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Abstract

Prompt-based probing has been widely used in
evaluating the abilities of pretrained language
models (PLMs). Unfortunately, recent stud-
ies have discovered such an evaluation may be
inaccurate, inconsistent and unreliable. Fur-
thermore, the lack of understanding its inner
workings, combined with its wide applicability,
has the potential to lead to unforeseen risks for
evaluating and applying PLMs in real-world
applications. To discover, understand and quan-
tify the risks, this paper investigates the prompt-
based probing from a causal view, highlights
three critical biases which could induce biased
results and conclusions, and proposes to con-
duct debiasing via causal intervention. This pa-
per provides valuable insights for the design of
unbiased datasets, better probing frameworks
and more reliable evaluations of pretrained lan-
guage models. Furthermore, our conclusions
also echo that we need to rethink the criteria for
identifying better pretrained language models1.

1 Introduction

During the past few years, the great success of
pretrained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019; Brown et al., 2020; Raffel
et al., 2020) raises extensive attention about eval-
uating what knowledge do PLMs actually entail.
One of the most popular approaches is prompt-
based probing (Petroni et al., 2019; Davison et al.,
2019; Brown et al., 2020; Schick and Schütze,
2020; Ettinger, 2020; Sun et al., 2021), which
assesses whether PLMs are knowledgable for a
specific task by querying PLMs with task-specific
prompts. For example, to evaluate whether BERT
knows the birthplace of Michael Jordan, we could
query BERT with “Michael Jordan was born in
[MASK]”. Recent studies often construct prompt-
based probing datasets, and take PLMs’ perfor-

∗Corresponding Authors
1We openly released the source code and data at https:

//github.com/c-box/causalEval.
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mance on these datasets as their abilities for the
corresponding tasks. Such a probing evaluation
has been wildly used in many benchmarks such
as SuperGLUE (Wang et al., 2019; Brown et al.,
2020), LAMA (Petroni et al., 2019), oLMpics (Tal-
mor et al., 2020), LM diagnostics (Ettinger, 2020),
CAT (Zhou et al., 2020), X-FACTR (Jiang et al.,
2020a), BioLAMA (Sung et al., 2021), etc.

Unfortunately, recent studies have found that
evaluating PLMs via prompt-based probing could
be inaccurate, inconsistent, and unreliable. For
example, Poerner et al. (2020) finds that the per-
formance may be overestimated because many in-
stances can be easily predicted by only relying
on surface form shortcuts. Elazar et al. (2021)
shows that semantically equivalent prompts may
result in quite different predictions. Cao et al.
(2021) demonstrates that PLMs often generate un-
reliable predictions which are prompt-related but
not knowledge-related.

In these cases, the risks of blindly using prompt-
based probing to evaluate PLMs, without under-
standing its inherent vulnerabilities, are significant.
Such biased evaluations will make us overestimate
or underestimate the real capabilities of PLMs, mis-
lead our understanding of models, and result in

5796

https://github.com/c-box/causalEval
https://github.com/c-box/causalEval


wrong conclusions. Therefore, to reach a trustwor-
thy evaluation of PLMs, it is necessary to dive into
the probing criteria and understand the following
two critical questions: 1) What biases exist in cur-
rent evaluation criteria via prompt-based probing?
2) Where do these biases come from?

To this end, we compared PLM evaluation via
prompt-based probing with conventional evalua-
tion criteria in machine learning. Figure 1 shows
their divergences. Conventional evaluations aim
to evaluate different hypotheses (e.g., algorithms
or model structures) for a specific task. The tested
hypotheses are raised independently of the train-
ing/test data generation. However, this indepen-
dence no longer sustains in prompt-based prob-
ing. There exist more complicated implicit con-
nections between pretrained models, probing data,
and prompts, mainly due to the bundled pretraining
data with specific PLMs. These unaware connec-
tions serve as invisible hands that can even dom-
inate the evaluation criteria from both linguistic
and task aspects. From the linguistic aspect, be-
cause pretraining data, probing data and prompts
are all expressed in the form of natural language,
there exist inevitable linguistic correlations which
can mislead evaluations. From the task aspect, the
pretraining data and the probing data are often sam-
pled from correlated distributions. Such invisible
task distributional correlations may significantly
bias the evaluation. For example, Wikipedia is a
widely used pretraining corpus, and many probing
data are also sampled from Wikipedia or its exten-
sions such as Yago, DBPedia or Wikidata (Petroni
et al., 2019; Jiang et al., 2020a; Sung et al., 2021).
As a result, such task distributional correlations
will inevitably confound evaluations via domain
overlapping, answer leakage, knowledge coverage,
etc.

To theoretically identify how these correlations
lead to biases, we revisit the prompt-based prob-
ing from a causal view. Specifically, we describe
the evaluation procedure using a structural causal
model (Pearl et al., 2000) (SCM), which is shown
in Figure 2a. Based on the SCM, we find that
the linguistic correlation and the task distributional
correlation correspond to three backdoor paths in
Figure 2b-d, which lead to three critical biases:

• Prompt Preference Bias, which mainly
stems from the underlying linguistic corre-
lations between PLMs and prompts, i.e., the
performance may be biased by the fitness of

a prompt to PLMs’ linguistic preference. For
instance, semantically equivalent prompts will
lead to different biased evaluation results.

• Instance Verbalization Bias, which mainly
stems from the underlying linguistic correla-
tions between PLMs and verbalized probing
datasets, i.e., the evaluation results are sensi-
tive and inconsistent to the different verbaliza-
tions of the same instance (e.g., representing
the U.S.A. with the U.S. or America).

• Sample Disparity Bias, which mainly stems
from the invisible distributional correlation
between pretraining and probing data, i.e.,
the performance difference between different
PLMs may due to the sample disparity of their
pretraining corpus, rather than their ability
divergence. Such invisible correlations may
mislead evaluation results, and thus lead to
implicit, unaware risks of applying PLMs in
real-world applications.

We further propose to conduct causal interven-
tion via backdoor adjustments, which can reduce
bias and ensure a more accurate, consistent and re-
liable probing under given assumptions. Note that
this paper not intends to create a “universal cor-
rect” probing criteria, but to remind the underlying
invisible risks, to understand how spurious correla-
tions lead to biases, and to provide a causal toolkit
for debiasing probing under specific assumptions.
Besides, we believe that our discoveries not only
exist in prompt-based probing, but will also influ-
ence all prompt-based applications to pretrained
language models. Consequently, our conclusions
echo that we need to rethink the criteria for identi-
fying better pretrained language models with the
above-mentioned biases.

Generally, the main contributions of this paper
are:

• We investigate the critical biases and quan-
tify their risks of evaluating pretrained lan-
guage models with widely used prompt-based
probing, including prompt preference bias, in-
stance verbalization bias, and sample disparity
bias.

• We propose a causal analysis framework,
which can be used to effectively identify,
understand, and eliminate biases in prompt-
based probing evaluations.
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Figure 2: The structural causal model for factual knowledge probing and the three backdoor paths in SCM correspond
to three biases.

• We provide valuable insights for the design of
unbiased datasets, better probing frameworks,
and more reliable evaluations, and echo that
we should rethink the evaluation criteria for
pretrained language models.

2 Background and Experimental Setup

2.1 Causal Inference
Causal inference is a promising technique for iden-
tifying undesirable biases and fairness concerns in
benchmarks (Hardt et al., 2016; Kilbertus et al.,
2017; Kusner et al., 2017; Vig et al., 2020; Feder
et al., 2021). Causal inference usually describes the
causal relations between variables via Structural
Causal Model (SCM), then recognizes confounders
and spurious correlations for bias analysis, finally
identifies true causal effects by eliminating biases
using causal intervention techniques.

SCM The structural causal model (Pearl et al.,
2000) describes the relevant features in a system
and how they interact with each other. Every
SCM is associated with a graphical causal model
G = {V, f}, which consists of a set of nodes rep-
resenting variables V , as well as a set of edges
between the nodes representing the functions f to
describe the causal relations.

Causal Intervention To identify the true causal
effects between an ordered pair of variables (X,Y ),
Causal intervention fixes the value of X = x and
removes the correlations between X and its prece-
dent variables, which is denoted as do(X = x). In
this way, P(Y = y|do(X = x)) represents the true
causal effects of treatment X on outcome Y (Pearl
et al., 2016).

Backdoor Path When estimating the causal ef-
fect of X on Y , the backdoor paths are the non-
causal paths between X and Y with an arrow into

X , e.g., X ← Z → Y . Such paths will confound
the effect that X has on Y but not transmit causal
influences from X , and therefore introduce spuri-
ous correlations between X and Y .

Backdoor Criterion The Backdoor Criterion is
an important tool for causal intervention. Given an
ordered pair of variables (X,Y ) in SCM, and a set
of variables Z where Z contains no descendant of
X and blocks every backdoor path between X and
Y , then the causal effects of X = x on Y can be
calculated by:

P(Y = y|do(X = x)) =∑
z

P(Y = y|X = x, Z = z)P(Z = z), (1)

where P(Z = z) can be estimated from data or
priorly given, and is independent of X .

2.2 Experimental Setup

Task This paper investigates prompt-based prob-
ing on one of the most representative and well-
studied tasks – factual knowledge probing (Liu
et al., 2021b). For example, to evaluate whether
BERT knows the birthplace of Michael Jordan,
factual knowledge probing queries BERT with
“Michael Jordan was born in [MASK]”, where
Michael Jordan is the verbalized subject men-
tion, “was born in” is the verbalized prompt of rela-
tion birthplace, and [MASK] is a placeholder
for the target object.

Data We use LAMA (Petroni et al., 2019) as our
primary dataset, which is a set of knowledge triples
sampled from Wikidata. We remove the N-M rela-
tions (Elazar et al., 2021) which are unsuitable for
the P@1 metric and retain 32 probing relations in
the dataset. Please refer to the appendix for detail.
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Pretrained Models We conduct probing experi-
ments on 4 well-known PLMs: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), GPT-2 (Rad-
ford et al., 2019) and BART (Lewis et al., 2020),
which correspond to 3 representative PLM archi-
tectures, including autoencoder (BERT, RoBERTa),
autoregressive (GPT-2) and denoising autoencoder
(BART).

3 Structural Causal Model for Factual
Knowledge Probing

In this section, we formulate the SCM for factual
knowledge probing procedure and describe the key
variables and causal relations.

The SCM is shown in Figure 2a, which con-
tains 11 key variables: 1) Pretraining corpus
distribution Da; 2) Pretraining corpus C, e.g.,
Webtext for GPT2, Wikipedia for BERT; 3) Pre-
trained language model M ; 4) Linguistic distri-
bution L, which guides how a concept is verbal-
ized into natural language expression, e.g., rela-
tion to prompt, entity to mention; 5) Relation R,
e.g., birthplace, capital, each relation cor-
responds to a probing task; 6) Verbalized prompt
P for each relation , e.g, x was born in y; 7) Task-
specific predictor I , which is a PLM combined
with a prompt, e.g., <BERT, was born in> as a
birthplace predictor; 8) Probing data distri-
bution Db, e.g., fact distribution in Wikidata; 9)
Sampled probing data T such as LAMA, which
are sampled entity pairs (e.g., <Q41421, Q18419>
in Wikidata) of relation R; 10) Verbalized in-
stances X , (e.g., <Michael Jordan, Brooklyn>
from <Q41421, Q18419>); 11) Performance E of
the predictor I on X .

The causal paths of the prompt-based probing
evaluation contains:

• PLM Pretraining. The path {Da, L} →
C →M represents the pretraining procedure
for language model M , which first samples
pretraining corpus C according to pretraining
corpus distribution Da and linguistic distribu-
tion L, then pretrains M on C.

• Prompt Selection. The path {R,L} → P
represents the prompt selection procedure,
where each prompt P must exactly express
the semantics of relation R, and will be influ-
enced by the linguistic distribution L.

• Verbalized Instances Generation. The path
{Db, R} → T → X ← L represents the

generation procedure of verbalized probing
instances X , which first samples probing data
T of relation R according to data distribution
Db, then verbalizes the sampled data T into
X according to the linguistic distribution L.

• Performance Estimation. The path
{M,P} → I → E ← X represents the
performance estimation procedure, where the
predictor I is first derived by combining PLM
M and prompt P , and then the performance
E is estimated by applying predictor I on ver-
balized instances X .

To evaluate PLMs’ ability on fact extraction,
we need to estimate P(E|do(M = m), R = r).
Such true causal effects are represented by the path
M → I → E in SCM. Unfortunately, there exist
three backdoor paths between pretrained language
model M and performance E, as shown in Fig-
ure 2b-d. These spurious correlations make the
observation correlation between M and E cannot
represent the true causal effects of M on E, and
will inevitably lead to biased evaluations. In the
following, we identify three critical biases in the
prompt-based probing evaluation and describe the
manifestations, causes, and casual interventions for
each bias.

4 Prompt Preference Bias

In prompt-based probing, the predictor of a spe-
cific task (e.g., the knowledge extractor of rela-
tion birthplace) is a PLM M combined with a
prompt P (e.g., BERT + was born in). However,
PLMs are pretrained on specific text corpus, there-
fore will inevitably prefer prompts sharing the same
linguistic regularity with their pretraining corpus.
Such implicit prompt preference will confound the
true causal effects of PLMs on evaluation perfor-
mance, i.e., the performance will be affected by
both the task ability of PLMs and the preference
fitness of a prompt. In the following, we investigate
prompt preference bias via causal analysis.

4.1 Prompt Preference Leads to Inconsistent
Performance

In factual knowledge probing, we commonly as-
sign one prompt for each relation (e.g., X was
born in Y for birthplace). However, dif-
ferent PLMs may prefer different prompts, and it is
unable to disentangle the influence of prompt pref-
erence from the final performance. Such invisible
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Figure 3: The variances of P@1 performance of 4 PLMs
on 4 relations using semantically equivalent prompts.
We can see the performance varies significantly.

prompt preference will therefore lead to inconsis-
tent conclusions.

To demonstrate this problem, we report the
performance variance on LAMA using different
prompts for each PLM. For each relation, we follow
Elazar et al. (2021); Jiang et al. (2020b) and design
at least 5 prompts that are semantically equivalent
and faithful but vary in linguistic expressions.

Prompt selection significantly affects perfor-
mance. Figure 3 illustrates the performance on
several relations, where the performances of all
PLMs vary significantly on semantically equiv-
alent prompts. For instance, by using different
prompts, the Precision@1 of relation languages
spoken dramatically changing from 3.90% to
65.44% on BERT-large, and from 0.22% to 71.94%
on BART-large. This result is shocking, because
the same PLM can be assessed from “knowing
nothing” to “sufficiently good” by only changing
its prompt. Table 1 further shows the quantitative
results, for BERT-large, the averaged standard de-
viation of Precision@1 of different prompts is 8.75.
And the prompt selection might result in larger per-
formance variation than model selection: on more
than 70% of relations, the best and worst prompts
will lead to >10 point variation at Precision@1,
which is larger than the majority of performance
gaps between different models.

Prompt preference also leads to inconsistent
comparisons. Figure 4 demonstrates an exam-
ple, where the ranks of PLMs are significantly
changed when applying diverse prompts. We also
conduct quantitative experiments, which show that
the PLMs’ ranks on 96.88% relations are unstable
when prompt varies.

All these results demonstrate that the prompt
preference bias will result in inconsistent perfor-

Models LAMA P@1 Worst P@1 Best P@1 Std
BERT-large 39.08 23.45 46.73 8.75
RoBERTa-large 32.27 15.64 41.35 9.07
GPT2-xl 24.19 11.19 33.52 8.56
BART-large 27.68 16.21 38.93 8.35

Table 1: The P@1 performance divergence of prompt
selection averaged over all relations, we can see prompt
preference results in inconsistent performance.
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BERT-large RoBERTa-large GPT2-xl BART-large

Figure 4: The P@1 performance of 4 PLMs using 4 dif-
ferent prompts of relation owned by, where the rank
of 4 PLMs is unstable on different prompts: prompt
preference leads to 3 distinct “best” models and 3 dis-
tinct “worst” models.

mance. Such inconsistent performance will fur-
ther lead to unstable comparisons between different
PLMs, and therefore significantly undermines the
evaluations via prompt-based probing.

4.2 Cause of Prompt Preference Bias

Figure 2b shows the cause of the prompt preference
bias. When evaluating the ability of PLMs on spe-
cific tasks, we would like to measure the causal ef-
fects of path M → I → E. However, because the
prompt P and the PLM M are all correlated to the
linguistic distribution L, there is a backdoor path
M ← C ← L → P → I → E between PLM M
and performance E. Consequently, the backdoor
path will confound the effects of M → I → E
with P → I → E.

Based on the above analysis, the prompt prefer-
ence bias can be eliminated by blocking this back-
door path via backdoor adjustment, which requires
a prior formulation of the distribution P(P ). In
Section 7, we will present one possible causal in-
tervention formulation which can lead to more con-
sistent evaluations.

5 Instance Verbalization Bias

Apart from the prompt preference bias, the under-
lying linguistic correlation can also induce bias in
the instance verbalization process. Specifically, an
instance in probing data can be verbalized into dif-
ferent natural language expressions (e.g., verbalize
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Relation Mention Prediction

Capital of

America Chicago
the U.S. Washington
China Beijing
Cathay Bangkok

Birthplace

Einstein Berlin
Albert Einstein Vienna
Isaac Newton London
Sir Isaac Newton town

Table 2: Different verbalized names of the same entity
lead to different predictions on BERT-large.

Q30 in Wikidata into America or the U.S.),
and different PLMs may prefer different verbaliza-
tions due to mention coverage, expression prefer-
ence, etc. This will lead to instance verbalization
bias.

5.1 Instance Verbalization Brings Unstable
Predictions

In factual knowledge probing, each entity is verbal-
ized to its default name. However, different PLMs
may prefer different verbalizations, and such under-
lying correlation is invisible. Because we couldn’t
measure how this correlation affects probing per-
formance, the evaluation may be unstable using
different verbalizations.

Table 2 shows some intuitive examples. When
we query BERT “The capital of the U.S. is
[MASK]”, the answer is Washington. Mean-
while, BERT would predict Chicago if we re-
place the U.S. to its alias America. Such un-
stable predictions make us unable to obtain reliable
conclusions on whether or to what degree PLMs
actually entail the knowledge.

To quantify the effect of instance verbalization
bias, we collect at most 5 verbalizations for each
subject entity in LAMA from Wikidata, and cal-
culate the verbalization stability on each relation,
i.e., the percentage of relation instances whose pre-
dictions are unchanged when verbalization varies.
The results in Figure 5 show the average verbaliza-
tion stabilities of all four PLMs are < 40%, which
demonstrate that the instance verbalization bias
will bring unstable and unreliable evaluation.

5.2 Cause of Instance Verbalization Bias

Figure 2c shows the cause of instance verbalization
bias: the backdoor path M ← C ← L→ X → E,
which stems from the confounder of linguistic dis-
tribution L between pretraining corpus C and ver-
balized probing data X . Consequently, the ob-

20 40 60 80 100

BERT

RoBERTa

GPT2

BART

Figure 5: The verbalization stabilities of 4 PLMs on all
relations, which is measured by the percentage of rela-
tion instances whose predictions are unchanged when
verbalization varies. We can see that the verbalization
stabilities of all 4 PLMs (BERT-large, RoBERTa-large,
GPT2-xl, BART-large) are poor.

served correlation between M and E couldn’t faith-
fully represent the true causal effect of M on E,
but is also mixed up the spurious correlation caused
by the backdoor path.

The instance verbalization bias can be eliminated
by blocking this backdoor path via causal interven-
tion, which requires a distribution formulation of
the instance verbalization, i.e., P(X). We will
present a possible intervention formulation in Sec-
tion 7.

6 Sample Disparity Bias

Besides the biases induced by linguistic correla-
tions, the distributional correlations between pre-
training corpus and task-specific probing data can
also introduce sample disparity bias. That is, the
performance difference between different PLMs
may due to the sample disparity of their pretraining
corpus, rather than their ability divergence.

In conventional evaluation, the evaluated hy-
potheses are independent of the train/test data gen-
eration, and all the hypotheses are evaluated on
training data and test data generated from the same
distribution. Therefore, the impact of correlations
between training data and test data is transparent,
controllable, and equal for all the hypotheses. By
contrast, in prompt-based probing, each PLM is
bundled with a unique pretraining corpus, the corre-
lation between pretraining corpus distribution and
probing data distribution cannot be quantified. In
the following we investigate this sample disparity
bias in detail.

6.1 Sample Disparity Brings Biased
Performance

In factual knowledge probing, LAMA (Petroni
et al., 2019), a subset sampled from Wikidata,
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γ% BERT-base BERT-large GPT2-base GPT2-medium
0% 30.54 33.08 15.22 22.11

20% 35.77 39.56 22.02 28.21
40% 38.68 39.75 24.32 30.29
60% 38.72 40.68 25.42 31.16
80% 39.79 41.48 25.65 31.88
100% 40.15 42.51 26.82 33.12
None 37.13 39.08 16.88 22.60

Table 3: The P@1 on LAMA of PLMs whose further
pretraining data are with different correlation degrees
γ% with LAMA. The BERT-base and GPT2-base both
contain 12 layers, while BERT-large and GPT2-medium
both contain 24 layers.

is commonly used to compare different PLMs.
Previous work claims that GPT-style models are
with weaker factual knowledge extraction abili-
ties than BERT because they perform worse on
LAMA (Petroni et al., 2019; Liu et al., 2021c).
However, because PLMs are pretrained on differ-
ent pretraining corpus, the performance divergence
can stem from the spurious correlation between
pretraining corpus and LAMA, rather than their
ability difference. For example, BERT’s superior
performance to GPT-2 may stem from the diver-
gence of their pretraining corpus, where BERT’s
pretraining corpus contains Wikipedia, while GPT-
2’s pretraining corpus doesn’t.

To verify the effect of sample disparity bias, we
further pretrain BERT and GPT-2 by constructing
pretraining datasets with different correlation de-
grees to LAMA, and report their new performances
on LAMA. Specifically, we use the Wikipedia snip-
pets in LAMA and collect a 99k-sentence dataset,
named WIKI-LAMA. Then we create a series of
pretraining datasets by mixing the sentences from
WIKI-LAMA with WebText2 (the pretraining cor-
pus of GPT2). That is, we fix all datasets’ size
to 99k, and a parameter γ is used to control the
mixture degree: for each dataset, there are γ% in-
stances sampled from WIKI-LAMA and 1 − γ%
instances sampled from WebText. Please refer to
the appendix for pretraining detail.

Table 3 demonstrates the effect of sample dis-
parity bias. We can see that 1) Sample disparity
significantly influences the PLMs’ performance:
the larger correlation degree γ will result in better
performance for both BERT and GPT-2; 2) Sample
disparity contributes to the performance difference.
We can see that the performance gap between GPT-
2 and BERT significantly narrows down when they

2http://Skylion007.github.io/
OpenWebTextCorpus

are further pretrained using the same data. Besides,
further pretraining BERT on WebText (γ=0) would
significantly undermine its performance. These re-
sults strongly confirm that the sample disparity will
significantly bias the probing conclusion.

6.2 Cause of Sample Disparity Bias
The cause of sample disparity bias may diverge
from PLMs and scenarios due to the different
causal relation between pretraining corpus distribu-
tion Da and probing data distribution Db. Never-
theless, sample disparity bias always exist because
the backdoor path will be M ← C ← Da →
Db → T → X → E when Da is the ancestor of
Db, or M ← C ← Da ← Db → T → X → E
when Da is the descendant of Db. Figure 2d shows
a common case when the pretraining corpus dis-
tribution Da is an ancestor of probing data dis-
tribution Db. For example, the pretraining data
contains Wikipedia and probing data is a sampled
subset from Wikipedia (e.g., LAMA, X-FACTR,
BioLAMA). As a result, there is a backdoor path
between M and E, which will mislead the evalua-
tion.

7 Bias Elimination via Causal
Intervention

This section describes how to eliminate the above-
mentioned biases by blocking their corresponding
backdoor paths. According to the Backdoor Cri-
terion in Section 2.1, we need to choose a set of
variables Z that can block every path containing an
arrow into M between M and E. Since the linguis-
tic distribution L, pretraining corpus distribution
Da and probing data distribution Db are unobserv-
able, we choose Z = {P,X} as the variable set
for blocking all backdoor paths between (M,E) in
the SCM by conducting backdoor adjustment:

P(E|do(M = m), R = r) =∑
p∈P

∑
x∈X
P(p, x)P(E|m, r, p, x). (2)

Equation 2 provides an intuitive solution. To
eliminate the biases stemming from the spurious
correlations between pretraining corpus, probing
data and prompts, we need to consider the natu-
ral distribution of prompts and verbalized probing
data regardless of other factors. Consequently, the
overall causal effects between PLM and evaluation
result are the weighted averaged effects on all valid
prompts and probing data.
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Model Original Random +Intervention
BERT-base 56.4 45.4 86.5
BERT-large 100.0 78.1 100.0
RoBERTa-base 75.7 44.0 77.8
RoBERTa-large 56.1 42.2 86.5
GPT2-medium 63.5 40.7 98.2
GPT2-xl 74.2 35.7 77.8
BART-base 63.4 61.6 98.2
BART-large 97.7 61.3 100.0
Overall Rank 25.5 5.5 68.5

Table 4: The rank consistencies over 1000 task samples
(each task contains 20 relations from LAMA). For a
PLM, the rank consistency is the percentage of its most
popular rank in 1000 runtimes. For “Overall Rank”, the
rank consistency is the percentage of the most popular
rank of all PLMs in 1000 runtimes, i.e., the rank of all
PLMs remains the same. “Original” means that we use
the LAMA’s original prompts and verbalized names,
“Random” means that we randomly sample prompts and
verbalized names every time, “+Intervention” means
that we apply causal intervention. We can see that the
rank consistency is significantly raised after causal in-
tervention.

Unfortunately, the exact distribution of P(x, p)
is intractable , which needs to iterate over all valid
prompts and all verbalized probing data. To ad-
dress this problem, we propose a sampling-based
approximation. Specifically, given a specific as-
sumption about P(x, p) (we assume uniform distri-
bution in this paper without the loss of generality),
we sample Kp prompts for each relation and Kx

kinds of verbalization for each instance according
to P(x, p), and then these samples are used to es-
timate the true causal effects between M and E
according to Equation 2.

To verify whether causal intervention can im-
prove the evaluation consistency and robustness,
we conduct backdoor adjustment experiments on
8 different PLMs. We randomly sample 1000 sub-
sets with 20 relations from LAMA, and observe
whether the evaluation conclusions were consis-
tent and stable across the 1000 evaluation runtimes.
Specifically, we use rank consistency as the evalu-
ation metric, which measures the percentage of the
most popular rank of each model in 1000 runtimes.
For example, if BERT ranks at 3rd place in 800
of the 1000 runtimes, then the rank consistency of
BERT will be 80%.

Table 4 shows the results. We can see that causal
intervention can significantly improve the evalu-
ation consistency: 1) The consistency of current
prompt-based probing evaluations is very poor on
all 8 PLMs: when we randomly select prompts and

verbalizations during each sampling, the overall
rank consistency is only 5.5%; 2) Causal interven-
tion can significantly improve overall rank consis-
tency: from 5.5% to 68.5%; 3) Casual intervention
can consistently improve the rank consistency of
different PLMs: the rank of most PLMs is very
stable after backdoor adjustment.

The above results verify that causal intervention
is an effective technique to boost the stability of
evaluation, and reach more consistent conclusions.

8 Related Work

Prompt-based Probing Prompt-based probing
is popular in recent years (Rogers et al., 2020;
Liu et al., 2021b) for probing factual knowl-
edge (Petroni et al., 2019; Jiang et al., 2020a; Sung
et al., 2021), commonsense knowledge (Davison
et al., 2019), semantic knowledge (Ettinger, 2020;
Sun et al., 2021; Brown et al., 2020; Schick and
Schütze, 2020) and syntactic knowledge (Ettinger,
2020) in PLMs. And a series of prompt-tuning
studies consider optimizing prompts on training
datasets with better performance but may under-
mine interpretability (Jiang et al., 2020b; Shin et al.,
2020; Haviv et al., 2021; Gao et al., 2021; Qin and
Eisner, 2021; Li and Liang, 2021; Zhong et al.,
2021). Because such prompt-tuning operations will
introduce additional parameters and more unknown
correlations, this paper does not take prompt-tuning
into our SCM, delegate this to future work.

Biases in NLP Evaluations Evaluation is the cor-
nerstone for NLP progress. In recent years, many
studies aim to investigate the underlying biases and
risks in evaluations. Related studies include inves-
tigating inherent bias in current metrics (Cough-
lin, 2003; Callison-Burch et al., 2006; Li et al.,
2017; Sai et al., 2019, 2020), exploring dataset
artifacts in data collection and annotation proce-
dure (Lai and Hockenmaier, 2014; Marelli et al.,
2014; Chen et al., 2018; Levy and Dagan, 2016;
Schwartz et al., 2017; Cirik et al., 2018; McCoy
et al., 2019; Liu et al., 2021a; Branco et al., 2021),
and identifying the spurious correlations between
data and label which might result in catastrophic
out-of-distribution robustness of models (Poliak
et al., 2018; Rudinger et al., 2018; Rashkin et al.,
2018).

Most previous studies demonstrate the evalua-
tion biases empirically, and interpret the underlying
reasons intuitively. However, intuitive explanations
are also difficult to critical and extend. In contrast,
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this paper investigates the biases in prompt-based
probing evaluations from a causal view. Based on
the causal analysis framework, we can identify, un-
derstand, and eliminate biases theoretically, which
can be extended and adapted to other evaluation
settings in a principled manner3. We believe both
the causal analysis tools and the valuable insights
can benefit future researches.

9 Conclusions and Discussions

This paper investigates the critical biases and quan-
tifies their risks in the widely used prompt-based
probing evaluation, including prompt preference
bias, instance verbalization bias, and sample dispar-
ity bias. A causal analysis framework is proposed
to provide a unified framework for bias identifica-
tion, interpretation and elimination with a theoreti-
cal guarantee. Our studies can promote the under-
standing of prompt-based probing, remind the risks
of current unreliable evaluations, guide the design
of unbiased datasets, better probing frameworks,
and more reliable evaluations, and push the bias
analysis from empirical to theoretical.

Another benefit of this paper is to remind the
evaluation criteria shifts from conventional ma-
chine learning algorithms to pretrained language
models. As we demonstrate in Figure 1, in conven-
tional evaluation, the evaluated hypotheses (e.g.,
algorithms, architectures) are raised independently
of the train/test dataset generation, where the im-
pact of correlations between training data and test
data is transparent, controllable, and equal for all
the hypotheses. However, in evaluations of pre-
trained language models, the pretraining corpus is
bundled with the model architecture. In this case,
it is significant to distinguish what you need to as-
sess (architecture, corpus, or both), as well as the
potential risks raised by the correlations between
pretraining corpus and test data, which most current
benchmarks have ignored. Consequently, this pa-
per echoes that it is necessary to rethink the criteria
for identifying better pretrained language models,
especially under the prompt-based paradigm.

In the future, we would like to extend our causal
analysis framework to fit prompt-tuning based prob-
ing criteria and all PLM-based evaluations.
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A Datasets Construction Details

Instance Filtering We follow the data construc-
tion criteria as LAMA, we remove the instances
whose object is multi-token or not in the intersec-
tion vocabulary of these 4 PLMs.

Relation Selection We remove all the N-M re-
lations in LAMA such as “share border with” or
“twin city”. Because in these relations, there are
multiple object entities corresponding to the same
subject entity. In that case, the metric Precision@1
is not suitable for evaluating PLMs in such rela-
tions. In addition, due to the completeness limita-
tion of knowledge bases, it’s impossible to find all
the correct answers for each subject. Therefore, we
do not include these relations in our experiments.

Prompt Generation Because of the difference
between the pretraining tasks of these 4 PLMs (au-
toencoder, autoregressive and denoising autoen-
coder), we design prompts where the placeholder
for the target object is at the end, e.g., The birth-
place of x is y instead of y is the birthplace of x.
We follow the instruction from Wikidata, combine
the prompts from Elazar et al. (2021) and Jiang
et al. (2020b), and manually filter out the prompts
with inappropriate semantics. All the prompts are
created before any experiments and fixed afterward.

B Further Pretraining Details

We further pretrain BERT with masked language
modeling (mask probability=15%) and GPT2 with
autoregressive language modeling task respectively.
Training was performed on 8 40G-A100 GPUs for
3 epochs, with maximum sequence length 512. The
batch sizes for BERT-base, BERT-large, GPT2-
base, GPT2-medium are 256, 96, 128, 64 respec-
tively. All the models is optimized with Adam
using the following parameters: β1 = 0.9, β2 =
0.999, ϵ = 1e − 8 and the learning rate is 5e − 5
with warmup ratio=0.06.
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