN
; rN]},

and obtain the representation matrix of Values as
V(l) = {n(l)

t1
,n

(l)
t2
, · · · ,n(l)

tN
}.

Multi-view Read Operation. We read important
semantics within the syntax-aware memory to up-
date the token representations from PLM. Since
a token can be related to several nodes within
the math syntax graph, we design a multi-view
read operation to capture these complex seman-
tic associations. Concretely, via different bilinear
transformation matrices {WS

1 ,W
S
2 , · · · ,WS

n},
we first generate multiple similarity matrices
{S1,S2, · · · ,Sn} between tokens and keys (head
and relation) within the memory, and then aggre-
gate the values (tail) to update the token represen-
tations. Given the token representations from the
l-th layer of PLM H(l) = {h(l)

1 ,h
(l)
2 , · · · ,h(l)

L },

5925

Given that sin x
is equal to 0.6
and x is an acute
angle, find …

GAT Layer 1

GAT Layer 𝑀 − 1

GAT Layer 𝑀

⋯ Keys

sin

Values

comp x

equal obl 0.6

x amod acute
⋯ ⋯

Gate

0.6

equal

sin

x

PLM Layer 1

PLM Layer 𝑁 − 1

PLM Layer 𝑁

CLS mean
TGCLMLM DTC

Aggregate Aggregate
Syntax-Aware Memory Network

Token Representations Node Representations

⋯

x

acute

equal nsubj sin

amod

oblnsubj

comp

0.7 0.3

0.10.2

0.2 0.40.5

(sin, comp)

(equal, obl)

sin x 0.6

0.3

0.3
(x, amod)

softmax
softmax

Figure 2: Illustration of our COMUS. We encode the textual description and the math syntax graph using PLM and
GAT, respectively, and insert the syntax-aware memory networks in the last k layers to fuse their representations. In
the syntax-aware memory network, we utilize the token representations and the node representations as the queries
and values, respectively, and implement the read and write operations to update them.

the similarity matrix Si is computed as

Si = H(l)WS
i K

(l)⊤ (2)

where WS
i is a learnable matrix, and an entry

Si[j, k] denotes the similarity between the j-th to-
ken and the k-th key in the i-th view. Based on
these similarity matrices, we update the token repre-
sentations by aggregating the value representations
as

Ĥ(l) = H(l) + [α1V;α2V; · · · ;αhV]WO (3)

αi = softmax(Si) (4)

where WO is a learnable matrix and αi is the at-
tention score distribution along the key dimension.
In this way, we can capture the multi-view corre-
lations between tokens and nodes, and the token
representations can be enriched by the represen-
tations of multiple semantic-related nodes. After
that, the updated token representations Ĥ(l) are fed
into the next layer of PLM, where the Transformer
layer can capture the interaction among token rep-
resentations to fully utilize the fused knowledge
from the syntax graph.

Multi-View Write Operation. After updating
the token representations, we update the represen-
tations of nodes from GAT via memory writing.
We still utilize the multi-view similarity matrices
{S1,S2, · · · ,Sh}. Concretely, we compute the at-
tention score distribution β using softmax function

along the token dimension of the similarity matri-
ces, and then aggregate the token representations
as

V(l)
new = [β1H

(l);β2H
(l); · · · ;βhH(l)]WR (5)

βi = softmax(S⊤
i) (6)

where WR is a learnable matrix. Based on the
aggregated token representations, we incorporate a
gate to update the representations of the values as

z = σ(V(l)
newW

A +V(l)WB) (7)

V̂(l) = z ·V(l)
new + (1− z) ·V(l) (8)

where WA and WB are learnable matrices. The
updated node representations V̂(l) are also fed into
the next layer of GAT, where the graph attention
mechanism can further utilize the fused knowledge
from the text to aggregate more effective node rep-
resentations.

3.3 Continual Pre-training

Continual pre-training aims to further enhance and
fuse the math text and math syntax graph. To
achieve it, we utilize the masked language model
and dependency triplet completion tasks to improve
the understanding of math text and math syntax
graph, respectively, and the text-graph contrastive
learning task to align and fuse their representations.

5926

Masked Language Model (MLM). Since the math
text contains a number of special math symbols,
we utilize the MLM task to learn it for better under-
standing the math text. Concretely, we randomly se-
lect 15% tokens of the input sequence to be masked.
Of the selected tokens, 80% are replaced with a spe-
cial token [MASK], 10% remain unchanged, and
10% are replaced by a token randomly selected
from the vocabulary. The objective is to predict the
original tokens of the masked ones as:

LMLM =
∑

ti∈Vmask

− log p(ti) (9)

where Vmask is the set of masked tokens, and p(ti)
denotes the probability of predicting the original
token in the position of ti.

Dependency Triplet Completion (DTC). In the
math syntax graph, the correlation within the de-
pendency triplet (h, r, t) is essential to understand
the complex math logic of the math problem. Thus,
inspired by TransE (Bordes et al., 2013), we design
the dependency triplet completion task to capture
the semantic correlation within a triplet. Specifi-
cally, for each triplet (h, r, t) within the math syn-
tax graph, we minimize the DTC loss by

LDTC = max
(
γ+d(nh+r,nt)−d(nh+r

′
,nt), 0

)
(10)

where γ > 0 is a margin hyper-parameter, d(·) is
the euclidean distance, and r

′
is the randomly sam-

pled negative relation embedding. In this way, the
head and relation embeddings can learn to match
the semantics of the tail embeddings, which en-
hances the node and relation representations by
capturing the graph structural information.

Text-Graph Contrastive Learning (TGCL). Af-
ter enhancing the representations of the math text
and math syntax graph via MLM and DTC tasks re-
spectively, we further align and unify the two types
of representations. The basic idea is to adopt con-
trastive learning to pull the representations of the
text and graph of the same math problem together,
and push apart the negative examples. Concretely,
given a text-graph pair of a math problem (di,Gi),
we utilize the representation of the [CLS] token
hd
i as the sentence representation of di, and the

mean pooling of the node representations nG
i as

the graph representation of Gi. Then, we adopt the
cross-entropy contrastive learning objective with

in-batch negatives to align the two representations

LTGCL = − log
exp(f(hd

i ,n
G
i)/τ)∑

i ̸=j exp(f(h
d
i ,n

G
j)/τ)

(11)

where f(·) is a dot product function and τ denotes
a temperature parameter. In this way, the represen-
tations of the text and graph can be aligned, and the
data representations from one side will be further
enhanced by another side.

3.4 Overview and Discussion

Overview. Our approach focuses on continually
pre-training PLMs to improve the understanding
of math problems. Given the math text and math
syntax graph of the math problem, we adopt PLM
and GAT to encode them, respectively, and utilize
syntax-aware memory networks in the last k layers
to fuse the representations of the text and graph.
In each of the last k layers, we first initialize the
queries and values of the memory network using
the representations of tokens and nodes, respec-
tively, then perform the read and write operations
to update them using Eq. 3 and Eq. 8. After that,
we feed the updated representations into the next
layers of PLM and GAT to consolidate the fused
knowledge from each other. Based on such an ar-
chitecture, we adopt MLM, DTC and TGCL tasks
to continually pre-train the model parameters using
Eq. 9, Eq. 10 and Eq. 11. Finally, for downstream
tasks, we fine-tune our model with specific data
and objectives, and concatenate the representations
of text hd and graph nG from the last layer for
prediction.

Discussion. The key of our approach is to deeply
fuse the math text and formula information of the
math problem via syntax-aware memory networks
and continual pre-training tasks. Recently, Math-
BERT (Peng et al., 2021) is proposed to continually
pre-train BERT in math domain corpus, which ap-
plies the self-attention mechanism for the feature
interaction of formulas and texts, and learns simi-
lar tasks as BERT. As a comparison, we construct
the math syntax graph to enrich the formula in-
formation and design the syntax-aware memory
network to fuse the text and graph information. Via
the syntax-aware memory network, the token from
math text can trace its related nodes along the rela-
tions in the math syntax graph, which can capture
the fine-grained correlations between tokens and
nodes. Besides, we model the math syntax graph

5927

Task Train Dev Test
KPC 8,721 991 1,985
QRC 10,000 2,000 4,000
QAM 14,000 2,000 4,000
SQR 250,000 11,463 56,349

Table 1: Statistics of the datasets.

via GAT, and devise the DTC task to improve the
associations within triplets from the graph, and the
TGCL task to align the representations of the graph
and text. In this way, we can better capture graph
structural information and fuse it with textual infor-
mation. It is beneficial for understanding logical
semantics from formulas of math problems .

4 Experiment

4.1 Experimental Setup

We conduct experiments on four tasks in the math
domain to verify the effectiveness of our approach.

Pre-training Corpus. Our pre-training corpus
is collected from a Chinese educational website
Zhixue 3, which consists of 1,030,429 problems of
high school math exams and tests. Each math prob-
lem contains the information of problem statement,
answer and solution analysis. For data preprocess-
ing, we first transform these collected problems
from the HTML format into plain text format, then
extract and convert the formulas and mathematical
symbols into a unified LaTex mathematical format.

Evaluation Tasks. We construct four tasks based
on the collected math problems for high school
students, which cover math problem classification
and recommendation. The statistics of these tasks
are summarized in Table 1.
• Knowledge Point Classification (KPC) is a

multi-class classification task. Given a math ques-
tion, the goal is to classify what knowledge point
(KP) this question is associated with. The knowl-
edge points are defined and annotated by profes-
sionals, and we finally have 387 KPs in this task.
• Question-Answer Matching (QAM) is a bi-

nary classification task to predict whether an an-
swer is matched with a question. For each question,
we randomly sample an answer from other prob-
lems as the negative example.
• Question Relation Classification (QRC) is

a 6-class classification task. Given a pair of math
questions, this task aims to predict their relation

3http://www.zhixue.com

(e.g., equivalent, similar, problem variant, condi-
tional variant, situation variant, irrelevant).
• Similar Question Recommendation (SQR) is

a ranking task. Given a question, this task aims to
rank retrieved candidate questions by the similarity.

Evaluation Metrics. For classification tasks (KPC,
QRC, QAM), we adopt Accuracy and F1-macro
as the evaluation metrics. For the recommen-
dation task (SQR), we employ top-k Hit Ratio
(HR@k) and top-k Normalized Discounted Cu-
mulative Gain (NDCG@k) for evaluation. Since
the length of candidate list is usually between 6 and
15, we report results on HR@3 and NDCG@3.

Baseline Methods. We compare our proposed ap-
proach with the following nine baseline methods:
• TextCNN (Kim, 2014) is a classic text classifi-

cation model using CNN on top of word vectors.
• TextRCNN (Lai et al., 2015) combines both

RNN and CNN for text classification tasks.
• GAT (Veličković et al., 2018) utilizes the at-

tention mechanism to aggregate neighbors’ repre-
sentations to produce representation for each node.
• R-GCN (Schlichtkrull et al., 2018) extended

Graph Convolutional Network with multi-edge en-
coding to aggregate neighbors’ representations.
• BERT-Base (Devlin et al., 2019) is a popular

pre-trained model. We use the bert-base-chinese,
and add some new tokens into the original vocab to
represent specific symbols in math problem dataset.
• DAPT-BERT (Gururangan et al., 2020) con-

tinually pre-trains BERT on the domain-related
corpus. We use our collected math problem dataset
with the masked language model task for imple-
mentation.
• BERT+GAT concatenates the [CLS] embed-

ding from BERT and mean node embedding from
GAT as the representation of a math question.
• DAPT-BERT+GAT replaces BERT in

BERT+GAT with the DAPT-BERT.
• MathBert (Peng et al., 2021) continually pre-

train BERT on the math corpus with similar pre-
training tasks, and revises the self-attention layers
for encoding the OPT of formulas.

Implementation Details. For baseline models, all
hyper-parameters are set following the suggestions
from the original papers. For all PLM-related mod-
els, we implement them based on HuggingFace
Transformers 4 (Wolf et al., 2020). For the models

4https://huggingface.co/transformers/

5928

Tasks KPC QAM QRC SQR
Metrics Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro HR@3 NDCG@3
TextCNN 51.2 31.7 91.6 91.6 75.1 55.8 0.321 0.301
TextRCNN 56.8 40.3 89.3 89.2 80.3 62.9 0.334 0.317
GAT 42.5 28.5 90.0 89.9 66.6 45.4 0.315 0.300
R-GCN 40.7 26.0 91.6 91.5 70.4 50.0 0.316 0.298
BERT-Base 59.4 36.0 96.8 96.8 82.3 63.1 0.578 0.576
BERT+GAT 61.1 38.0 97.0 96.9 83.0 64.3 0.568 0.566
DAPT-BERT 67.1 45.2 98.8 98.7 85.9 67.7 0.641 0.643
DAPT-BERT+GAT 67.8 47.3 98.9 98.9 85.8 67.2 0.646 0.649
MathBert 66.4 43.2 98.9 98.9 86.4 68.3 0.640 0.641
COMUS 72.6 57.9 99.5 99.5 88.9 81.4 0.658 0.660

Table 2: Main results on four downstream tasks. The best and the second best methods are marked in bold and
underlined fonts respectively.

Tasks KPC
Ratio 40% 20% 10% 5%
Method Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro
DAPT-BERT 53.1 27.9 38.6 15.2 26.4 7.7 16.8 4.2
DAPT-BERT+GAT 53.3 27.5 38.3 15.5 26.2 6.8 11.8 2.5
MathBERT 49.6 32.1 31.2 11.1 19.5 5.7 8.4 1.9
COMUS 62.7 41.5 52.2 27.8 36.9 15.0 22.1 7.1
Tasks QRC
Ratio 40% 20% 10% 5%
Method Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro
DAPT-BERT 78.8 59.7 73.5 52.7 65.5 46.1 61.4 40.3
DAPT-BERT+GAT 81.4 62.3 73.3 53.1 69.1 48.5 61.8 38.4
MathBERT 80.5 60.9 73.3 47.9 65.6 38.3 58.0 22.6
COMUS 82.6 67.4 77.7 57.1 69.8 49.6 64.6 40.7

Table 3: Performance comparison w.r.t. different amount of training data on KPC and QRC tasks.

combining PLM and GAT, we set GAT’s number
of layer, attention head and hidden states as 6, 12
and 64, respectively. And we set the number of
syntax-aware memory network layers k as 2 for
our proposed COMUS.

In the continual pre-training stage, we initialize
the weights of all models with bert-base-chinese 5

and pre-train them on our pre-training corpus with
the same hyper-parameter setting as follows. We
continually pre-train the parameters with a total
of 128 batch size for 100,000 steps. And the max
length of input sequences is set as 512. We use
AdamW (Loshchilov and Hutter, 2019) optimiza-
tion with β1 = 0.9, β2 = 0.999, and apply learning
rate warmup over the first 5% steps, and linear de-
cay of the learning rate. The learning rate is set
as 1e−4. We set τ as 0.07 for our TGCL tasks.
It costs about 40 hours to perform the continual
pre-training on 4 Tesla-V100-PCIE-32G GPUs.

During fine-tuning on downstream tasks, we use
AdamW with the same setting as pre-training. And
batch size for all experiments is set as 32. The
learning rate is set to 3e−5 for pre-training based
methods, and 1e−3 for other methods.

5https://huggingface.co/bert-base-chinese

4.2 Main Results

The results of all the comparison methods on four
tasks are shown in Table 2. Based on these results,
we can find:

As for non-pre-training methods, text-based
methods (i.e., TextCNN and TextRCNN) outper-
form GNN-based methods (i.e., GAT and R-GCN).
It indicates that text representations are more ca-
pable of understanding math problems than graph
representations in our dataset. Overall, non-pre-
training methods perform worse than pre-training
based methods, since pre-training based models
have learned sufficient general knowledge during
the pre-training on large-scale corpus.

Among the five pre-training methods, we can
have two major findings. First, combining PLMs
with GNN yields performance improvement in
most cases. The reason is that GNN can capture
the structural semantics from formulas as the aux-
iliary information to help PLMs understand the
math problem, but the improvement is unstable,
since these methods simply concatenate the rep-
resentations of the text and graph without deeply
fusing them. Second, continual pre-training brings
a significant improvement on all the evaluation

5929

KPC QRC
Method Acc F1 Acc F1
COMUS 72.6 57.9 88.9 81.4
- w/o GAT 69.4 49.2 87.9 78.3
- w/o BERT 41.7 27.2 64.1 39.6
- w/o Memory 69.4 49.2 88.1 73.7
- w/o MLM 36.5 21.9 70.2 51.2
- w/o DTC 70.8 55.3 87.8 73.5
- w/o TGCL 71.9 56.5 87.9 69.8

Table 4: Ablation study of our approach on the KPC
and QRC tasks.

tasks. General-purpose PLMs can’t effectively un-
derstand mathematical semantics, and it is the key
to adapt them to the math domain via continual
pre-training.

Finally, by comparing our approach with all the
baselines, it is clear to see that our model performs
consistently better than them on four tasks. We
utilize the syntax-aware memory network to fuse
and interact the representations of textual descrip-
tions and formulas, and adopt three continual pre-
training tasks to further align and enhance these
representations. Among these results, we can see
that our model achieves a large improvement on
the KPC task. A possible reason is that it requires
a deeper semantic fusion of formulas and text for
identifying the correct knowledge points.

4.3 Few-shot Learning

To validate the reliability of our method under the
data scarcity scenarios, we conduct few-shot exper-
iments on KPC and QRC tasks by using different
proportions of the training data, i.e., 5%, 10%, 20%
and 40%. We compare our model with DAPT-
BERT, DAPT-BERT+GAT and MathBERT.

Table 3 shows the evaluation results with dif-
ferent ratios of training data. We can see that the
performance substantially drops when the size of
training set is reduced. However, our model per-
forms consistently better than the others across
different tasks and metrics. It demonstrates that our
model is capable of leveraging the data more effec-
tively with the help of the syntax-aware memory
networks and continual pre-training tasks. With
5% training data, our model exceeds the best base-
line by a large margin. It further indicates that our
model is more robust to the data scarcity problem.

4.4 Ablation Study

Our proposed approach contains several comple-
mentary modules and pre-training tasks. Thus, we
conduct experiments on KPC and QRC tasks to

20k 40k 60k 80k 100k
65.00

71.25

77.50

83.75

90.00

KPC
QRC

(a) Pre-training Steps

0 3 6 9 12
65.00

71.25

77.50

83.75

90.00

KPC
QRC

(b) GAT Layers

Figure 3: Performance comparison w.r.t. the number of
pre-training steps and GAT layers

verify the contribution of these modules and tasks.
Concretely, we remove the module GAT, BERT,
Syntax-Aware Memory Network, or the task MLM,
DTC and TGCL, respectively.

In Table 4, we can see that the performance
drops by removing any modules or pre-training
tasks. It shows the effectiveness of these mod-
ules or pre-training tasks in our proposed model.
Especially, the model performance significantly
decreases when we removing the textual encoder
BERT, which implies that the text representations
are more important for math problem understand-
ing. Besides, we can see that removing MLM also
results in a large performance drop, since it is the
key pre-training task for our text encoder.

4.5 Hyper-Parameters Analysis
Our proposed model contains a few parameters to
tune. In this part, we tune two parameters and
examine their robustness on model performance,
i.e., the number of GAT Layer and the continual
pre-training steps. We conduct experiments on
KPC and QRC tasks and show the change curves
of Accuracy in Figure 3.

We can observe that our model achieves the best
performance in 80k steps. It indicates that our
model can be improved by continual pre-training
gradually and may overfit after 80k steps. Besides,
our model achieves the best performance with 6
GAT layers, which shows that 6 GAT layers are suf-
ficient to capture the information in syntax graph.

5 Related Work

In this section, we review the related work from the
following two aspects, namely math problem un-
derstanding and continual pre-training of language
models.

Math Problem Understanding. Math problem
understanding tasks focus on understanding the
texts, formulas and symbols in math domain. A

5930

surge of works aim to understand the math for-
mulas for problem solving or mathematical infor-
mation retrieval. In a typical way, the formula is
usually transformed as a tree or graph (e.g., Oper-
ator Tree (Zanibbi and Blostein, 2012)), then net-
work embedding method (Mansouri et al., 2019)
and graph neural network (Song and Chen, 2021)
are utilized to encode it. Besides, a number of
works focus on understanding math problem based
on the textual information. Among them, Math
Word Problem (MWP) Solving is a popular task
that generates executable mathematical expression
for the math word problem to produce the final an-
swer. Numerous deep learning based methods have
been proposed to tackle the MWP task, including
Seq2Seq (Chiang and Chen, 2019; Li et al., 2019),
Seq2Tree (Wang et al., 2019; Qin et al., 2020), and
Pre-trained Language Models (Kim et al., 2020;
Liang et al., 2021). More recently, several stud-
ies attempt to model more complex math prob-
lems (Huang et al., 2020; Hendrycks et al., 2021)
that require a deep understanding of both textual
and formula semantics.

Continual Pre-training of Language Models.
Continually pre-training can effectively improve
pre-trained model’s performance on new domains
or downstream tasks (Gururangan et al., 2020). To
achieve it, most of previous works either continu-
ally optimize the model parameters with BERT-like
tasks on domain or task related corpus (e.g., scien-
tific (Beltagy et al., 2019) and bio-media (Lee et al.,
2020)), or design new pre-training objectives for
task adaption (e.g., commonsense reasoning (Zhou
et al., 2021) and dialogue adaption (Li et al., 2020)).
Besides, several works (Wang et al., 2020; Xiang
et al., 2020) utilize both domain-related corpus
and new pre-training objectives for continual pre-
training, or revise the Transformer structure of
PLMs for better adaption (Ghosal et al., 2020). For
math problem understanding, the recently proposed
MathBERT (Peng et al., 2021) adopts math domain
corpus and formula-related pre-training tasks for
continual pre-training.

6 Conclusion and Future Work

In this paper, we proposed COMUS, a continual
pre-training approach for math problem understand-
ing. By integrating the formulas with the syntax
tree of mathematical text, we constructed the math
syntax graph and designed the syntax-aware mem-
ory network to fuse the semantic information from

the text and formulas. In the memory network,
we treated tokens from the text and triplets from
the graph as the queries and slot entries, respec-
tively, and modeled the semantic interaction be-
tween tokens and their semantic-related nodes via
multi-view read and write operations. Besides, we
devised three continual pre-training tasks to fur-
ther enhance and align the representations of the
textual description and math syntax graph of the
math problem. Experimental results have shown
that our approach outperforms several competitive
baselines on four tasks in the math domain.

In future work, we will consider applying our
method to solve more difficult math-related tasks,
e.g., automatic math problem solving and analysis
generation. Besides, we will also consider incor-
porating external math domain knowledge into our
model to improve the understanding of mathemati-
cal logic and numerical reasoning.

Ethical Consideration

In this part, we discuss the main ethical considera-
tion of this work: (1) Privacy. The data adopted in
this work (i.e., pre-training corpus and fine-tuning
data) is created by human annotation for research
purposes, and should not cause privacy issues. (2)
Potential Problems. PLMs have been shown to cap-
ture certain biases from their pre-trained data (Ben-
der et al., 2021). There are increasing efforts to
address this problem in the community (Ross et al.,
2021).

Acknowledgement

This work was partially supported by Beijing Natu-
ral Science Foundation under Grant No. 4222027,
and National Natural Science Foundation of China
under Grant No. 61872369, Beijing Outstand-
ing Young Scientist Program under Grant No.
BJJWZYJH012019100020098, the Outstanding In-
novative Talents Cultivation Funded Programs 2021
and Public Computing Cloud, Renmin University
of China. This work is also supported by Beijing
Academy of Artificial Intelligence (BAAI). Xin
Zhao is the corresponding author.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-

ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

5931

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2656–2668.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Deepanway Ghosal, Devamanyu Hazarika, Abhinaba
Roy, Navonil Majumder, Rada Mihalcea, and Sou-
janya Poria. 2020. KinGDOM: Knowledge-Guided
DOMain Adaptation for Sentiment Analysis. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3198–
3210, Online. Association for Computational Lin-
guistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset.

Zhenya Huang, Qi Liu, Weibo Gao, Jinze Wu, Yu Yin,
Hao Wang, and Enhong Chen. 2020. Neural mathe-
matical solver with enhanced formula structure. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1729–1732.

Bugeun Kim, Kyung Seo Ki, Donggeon Lee, and Gah-
gene Gweon. 2020. Point to the expression: Solving
algebraic word problems using the expression-pointer
transformer model. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3768–3779.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Linguis-
tics.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In Twenty-ninth AAAI conference on artifi-
cial intelligence.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6162–6167.

Junlong Li, Zhuosheng Zhang, Hai Zhao, Xi Zhou,
and Xiang Zhou. 2020. Task-specific objectives of
pre-trained language models for dialogue adaptation.
arXiv preprint arXiv:2009.04984.

Zhenwen Liang, Jipeng Zhang, Jie Shao, and Xian-
gliang Zhang. 2021. Mwp-bert: A strong base-
line for math word problems. arXiv preprint
arXiv:2107.13435.

Qi Liu, Zai Huang, Zhenya Huang, Chuanren Liu, En-
hong Chen, Yu Su, and Guoping Hu. 2018. Finding
similar exercises in online education systems. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1821–1830.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Behrooz Mansouri, Shaurya Rohatgi, Douglas W Oard,
Jian Wu, C Lee Giles, and Richard Zanibbi. 2019.
Tangent-cft: An embedding model for mathematical
formulas. In Proceedings of the 2019 ACM SIGIR
international conference on theory of information
retrieval, pages 11–18.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang.
2021. Mathbert: A pre-trained model for math-
ematical formula understanding. arXiv preprint
arXiv:2105.00377.

5932

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.292
https://doi.org/10.18653/v1/2020.acl-main.292
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang,
and Liang Lin. 2020. Semantically-aligned universal
tree-structured solver for math word problems. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3780–3789.

Anja Reusch, Maik Thiele, and Wolfgang Lehner. 2021.
Tu_dbs in the arqmath lab 2021, clef.

Candace Ross, Boris Katz, and Andrei Barbu. 2021.
Measuring social biases in grounded vision and lan-
guage embeddings. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 998–1008, Online. Asso-
ciation for Computational Linguistics.

Michael Sejr Schlichtkrull, Thomas N Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In ESWC.

Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil
Heffernan, Xintao Wu, Ben Graff, and Dongwon Lee.
2021. Mathbert: A pre-trained language model for
general nlp tasks in mathematics education. arXiv
preprint arXiv:2106.07340.

Yujin Song and Xiaoyu Chen. 2021. Searching for
mathematical formulas based on graph representation
learning. In International Conference on Intelligent
Computer Mathematics, pages 137–152. Springer.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7144–7151.

Weiran Wang, Qingming Tang, and Karen Livescu.
2020. Unsupervised pre-training of bidirectional
speech encoders via masked reconstruction. In
ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6889–6893. IEEE.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Suncheng Xiang, Yuzhuo Fu, Guanjie You, and Ting
Liu. 2020. Unsupervised domain adaptation through
synthesis for person re-identification. In 2020 IEEE
International Conference on Multimedia and Expo
(ICME), pages 1–6. IEEE.

Richard Zanibbi and Dorothea Blostein. 2012. Recogni-
tion and retrieval of mathematical expressions. Inter-
national Journal on Document Analysis and Recog-
nition (IJDAR), 15(4):331–357.

Wangchunshu Zhou, Dong-Ho Lee, Ravi Kiran Sel-
vam, Seyeon Lee, and Xiang Ren. 2021. Pre-training
text-to-text transformers for concept-centric common
sense. In International Conference on Learning Rep-
resentations.

5933

https://doi.org/10.18653/v1/2021.naacl-main.78
https://doi.org/10.18653/v1/2021.naacl-main.78
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=3k20LAiHYL2
https://openreview.net/forum?id=3k20LAiHYL2
https://openreview.net/forum?id=3k20LAiHYL2

