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Abstract

Entity alignment (EA) aims to find the equiva-
lent entity pairs between KGs, which is a cru-
cial step for integrating multi-source KGs. For
a long time, most researchers have regarded EA
as a pure graph representation learning task and
focused on improving graph encoders while
paying little attention to the decoding process.
In this paper, we propose an effective and effi-
cient EA Decoding Algorithm via Third-order
Tensor Isomorphism (DATTI). Specifically, we
derive two sets of isomorphism equations: (1)
Adjacency tensor isomorphism equations and
(2) Gramian tensor isomorphism equations. By
combining these equations, DATTI could ef-
fectively utilize the adjacency and inner cor-
relation isomorphisms of KGs to enhance the
decoding process of EA. Extensive experiments
on public datasets indicate that our decoding
algorithm can deliver significant performance
improvements even on the most advanced EA
methods, while the extra required time is less
than 3 seconds.

1 Introduction

Knowledge graphs (KGs) illustrate the relations be-
tween real-world entities—e.g., objects, situations,
or concepts—and usually are stored in the form
of triples (subject, relation, object). Over recent
years, a large number of KGs have been constructed
to provide structural knowledge to facilitate down-
stream applications, such as recommendation sys-
tems (Cao et al., 2019) and question-answering
systems (Zhao et al., 2020).

Most KGs are independently extracted from dif-
ferent languages or domains. Thus, these KGs usu-
ally hold unique information individually but also
have some shared parts. Integrating these cross-
lingual / domain KGs could provide a broader view
for users, especially for the minority language users
who usually suffer from lacking language resources.
As shown in Figure 1, entity alignment (EA) aims
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Figure 1: An example of cross-lingual entity alignment.

to find the equivalent entity pairs between KGs,
which is a crucial step for integrating KGs.

Existing EA methods are built on the same
core premise: equivalent entity pairs between KGs
have similar neighborhood structures (i.e., isomor-
phism). Therefore, most existing EA methods
(Wang et al., 2018; Sun et al., 2020b; Mao et al.,
2020) could be abstracted into the same architec-
ture (as shown in Figure 2): encoding the structural
information of KGs into a low-dimensional vector
space by Siamese graph encoders and then mapping
equivalent entity pairs into the proximate space by
alignment loss functions.

For a long time, most researchers have regarded
EA as a graph representation learning task and
focused on improving graph encoders. Starting
from the simplest graph encoder TransE (Bordes
et al., 2013), the newest graph encoding methods
are successively introduced into EA and achieve
decent improvements. For example, GCN-align
(Wang et al., 2018) first proposed to use graph
convolutional networks (GCN) (Kipf and Welling,
2017) to encode KGs. RSN (Guo et al., 2019) in-
troduces recurrent neural networks (RNN) (Graves
et al., 2008) and biased random walk to exploit
the long-term relational dependencies existing in
KGs. Dual-AMN (Mao et al., 2021a) proposes the
proxy-matching layer and normalized hard samples
mining loss to speed up the training process.

In stark contrast to the efforts on graph encoders,
few researchers focus on improving EA decoding
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algorithms (Sun et al., 2020c), which have been
proved to significantly improve performance and re-
liability in other fields, such as dependency parsing
(Zmigrod et al., 2020) and machine translation (He
et al., 2021). Earlier EA studies (Wang et al., 2018;
Sun et al., 2017) simply calculate the similarities of
each pair of entities and select the closest one as the
alignment result. This naive strategy results in one
entity may be aligned to multiple entities simulta-
neously, which violates the one-to-one constraint
of EA 1. Thus, some recent studies (Xu et al., 2020;
Zhu et al., 2021) propose the global alignment strat-
egy, i.e., regarding the decoding process as a one-
to-one assignment problem that could be solved by
the Hungarian algorithm (Kuhn, 1955). Overall,
these studies just use existing decoding algorithms
without further exploration of KGs’ characteristics.
Similar to graph encoders, we argue that a good
EA decoding algorithm should also be capable of
exploiting the structural information of KGs.

In this paper, we propose an effective and ef-
ficient EA Decoding Algorithm via Third-order
Tensor Isomorphism (DATTI). Different from re-
cent studies (Fey et al., 2020; Mao et al., 2021b)
that regard EA as a matrix (second-order tensor)
isomorphism problem, we express the isomorphism
of KGs in the form of third-order tensors, which
could completely describe the structural informa-
tion of KGs. Specifically, we derive two sets of
tensor isomorphism equations: (1) Adjacency ten-
sor isomorphism equations and (2) Gramian ten-
sor isomorphism equations. By combining these
equations, DATTI could effectively utilize the adja-
cency and inner correlation isomorphisms of KGs
to enhance the decoding process of EA, thus sig-
nificantly improving the performance. Besides, the
introduction of third-order tensors will inevitably
lead to a quadratic increase in space-time complex-
ity. Therefore, we adopt the randomized truncated
singular value decomposition algorithm (RTSVD)
(Sarlós, 2006) and Sinkhorn operator (Sinkhorn,
1964) to improve efficiency.

To comprehensively evaluate our proposed
method, we apply DATTI to three advanced EA
methods with different kinds of graph encoders.
Experimental results on two widely used public
datasets show that DATTI can deliver significant
performance improvements (3.9% on Hits@1 and
3.2% on MRR) even on the most advanced EA

1Most KGs usually have removed the duplicated entities
within the same KG.

Graph
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Encoder

Figure 2: The architecture of existing EA methods.

methods. Furthermore, our decoding algorithm is
highly efficient. The decoding time is less than 3
seconds, which is almost negligible compared to
the time consumption of the training process. The
main contributions are summarized as follows:

• We propose an effective and efficient EA De-
coding Algorithm via Third-order Tensor Iso-
morphism (DATTI), which consists of two
sets of tensor isomorphism equations: (1) Ad-
jacency tensor isomorphism equations and (2)
Gramian tensor isomorphism equations.

• Extensive experiments on public datasets in-
dicate that our decoding algorithm can deliver
significant performance improvements even
applied to the SOTA method, while the extra
required time is less than 3 seconds.

2 Task Definition

A KG could be defined as G = (E,R, T ), where
E,R, and T represent the entity set, relation set,
and triple set, respectively. Given a source graph
Gs = (Es, Rs, Ts) and a target graph Gt =
(Et, Rt, Tt), the goal of EA is to explore the one-
to-one entity correspondences Pe between KGs.

3 Related Work

3.1 Encoders and Enhancement
The core premise of EA methods is that equivalent
entity pairs between KGs have similar neighbor-
hood structures. As shown in Figure 2, most of
them could be summarized into two steps: (1) Us-
ing KG embedding methods (e.g., TransE, GCN,
and GAT (Velickovic et al., 2018)) to encode en-
tities and relations into low-dimensional embed-
dings. (2) Mapping these embeddings into a unified
vector space through pre-aligned entity pairs and
alignment loss functions. To organize existing EA
methods clearly, we categorize them based on the
encoders and enhancement strategies in Table 1.
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Encoders and Losses. There are mainly two kinds
of Encoders: Trans represents TransE (Bordes
et al., 2013) and subsequent derivative algorithms.
These methods assume that entity and relation em-
beddings follow the equation h+ r ≈ t. Because
of the easy implementation, the Trans encoders
are widely used in early EA methods. More re-
cently, Graph Neural Networks (GNN) gradually
became the mainstream encoder because of their
powerful modeling capability on graph structures.
Inspired by language models, RSN proposes a bi-
ased random walk sampling strategy and uses RNN
to encode the sampled sequences. As for alignment
losses, the vast majority of EA methods (Wang
et al., 2018; Wu et al., 2019; Mao et al., 2020)
adopt contrastive losses, e.g., Triplet loss (Schroff
et al., 2015). These loss functions share one core
idea, attracting positive entity pairs and repulsing
negative entity pairs.
Enhancement. Due to the lack of labeled data,
several methods (Sun et al., 2018; Mao et al.,
2020) adopt iterative strategies to produce semi-
supervised aligned entity pairs. Despite significant
performance improvements, the time consumption
of these methods increases several times more.
Some methods (Xu et al., 2019; Yang et al., 2019)
introduce textual information (e.g., entity name em-
beddings) as the initial features of GNN to provide
a multi-aspect view. However, literal information
is not always available in real applications. For
example, there will be privacy risks when using
user-generated content. Therefore, we will sepa-
rately discuss these textual-based methods in the
experiment section.

As mentioned in Section 1, some studies (Xu
et al., 2020; Wu et al., 2019) regard the decoding
process as a one-to-one assignment problem. The
assignment problem is a fundamental combinato-
rial optimization problem. An intuitive instance is
to assign N jobs for N workers. The assignment
problem is to find a one-to-one assignment plan
so that the total profit is maximum. Formally, it is
equivalent to maximizing the following equation:

arg max
P∈PN

⟨P ,X⟩F (1)

X ∈ RN×N is the profit matrix. P is a permuta-
tion matrix denoting the assignment plan. There
are exactly one entry of 1 in each row and each
column in P while 0s elsewhere. PN represents
the set of all N-dimensional permutation matrices.
Here, ⟨·⟩F represents the Frobenius inner product.

Method Encoder Enhancement

JAPE (Sun et al., 2017) Trans %

GCN-Align (Wang et al., 2018) GNN %

OTEA (Pei et al., 2019) Trans %

RSN (Guo et al., 2019) RNN %

BootEA (Sun et al., 2018) Trans Semi
TransEdge(Sun et al., 2020a) Trans Semi
MRAEA (Mao et al., 2020) GNN Semi

Dual-AMN (Mao et al., 2021a) GNN Semi

GM-Align (Xu et al., 2019) GNN Entity Name
RDGCN (Wu et al., 2019) GNN Entity Name
DGMC (Fey et al., 2020) GNN Entity Name

AttrGNN (Liu et al., 2020) GNN Entity Name

CREA (Xu et al., 2020) GNN Hungarian
RAGA (Zhu et al., 2021) GNN Hungarian

Table 1: Categorization of some popular EA methods.

4 The Proposed Method

In the following, we describe our proposed decod-
ing algorithm (DATTI), which consists of two sets
of tensor isomorphism equations: (1) Adjacency
tensor isomorphism equations and (2) Gramian ten-
sor isomorphism equations. Furthermore, we adopt
the randomized truncated singular value decompo-
sition (RTSVD) algorithm and the Sinkhorn opera-
tor to speed up the decoding process.

4.1 Adjacency Isomorphism
Some recent studies (Fey et al., 2020; Mao et al.,
2021b) regard EA as a matrix isomorphism prob-
lem. These methods assume that the adjacency
matrices As ∈ R|Es|×|Es| of source graph Gs and
At ∈ R|Et|×|Et| of target graph Gt are isomorphic,
i.e., As could be transformed into At according to
the entity correspondence matrix Pe:

PeAsP
⊤
e = At (2)

Pe[i,j] = 1 indicates that ei and ej are equivalent.
However, matrices (second-order tensors) cannot
fully describe the adjacency information of KGs,
which is stored in the form of triples. Therefore,
we use third-order tensors to express KGs to avoid
the information missing from using matrices. Let
As ∈ R|Es|×|Rs|×|Es| and At ∈ R|Et|×|Rt|×|Et|

be the adjacency tensors of Gs and Gt. A[h,r,t] = 1
indicates that the triple (h, r, t) is in the KG. The
matrix isomorphism Equation (2) could be general-
ized into the third-order form as follows:

As ×1 Pe ×2 Pr ×3 Pe = At (3)

where Pr represents the one-to-one relation cor-
respondence matrix between Gs and Gt and ×k

represents the k-mode tensor-matrix product.
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𝒜𝑠 = 𝒜𝑡×1 𝑷𝑒 ×2 𝑷𝑟 ×3 𝑷𝑒

Figure 3: The illustration of tensor-matrix product and isomorphic adjacency tensors.

As illustrated in Figure 3, Equation (3) can be
interpreted as successively reordering the tensor
along three axes. Since the number of triples |T | is
usually much less than |E|×|R|×|E|, As and At

are extremely sparse. Unfortunately, existing tensor
computing frameworks (e.g., Numpy (Harris et al.,
2020) and Tensorflow (Abadi et al., 2015)) can only
provide few and limited operators for third-order
sparse tensors. Therefore, we have to re-transform
Equation (3) into the matrix form:

As ×1 Pe ×2 Pr ×3 Pe = At

PeA(1)
s (Pe ⊗ Pr)

⊤ = A(1)
t

⇐⇒ PrA(2)
s (Pe ⊗ Pe)

⊤ = A(2)
t

PeA(3)
s (Pr ⊗ Pe)

⊤ = A(3)
t

(4)

here ⊗ represents the Kronecker product, Pe ⊗
Pr ∈ P(|E|·|R|)×(|E|·|R|). A(k) represents the
mode-k unfolding matrix of the tensor A, e.g.,
A(1) = [A[:,:,0]∥A[:,:,1]∥...∥A[:,:,|E|]] ∈ R|E|×(|E|·|R|),
where ∥ is the concatenate operation. When As

and At are second-order adjacency tensors, the
above equations degrade to Equation (2):

As ×1 Pe ×2 Pe = At

⇐⇒ PeA(1)
s P⊤

e = A(1)
t

(5)

4.2 Gramian Isomorphism
Gramian matrix G(A) = AA⊤ reflects the inner
correlations between each vector of matrix A. If
we regard A as random variables, G(A) is equiv-
alent to the uncentered covariance matrix. When
As and At are isomorphic, their Gramian matrices
AsA

⊤
s and AtA

⊤
t are isomorphic too:

AtA
⊤
t = (PeAsP

⊤
e )(PeAsP

⊤
e )⊤ = PeAsA

⊤
s P

⊤
e (6)

Similar to adjacency matrices, the Gramian matrix
isomorphism equation could also be generalized
into the third-order form:

PeG(A(1)
s )P⊤

e = G(A(1)
t )

PrG(A(2)
s )P⊤

r = G(A(2)
t )

PeG(A(3)
s )P⊤

e = G(A(3)
t )

(7)

Furthermore, it is easy to prove that the following
equations hold for arbitrary depth l ∈ N:

PeG(A(1)
s )lP⊤

e = G(A(1)
t )l

PrG(A(2)
s )lP⊤

r = G(A(2)
t )l

PeG(A(3)
s )lP⊤

e = G(A(3)
t )l

(8)

4.3 Decoding via Isomorphism

Although we have derived two sets of isomorphic
equations, neither of them could be solved directly.
These equations are equivalent to the quadratic or
cubic assignment problem (Yan et al., 2016), which
has been proved to be NP-hard (Lawler, 1963).
Fortunately, these isomorphic equations could be
used to enhance the decoding process.

Let He
s ∈ R|Es|×de and Hr

s ∈ R|Rs|×dr rep-
resent the entity and relation embeddings of Gs.
He

t ∈ R|Et|×de and Hr
t ∈ R|Rt|×dr represent the

embeddings of Gt. Assume that these embeddings
have been approximately aligned by EA methods:

PeH
e
s ≈ He

t

PrH
r
s ≈ Hr

t

(9)

As mentioned in Section 1, some recent studies (Xu
et al., 2020; Sun et al., 2020c) regard the decoding
process of Pe as an assignment problem:

arg min
Pe∈P|E|

∥PeH
e
s −He⊤

t ∥2F

⇐⇒ arg max
Pe∈P|E|

〈
Pe,H

e
sH

e⊤
t

〉
F

(10)

Since this simple decoding strategy does not utilize
the structural information of KGs, we propose to
introduce the adjacency and Gramian isomorphism
equations into the decoding process. By combining
Equations (4), (8), and (9), the connection between
the 8-tuple {As,At,H

e
s ,H

e
t ,H

r
s ,H

r
t ,Pe,Pr} could
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be described as follows, for arbitrary depth l ∈ N:

PeG(A(1)
s )lA(1)

s (He
s ⊗Hr

s ) ≈ G(A(1)
t )lA(1)

t (He
t ⊗Hr

t )

(11)

PrG(A(2)
s )lA(2)

s (He
s ⊗He

s ) ≈ G(A(2)
t )lA(2)

t (He
t ⊗He

t )

(12)

PeG(A(3)
s )lA(3)

s (Hr
s ⊗He

s ) ≈ G(A(3)
t )lA(3)

t (Hr
t ⊗He

t )

(13)

Detailed proof is listed in Appendix A. Although
it looks complex, the above equations essentially
have the same form as Equation (9). Take Equation
(11) as an example, let Ĥ l

s = G(A(1)
s )lA(1)

s (He
s ⊗

Hr
s ) and Ĥ l

t = G(A(1)
t )lA(1)

t (He
t ⊗ Hr

t ), Equation
(11) can be simplified into as follows:

PeĤ l
s ≈ Ĥ l

t (14)

Therefore, Pe could also be solved by maximiz-
ing the equation arg max

Pe∈P|E|

〈
Pe, Ĥ l

sĤ
l
t

⊤
〉

F

. Theoret-

ically, for arbitrarily depth l ∈ N, the result of
Pe should be the same. However, the above equa-
tions are based on the ideal isomorphic situation.
In practice, As and At can not always be strictly
isomorphic. In order to reduce the impact of noise
existing in practice, Pe should be fit for various l:

L∑
l=0

arg max
Pe∈P|E|

〈
Pe, Ĥ l

sĤ
l
t

⊤
〉

F

⇐⇒ arg max
Pe∈P|E|

〈
Pe,

L∑
l=0

Ĥ l
sĤ

l
t

⊤
〉

F

(15)

By Equation (15), we successfully integrate the ad-
jacency and Gramian isomorphism equations into
the decoding process of EA. Similar to the above,
Equation (12) could obtain the relation alignment
result Pr. Because Equation (13) is equivalent to
Equation (11), it only needs to solve either of them
to obtain the entity alignment result Pe. It is noted
that entity scales |Es| and |Et| are usually incon-
sistent in practice, which is called the unbalanced
assignment problem. Assuming that |Es|>|Et|, a
naive solution is to pad the profit matrix with zeros
such that its shape becomes R|Es|×|Es|.

4.4 Reducing the Complexity
Randomized truncated SVD. The introduction of
third-order tensors enables DATTI to fully describe
the structural information of KGs. However, there
is no such thing as a free lunch. The space-time
complexity also increases quadratically. The main
bottleneck is to compute Ĥ l

s ∈ R|Es|×(de·dr) and

0
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Figure 4: The singular value distribution of Ĥ l
s obtained

by TransEdge on DBP15K.The abscissa represents the
top k% singular values, and the ordinate represents the
proportion of these singular values in total.

Ĥ l
t ∈ R|Et|×(de·dr). Even with the sparse optimiza-

tion trick, the complexity is still up to O(ldrde|T |),
which is much worse than most GNN encoders
O(l(de + dr)|T |) (Mao et al., 2020).

In Figure 4, we list the singular value distribution
of Ĥ l

s obtained by TransEdge (Sun et al., 2020a)
on DBP15K. Interestingly, the distribution is highly
concentrated in the top 20%, which means the con-
tained information of Ĥ l

s is sparse and compress-
ible. By dropping the smaller singular values of
Ĥ l

s and Ĥ l
t , the space-time complexity could be

significantly reduced. This paper adopts random-
ized truncated SVD (Sarlós, 2006) to decompose
matrices approximately and only retains the top
ϕ% of the singular values of Ĥ l

s and Ĥ l
t .

Sinkhorn operator. The first and most well-
known solving algorithm for the assignment prob-
lem is the Hungarian algorithm (Kuhn, 1955),
which is based on improving a matching along the
augmenting paths. The time complexity of the orig-
inal Hungarian algorithm is O(n4). Then, Jonker
and Volgenant (1987) improve the algorithm to
achieve an O(n3) running time.

Besides the Hungarian algorithm, the assignment
problem could also be regarded as a special case of
the optimal transport (OT) problem. Based on the
Sinkhorn operator (Sinkhorn, 1964), Cuturi (2013)
proposes a fast and completely parallelizable algo-
rithm for OT problem:

S0(X) = exp(X),

Sk(X) = Nc(Nr(S
k−1(X))),

Sinkhorn(X) = lim
k→∞

Sk(X).

(16)

where Nr(X)=X�(X1N1T
N ) and Nc=X�(1N1T

NX)

are the row and column-wise normalization oper-
ators of a matrix, � represents the element-wise
division, and 1N is a column vector of ones.
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Datasets |E| |R| |T |

DBPZH−EN
Chinese 19,388 1,701 70,414
English 19,572 1,323 95,142

DBPJA−EN
Japanese 19,814 1,299 77,214
English 19,780 1,153 93,484

DBPFR−EN
French 19,661 903 105,998
English 19,993 1,208 115,722

SRPRSFR−EN
French 15,000 177 33,532
English 15,000 221 36,508

SRPRSDE−EN
German 15,000 120 37,377
English 15,000 222 38,363

Table 2: Statistical data of DBP15K and SRPRS.

Then, Mena et al. (2018) further prove that the
Sinkhorn operation could also solve the assignment
problem as a special case of OT problem:

arg max
P∈PN

⟨P ,X⟩F

= lim
τ→0+

Sinkhorn(X/τ)
(17)

The time complexity of the Sinkhorn operator
is O(kn2). According to our experimental re-
sults, a small k is enough to achieve decent per-
formance. Compared with the Hungarian algo-
rithm, the Sinkhorn operation is much more ef-
ficient. Therefore, this paper adopts the Sinkhorn
operator to solve Equation (15).

5 Experiments

Our experiments are conducted on a PC with a
GeForce GTX 3090 GPU and a Ryzen ThreadRip-
per 3970X CPU. The code and datasets are avail-
able in Github 2.

5.1 Datasets

To comprehensively evaluate the proposed decod-
ing algorithm, we experiment with two widely used
public datasets: (1) DBP15K (Sun et al., 2017)
consists of three cross-lingual subsets from multi-
lingual DBpedia. Each subset contains 15, 000 en-
tity pairs. (2) SRPRS (Guo et al., 2019). Each sub-
set also contains 15, 000 entity pairs but with much
fewer triples compared to DBP15K. The statistics
of these datasets are summarized in Table 2. To be
consistent with previous studies (Wang et al., 2018;
Sun et al., 2018), we randomly split 30% of the pre-
aligned entity pairs for training and development
while using the remaining 70% for testing. All the
results are the average of five independent runs.

2https://github.com/MaoXinn/DATTI

5.2 Baselines

To ensure the universality, we evaluate DATTI on
three advanced EA methods with different types
of graph encoders: Dual-AMN (Mao et al., 2021a)
is the SOTA of GNN-based methods; TransEdge
(Sun et al., 2020a) is the SOTA of Trans-based
methods; RSN (Guo et al., 2019) is the only EA
method using RNN as the encoder. Furthermore,
we choose the Hungarian algorithm (Hun.) as the
decoding baseline, proven to be effective by recent
EA methods (Xu et al., 2020; Zhu et al., 2021).

5.3 Settings

Metrics. Following convention, we use Hits@k
and Mean Reciprocal Rank (MRR) as the evalua-
tion metrics. The Hits@k score is calculated by
measuring the proportion of correct pairs in the
top-k. In particular, Hits@1 equals accuracy.
Hyper-parameter. For TransEdge, we retain
the top ϕ=20% of the singular values of Ĥ l

s and
Ĥ l

t . Since the output dimensions of Dual-AMN
(de=768, dr=128) and RSN (de=dr=256) are much
larger than TransEdge (de=dr=75), we only set the
retaining ratio ϕ=2%. Other hyper-parameters keep
the same for all datasets and methods: iterations
k=15; temperature τ=0.02; max depth L=3.

5.4 Main Experiments

We list the main experimental results in Table 3.
Among these three EA methods, Dual-AMN beats
other baselines by more than 5.5% on Hits@1 and
4.2% on MRR, which indicates the advantages of
GNN encoders. On RSN and TransEdge, the Hun-
garian algorithm shows decent performance im-
provements on Hits@1 by at least 3.2%. In con-
trast, the Hungarian does not positively affect Dual-
AMN, probably due to the bi-directional nearest
iterative strategy of Dual-AMN that has included
the core idea of the Hungarian algorithm.

Our proposed DATTI consistently achieves the
best performances on all datasets and baselines. On
DBP15K, DATTI delivers performance gains by at
least 2.8% on Hits@1 and 3.2% on MRR. Espe-
cially for the SOTA method Dual-AMN, DATTI
further raises the performance ceiling of EA by
more than 3.9% on Hits@1. On SRPRS, DATTI
could significantly improve the performances of
RSN and TransEdge. But for Dual-AMN, the im-
provements are much less. One possible expla-
nation is that SRPRS removes too many triples,
resulting in a lower performance ceiling.
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Method
DBPZH−EN DBPJA−EN DBPFR−EN SRPRSFR−EN SRPRSDE−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

RSN 0.607 0.829 0.685 0.591 0.815 0.670 0.632 0.864 0.713 0.351 0.638 0.447 0.511 0.744 0.590

+ Hun. 0.661 - - 0.633 - - 0.693 - - 0.374 - - 0.538 - -

+ DATTI 0.721 0.903 0.785 0.686 0.895 0.759 0.720 0.918 0.790 0.407 0.694 0.502 0.559 0.782 0.637

(Imp.%) 9.1% 8.9% 14.6% 8.4% 9.8% 13.3% 3.9% 6.3% 10.8% 8.8% 8.8% 12.3% 3.9% 5.1% 8.0%

TransEdge 0.762 0.921 0.818 0.746 0.929 0.811 0.769 0.940 0.830 0.403 0.675 0.492 0.556 0.753 0.633

+Hun. 0.787 - - 0.771 - - 0.796 - - 0.427 - - 0.574 - -

+DATTI 0.814 0.947 0.863 0.804 0.957 0.861 0.818 0.965 0.873 0.441 0.707 0.521 0.593 0.782 0.673

(Imp.%) 3.4% 2.8% 5.5% 4.3% 3.0% 6.2% 2.8% 2.7% 5.2% 3.3% 4.7% 5.9% 3.5% 3.8% 6.3%

Dual-AMN 0.804 0.937 0.853 0.803 0.947 0.856 0.834 0.962 0.881 0.483 0.755 0.573 0.612 0.819 0.683

+Hun. 0.801 - - 0.803 - - 0.839 - - 0.483 - - 0.611 - -

+DATTI 0.835 0.953 0.880 0.836 0.969 0.884 0.873 0.979 0.913 0.495 0.760 0.583 0.623 0.822 0.691
(Imp.%) 3.9% 1.7% 3.2% 4.1% 2.3% 3.3% 4.7% 1.8% 3.6% 2.5% 0.6% 1.7% 1.8% 0.4% 1.2%

Table 3: Main experimental results on DBP15K and SRPRS. All the results and initial embeddings are obtained by
their official code with default hyper-parameters. Imp.% represents the percentage increase of DATTI compared to
the suboptimal result. Since the Hungarian algorithm only outputs one aligned entity pair for each entity, instead of
a rank list, we can only report Hits@1. All improvements are statistically significant with p<0.01 on paired t-test.

Method DBP15K SRPRS
Train DATTI Train DATTI

RSN 3,659 2.4 1,279 1.7
TransEdge 1,625 1.3 907 1.2
Dual-AMN 177 3.3 163 2.6

Table 4: Time costs (second) on DBP15K and SRPRS.

5.5 Auxiliary Experiments

To explore the behavior of our proposed decod-
ing algorithm in different situations, we design the
following experiments:
Time Efficiency. By adopting RTSVD and the
Sinkhorn operator, our proposed decoding algo-
rithm acquires high efficiency. Table 4 lists the
time costs of the training and decoding process
(DATTI) of three EA methods on DBP15K and
SRPRS. DATTI only requires 3 seconds to obtain
the result at most, which is negligible even com-
pared to the training process of the fastest method
Dual-AMN.
Adjacency and Gramian Isomorphism. The core
contribution of DATTI is to introduce the adja-
cency and Gramian isomorphism equations into
the EA decoding process. To demonstrate their
effectiveness, we independently add each of them
on Dual-AMN. As shown in Table 5, both could
slightly improve the performance (less than 1.6%
on Hits@1). Interestingly, the performance gain
brought by their combination is greater than the
sum of their independent gains, which means these
two kinds of isomorphism equations could capture
non-overlapping information.

Method
DBPZH−EN DBPJA−EN DBPFR−EN

Hits@1 MRR Hits@1 MRR Hits@1 MRR

Dual-AMN 0.804 0.853 0.803 0.856 0.834 0.881

+Adj. 0.820 0.866 0.818 0.868 0.859 0.902

+Gram. 0.809 0.857 0.812 0.863 0.848 0.895

+DATTI 0.835 0.880 0.836 0.884 0.873 0.913

Table 5: Ablation studies on DBP15K.
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Figure 5: Hits@1 on DBPZH−EN with different τ .

Iterations k and Temperature τ . The τ in the
Sinkhorn operator is used to make distribution
closer to one-hot, which is similar to the τ in the
softmax operator. We set τ from 0.01 to 0.05 and
report the corresponding performance curves of
DATTI (Dual-AMN) on DBPZH−EN in Figure 5.
If we choose an appropriate value, the Sinkhorn op-
erator will converge quickly to the optimal solution.
Although τ theoretically needs to be close to zero,
an over small τ will make the algorithm unstable
because of the error of big floating-point numbers.
In contrast, an over large τ will lead the algorithm
to fail to converge.
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DBPZH−EN with different retaining ratios ϕ.

Depth L. Figure 6 lists the performances of DATTI
(Dual-AMN) with different max depths L. In par-
ticular, L = 0 is equivalent to only using adjacency
isomorphism equations to decode Pe. When the
depth L is less than 3, each additional layer could
deliver significant performance improvements on
all subsets of DBP15K. When stacking more lay-
ers, the performance gains become negligible or
even degrade, which indicates that over-smoothing
(Kipf and Welling, 2017) also exists in DATTI.
Retaining ratio ϕ. To reduce the space-time com-
plexity of DATTI, we only retain the top ϕ% of
the singular values of Ĥ l

s and Ĥ l
t . In Figure 7, we

report the Hits@1 and time cost of DATTI (Dual-
AMN) on DBPZH−EN with different retaining ra-
tios ϕ. From the observation, when the retaining
ratio exceeds 2%, the growth of Hits@1 becomes
very slow, while the time cost still keeps quadratic
growing. Therefore, ϕ=2% is the sweet spot be-
tween performance and efficiency in this situation.
In practice, the retaining ratio ϕ could be adjusted
according to computing resources and data scales.

5.6 Unsupervised Entity Alignment

So far, all the experiments are based on pure
structural-based EA methods. As mentioned in Sec-
tion 3.1, some methods (Xu et al., 2020; Wu et al.,
2019) introduce textual information (e.g., entity
name) to provide a multi-aspect view. Specifically,

Method
DBPZH−EN DBPJA−EN DBPFR−EN

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

GM-Align 0.679 0.785 0.740 0.872 0.894 0.952
RDGCN 0.697 0.842 0.763 0.763 0.873 0.957
DGMC 0.801 0.875 0.848 0.897 0.933 0.960
AtrrGNN 0.796 0.929 0.783 0.920 0.919 0.979
CREA 0.736 - 0.792 - 0.924 -
RAGA 0.873 - 0.909 - 0.966 -

Init-Emb 0.625 0.756 0.680 0.807 0.848 0.919
+Hun. 0.667 - 0.728 - 0.893 -
+DATTI 0.890 0.958 0.921 0.971 0.979 0.995
(Imp.%) 1.9% 3.1% 1.3% 5.5% 1.3% 1.6%

Table 6: Performances of textual-based EA methods.
The results of baselines are collected from the origin
papers. Init-Emb represents only using the cosine simi-
larity between the averaged name embeddings.

these methods first use machine translation systems
or cross-lingual word embeddings to map entity
and relation names into a unified semantic space
and then average the pre-trained word embeddings
to construct the initial features for entities and re-
lations. In our opinion, since the initial features of
entity He and relation Hr have been pre-mapped,
these textual-based EA methods are more like de-
coding algorithms to eliminate the translation noise.
In this situation, DATTI could also play a similar
role even without any pre-aligned entity pairs.

To make fair comparisons with these textural-
based EA methods, we use the same entity name
translations and pre-trained word embeddings pro-
vided by Xu et al. (2019). For DATTI, we retain
the top 10% of the singular values of Ĥ l

s and Ĥ l
t ,

while keeping other hyper-parameters the same.
Table 6 lists the performances of DATTI and six
baselines on DBP15K. Surprisingly, unsupervised
DATTI outperforms all the supervised competitors,
improves the performance on Hits@1 by more than
1.3%. Besides showing the powerful competitive-
ness of DATTI, this result also indicates that ex-
isting textural-based EA methods have consider-
able redundancy. When the initial features have
been pre-mapped, complex neural networks and
pre-aligned entity pairs may not be necessary.

6 Conclusion

In this paper, we propose an effective and efficient
EA decoding algorithm via third-order tensor iso-
morphism (DATTI). Extensive experiments on pub-
lic datasets indicate that our decoding algorithm
can deliver significant performance improvements
even on the most advanced EA methods, while the
extra required time is less than 3 seconds.
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A Appendix

Proof: To prove Equation (11), we combine the
first sub-equations of Equation (4) and (8):{

PeG(A(1)
s )lP⊤

e = G(A(1)
t )l

PeA(1)
s (Pe ⊗ Pr)

⊤ = A(1)
t

Because P⊤
e Pe = E, thus:

PeG(A(1)
s )lA(1)

s (Pe ⊗ Pr)
⊤ = G(A(1)

t )lA(1)
t

According to Equation (9), we could obtain:

PeH
e
s ⊗ PrH

r
s ≈ He

t ⊗Hr
t (18)

Finally, because of (Pe⊗Pr)
⊤(PeH

e
s⊗PrH

r
s ) =

P⊤
e PeH

e
s⊗P⊤

r PrH
r
s = He

s⊗Hr
s , Equation (11)

is proved as follows:

PeG(A(1)
s )lA(1)

s (Pe ⊗ Pr)
⊤(PeH

e
s ⊗ PrH

r
s )

= PeG(A(1)
s )lA(1)

s (He
s ⊗Hr

s )

≈ G(A(1)
t )lA(1)

t (He
t ⊗Hr

t )

Furthermore, Equations (12) and (13) could also
be proved in similar way. □
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